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Abstract—Multi-ion potentiometric sensing becomes challeng-
ing for mixed-ion samples in which interfering electrolytes
significantly alter the response of each single sensor. Therefore,
an emulator based on the phase-boundary potential model is pro-
posed to simulate multi-ion sensing in presence of interference. It
serves as investigation tool for understanding the impact of sensor
selectivity and interferent ions in the sensor response. Moreover,
the emulator is used to design mixed-ion synthetic dataset,
following a multi-factorial design of ion mixtures with orthogonal
arrays. Such large dataset is suitable for data-intensive learning
algorithms used in multivariate calibration of potentiometric
sensor arrays.

Index Terms—Mixed-ion potentiometric sensing, Phase-
boundary potential model, Calibration-curve emulator, Orthog-
onal design of experiments

I. INTRODUCTION

Potentiometric ion sensors are ubiquitous in healthcare
monitoring and wearable physiology, enabling the detection of
a wide range of electrolytes [1]. This could be done in a non-
invasive way, through biological fluids such as sweat [2]. The
main minerals present in perspiration are sodium, chloride,
potassium, and in weaker amount, calcium [3]. Following
an intensive physical exercise, depletion of potassium and
sodium could lead to dehydration, muscle cramps, or to more
severe physiological dysfunctions such as hypokalemia and
hyponatremia [4]. In addition, calcium levels indicate bone
mineral loss [5], and other ions are monitored in order to
control electrolyte balance. Moreover, human body excretes
trace metals in sweat such as zinc, iron, or lead, whose
concentration may change due to exposure to contaminated
food, dust, or gasoline [6]. Other exogenous electrolytes could
be present in sweat, as for example lithium, that is prescribed
for people suffering from mental disorder [7].

All-solid-state sensing technology together with progress
in microtechnology and electronics enable the integration of
multi-ion sensors into wearable systems [1] [8]. One of the
main challenge in multi-electrolyte monitoring comes from
the impact of interferent ions in sensor response [9]. Interfer-
ence arises from the sample matrix that inherently contains
a mixture of electrolytes, and from exogenous compounds.
In the latter case, accurate ion sensing becomes even more
challenging since the target electrolyte is extremely diluted in
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the biological fluid. Therefore, interference constrains poten-
tiometric sensors to be highly selective towards their target
ion. Major advancements are made in ion sensing technology
to increase sensor selectivity, but the sensors proposed in
literature cannot actually cope with intrinsic electrolyte cross-
selectivity bounds. An alternative is to increase the prediction
accuracy of the concentration of target electrolytes down-
stream, with efficient data processing and learning algorithms
[10]. Multi-ion sensing requires a multivariate calibration
model to bind sensor array responses to target ions concen-
trations [11]. Chemometric methods include linear inverse
least-squares models, but the strong non-linearity observed
in presence of interferent ions suggest the use of non-linear
regression models such as Artificial Neural Networks (ANNs)
[12] [13]. However, these models necessitate large training
dataset in the calibration and validation phase in order to
get good prediction accuracy. A batch of sensor calibration,
with different ion mixture combinations is typically needed.
Unfortunately, acquiring this large amount of data is time and
resource consuming in practice.

Thus, in the present work, a calibration-curve generator is
proposed to emulate multi-ion sensing in presence of interfer-
ent ions. First, the tool is used for investigation, allowing us to
understand the impact of sample composition and membrane
selectivity in the sensor response. Moreover, the emulator is
implemented to generate mixed-ion synthetic dataset to be
fed to ANN models in a multivariate calibration framework.
The analytical description and assumptions of the ion sensing
models used are detailed in Section II. Then, the parameters
of the calibration-curve emulator are described in Section III,
highlighting the versatility of the tool. Next, a methodology
for generating synthetic ion sensing dataset is presented in
Section IV. The conclusions are reported in Section V.

II. ION SENSING MODELING

In potentiometric ion sensing, all-solid-state ion-selective
electrodes (ISEs), coated with an ion-selective membrane,
transduce the thermodynamic activity of the target ion into
an electrical potential. Namely, the open circuit potential
(OCP) between the ISE and an inert reference electrode, that
has a stable potential, is measured under quasi-zero current
conditions [14]. Sensor calibration is performed to link OCP
sensor response and the target ion activity. The latter describes
the ability of the analyte to react with other ions, and it



is related to the effective ion concentration by the activity
coefficient. In the following, ion activity is referring to the
chemical property tracked in electrolyte sensing.

Nicolsky-Eisenmann model is commonly used to describe
the response of ion sensors. Nevertheless, large deviations
from acquired sensor data are observed with sensor arrays put
in presence of ion mixtures [15]. In this work, the phase-
boundary potential model is used to derive the Nernstian
response of a polymeric membrane ISE in mixed-ion solutions.
A general description of the model could be found in [16].
The hereunder analytical derivation is carried out to get a
compact modeling of ISE response, with the most relevant
sensor properties chosen as design parameters. The phase-
boundary potential model is based on ion-exchange equilib-
rium considerations at the sample/membrane interface. An
electrical potential difference is built up at the interface to
counter-balance the ion fluxes from the sample phase to the
membrane phase, where the target ion is entrapped. Nernst
equation links the phase-boundary potential Epg to the activity
of the target ion in the sample,
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where €0 is the standard potential of ion j of valence zj,
s is the Nernst slope, and aj(m), aj(aq) are the activities
of ion j, in the membrane, and the sample, respectively.
Then, considering the ion-selective membrane (consisting of
ionophore and ion-exchanger), it is assumed that the changes
in the activities of uncomplexed ionophore and extracted ions
during ion exchange are negligible. The electroneutrality of the
membrane, for multiple ions in the membrane and the sample
phases, yields
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where EJO is introduced as the apparent standard potential of
ion j. It includes € and the parameters of the ionophore and
ion-exchanger. Then, the selectivity coefficient is defined as
log K?f}t =14. (E? — E? ). It quantifies how much a membrane
is selective towards the target ion I than an interferent ion
J. As a result, the following compact equation is obtained,
considering only monovalent and divalent ions in the sample
matrix.
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The first contribution is given by the target ion I, while the
two sums account for monovalent and divalent interferent
ions, respectively. Selectivity coefficients could be seen as

weighting factors of the activity of interferent electrolytes.
Next, Equation 3 is solved for Epg, and yields
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where f is a highly non-linear function of the activity and
selectivity coefficients of the constituents. An ideal Nernstian
response is retrieved if f = aj. Eventually, the measured OCP
at ion I-ISE is Ej = K¢ + Epg, where K ¢ is a constant
accounting for the other potentials in the galvanic cell.

III. CALIBRATION-CURVE EMULATOR

The ion sensing model previously described is used to
emulate ISE responses in different sample compositions. A
calibration-curve emulator is designed for this purpose, en-
abling the quantification of the impact of sample composition,
interferent ions and membrane selectivity, in different ion mix-
ture solutions. The graphical user interface (GUI) displayed
in Fig. 1 is built in PyQt5 to automate simulations.
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Fig. 1: GUI developed to generate synthetic calibration curves
in different mixed-ion solutions, to perform parametric sim-
ulations, and to compare synthetic curves with database of
in-vitro calibration curves.

The main parameters of the GUI are detailed in the follow-

ing.

e Target ion I: I € {potassium, sodium, lithium, lead} is
selected. Monovalent/divalent ion I could be used for
standard simulation.

o Offset: Ko + E? is modeled as an offset potential. It
depends on the primary ion, takes into account membrane
composition and sample-independent potentials such as
reference electrode potential, potential drops at the elec-
trodes.

e Interfering ions Ji: multi-ion sensing in sweat in-
volve Jx € {potassium, sodium, lithium, ammonium,



calcium, magnesium}. The physiological activity of these
ions in sweat are used by default. Cross-selectivity co-
efficients are taken from literature, and are reported in
Table 1. For standard simulation with target ion I, ions
J1, Jo, J3, with selectable valence, activity, and selectivity
coefficient are the interferent electrolytes.

TABLE 1: Cross-selectivity coefficients of the constituents
considered in sweat sample. Values are extracted from litera-
ture (fixed interference method, [17] [18]).

t
log K7
N Kt Nat Lt Pb** NHf Mg*t Ca®t
K+ 1 .17 23 - -5 3.2 -
Nat -1.8 1 2.5 - 2.8 42 3.7
Lit 22,65 -2.26 1 - 2318 452 391
Pb2t 56 58  -56 1 212 -6.2 -6.2

e Ion sensing models: phase-boundary potential model
(Nicolsky-Bakker) and Nicolsky-Eisenmann model are
used to simulate the ISE response with the ion mixture
scenario set. Theoretical full-Nernstian response is plotted
to assess the amount of potential distortion due to inter-
ference. Gaussian noise could be added to the synthetic
curve, tuned as equivalent sensor signal-to-noise ratio.

e Parametric analysis: parametric sweep of the activity
and selectivity coefficient of the interferent ion could
be done. Typical calibration curves are displayed in
Fig. 2. It quantitatively explains the impact of interference
in the ISE response. For poorly selective sensors and
ISEs in presence of concentrated interferent ions, the
background potential (potential at loga; — —o0) rises,
and the elbow of the calibration curve shifts towards
higher activities. The lower limit of detection (LOD) of
the sensor is extrapolated as the primary ion activity at
the intersection of the linear Nernstian sensor response
and the flat background potential. Therefore, the lower
LOD increases in presence of concentrated interfering
ions. This could be critical if the lower LOD reaches
the physiological range of concentration of the primary
ion in sweat.

o Load database of calibration curves: calibration curves
obtained from in-vitro measurements could be loaded
to compare synthetic and measured calibration curves,
as illustrated in Fig. 3. The database is obtained with
commercial platinum screen-printed electrodes (Sigma
Aldrich, Switzerland) nanostructured according to [19],
and coated with ionophores following recommended
cocktail composition by Sigma Aldrich. The OCPs of
the prepared ISEs are measured with an Autolab poten-
tiostat (Metrohm, Switzerland) against a double-junction
Ag/AgCl reference electrode (Metrohm). By tuning the
model parameters, it is possible to fit synthetic calibration
curves to acquired sensor data. This procedure enables the
extraction of sensor parameters as well, that are used to
produce more realistic synthetic dataset in the following.

(@) - ) -

" mem
s sem
Py
" wem
s % am
s wem
5 wem
RWERY
w

Er (mV)
Ep (mV)

‘mm
[}
L]
L]
LU

LR RN NN
" 8 8 B 88

5 3 2 1

3 I ’ "
log ar log ap

Fig. 2: Parametric analysis of multi-ion sensing: (a) ay swept
from 0 to le — 3, with z; = 1, offset = 400mV, z; = 1,
and log Kff}t = —3; (b) log Kff}t swept from —oo to —1, with
71 = 1, offset = 450 mV, zy = 1, and aj = 10e — 6.
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Fig. 3: Fitting synthetic and measured calibration curves: (a)
sodium sensor calibration, (b) lead sensor calibration with
magnesium as interferent ion.

e Export calibration curves: synthetic calibration curves
are exported as text files and png images.

IV. DESIGN OF SYNTHETIC DATASET

The ion sensing models described are used to generate
synthetic OCP responses in different mixed-ion solutions. 7
constituents are considered in the sample matrix: potassium,
sodium, lithium, lead, ammonium, magnesium, and calcium
ions. A 4-channel ISE array sensing the first 4 ions is emulated
with different sample compositions. The determination of
different ion mixtures combinations is a multifactor design
of experiments. Taguchi method is implemented to generate
a representative subset of all constituents combinations with
orthogonal arrays [20]. The range of activities of the 7 factors
are quantized in 6 levels summarized in Table 2. They are set
according to their physiological range in sweat. A L1g(6' x 36)
orthogonal array is implemented in which the 6-level factor
is cyclically permuted over the 4 primary constituents, given
that column permutation preserves orthogonality. A default
nominal sample composition is also added in the dataset. Thus,
145 non-redundant synthetic mixtures are obtained. It is large
enough for training and validation of chemometric models. For
comparison, 31 and 52 real ion mixtures are prepared in the



multivariate calibration frameworks using ANNSs, in [12] and
[13], respectively.

TABLE 2: Discrete activity levels of the constituents. The
target ions are in italic.

Level Activity of each factor (x1e — 3)

KT Nat Lit Pp?T || NH] MgEr Ca?f
Ll 01 01 005 0001 || 0001 001 001
L2 05 1 01 001 || 005 005 005
L3 1 5 025 005 || 01 0.1 0.1
L4 5 50 05 01 | 025 025 025
LS 10 100 1 025 || 05 05 05
L6 20 150 25 05 1 1 1

Next, the simulated responses of the 4 ISEs with the 145
samples are computed. This is automated by a tool that takes
any orthogonal table of 7 factors as input, and outputs the
corresponding 4-dimensional OCP responses. The parameters
of the emulator are the quantized activity of Table 2, the offset
potential of each sensor, and the cross-selectivity coefficients
between constituents of Table 1. The synthetic OCP responses
are displayed in Fig. 4. It is observed that lead and sodium
detection is weakly affected by interferent ions. Indeed, lead
membrane are particularly selective. Conversely, there is a
large OCP dispersion for lithium detection, and for potassium
detection, in diluted analyte. Sensor calibration in these two
cases necessitates non-linear chemometric methods.
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Fig. 4: Visualization of synthetic OCP/activity dataset, ob-
tained through orthogonal design of experiments emulating a
4-channel ISEs monitoring.

V. CONCLUSION

In this work, a compact model of the phase-boundary
potential at the sample/membrane interface is derived to be
the basis of a mixed-ion sensing emulator. The impact of

interference and sensor selectivity on sensor lower LOD is
quantified by the distortion of the calibration curves from an
ideal Nernstian behaviour. Next, 4-channel ions monitoring is
emulated using an orthogonal design of the sample compo-
sition. This allows us to simulate sensor array response with
different ion mixtures that are representative of electrolytic
composition of sweat during physical exercise or ion intake.
A tool is developed to automate the generation of the synthetic
dataset. Ongoing work is focusing on chemometric models to
implement multivariate calibration on the multi-dimensional
OCP/activity dataset. These methods include inverse least-
squares and ANN models.
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