Towards an Integrated Software Development
Environment for Robotic Applications in MPSoCs
with Support for Energy Estimations

Paulo H. Vancin!, Anderson R. P. Dominguesl, Marcelo Paravisil+?, Sergio F. Johann!,
Ney L. V. Calazans' Alexandre M. Amory!
L School of Technology, Pontifical Catholic University of Rio Grande do Sul — PUCRS — Porto Alegre, Brazil
2 Instituto Federal de Educacdo, Ciéncia e Tecnologia do Rio Grande do Sul — IFRS — Osério, Brazil
{paulo.vancin, anderson.domingues, marcelo.paravisi } @acad.pucrs.br, {sergio.filho, ney.calazans, alexandre.amory } @pucrs.br

Abstract—Multi-processor Systems-on-Chip (MPSoCs) have
been proposed to tackle embedded systems’ requirements due
to their potential for low-power consumption and high scalabil-
ity. These systems fit the needs of many application domains,
including robotics and autonomous vehicles, in which reliability,
performance, and timeliness are critical to operation. In this
paper, we propose an integrated environment for the develop-
ment of robotic applications targeting MPSoCs. The proposed
environment eases the evaluation of non-functional requirements
by combining cycle-accurate simulations from RTL models with
behavioral simulations from robotics. We present a case study of
the proposed environment in the context of a UAV (unmanned
aerial vehicle) stabilization software, providing performance and
energy estimations for different software implementations.

Index Terms—Autonomous Vehicles, MPSoCs, Robotics, Soft-
ware Development Environment, UAV.

I. INTRODUCTION

The increasing interest in robotics and autonomous vehicles
applications such as autonomous cars and delivery drones
require the development of robust and reliable software.
Today’s robotic applications demand typical embedded sys-
tems’ requirements, such as low power consumption, real-time
scheduling, high reliability and safety. These characteristics,
along with requirements of other domains such as machine
learning and computer vision, make the development of soft-
ware for robotics both time-consuming and error-prone.

Hardware providers have proposed specialized computing
units to fulfill the requirements of particular domains, such as
graphical processing units (GPUs) for computer vision, vector
units for numerical computing, and neural processing units
(NPU) for machine learning. However, these units explore
data-level parallelism, corresponding to only a fraction of
the tasks in typical robotics systems. In this scenario, multi-
processor systems-on-chip (MPSoCs) have evolved to supply
the demand for heterogeneous, massively parallel, computing-
intensive and energy-efficient applications.

Typical MPSoC architectures are composed by tens to hun-
dreds of embedded processors connected to a network-on-chip

This study was financed in part by the Coordenagdo de Aperfeicoamento de

Pessoal de Nivel Superior — Brasil (CAPES) — Finance Code 001 and project
88887.115590/2015-01, Pro-Alertas program.

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

(NoC), predominantly relying on a distributed memory pro-
gramming model. We argue that the domain of robotics could
benefit from MPSoCs due to three main reasons: (i) mesh-
based topology NoCs based on NORMA (non-remote memory
access) tends to be more scalable than bus-based architectures,
as opposed to shared-memory multi-core architectures; (ii)
larger systems favor the exploration of task mapping, reducing
communication delay and energy consumption, and improving
system performance; and (iii) MPSoCs ease the exploration of
task-level parallelism when compared to vector units, GPUs,
and NPUs, as these architectures aim for data-level parallelism.

In this paper, we present an integrated software development
environment to design robotic applications for MPSoCs. The
goal of the proposed environment is to integrate multiple
simulators in a unique setup that covers physics, hardware, and
software simulation of robots and vehicles. The environment
will enable the evaluation of non-functional requirements
such as energy/power consumption [2], and response time for
robotics applications. Validation of the proposed environment
is performed with an unmanned aerial vehicle (UAV) applica-
tion in a quadrotor. This application controls the height and
attitude of the quadrotor in a simulated MPSoC platform.
The application consists of two tasks: (i) EKF (extended
Kalman filter), which performs sensor fusion and vehicle
pose estimation, and (ii) PID (proportional integral derivative),
which controls the four motors of the quadrotor to perform
stabilization.

II. BACKGROUND

The Robot Operating System (ROS)! became a de facto
standard for the development of robotic systems. ROS-based
systems implement the publish-subscribe pattern [4], whose
organization consists of nodes and topics. A node is a software
that can subscribe to (or publish to) data channels called
topics. Typical setups for robot simulation combine ROS
with Gazebo?, a robot simulator capable of simulating en-
vironmental physics, e.g., gravity, wind, terrain, and sunlight.

Uhttps://www.ros.org/
Zhttp://gazebosim.org/

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:11:00 UTC from IEEE Xplore. Restrictions apply.

Robots interact with the environment through sensors, which
capture data based on the stimuli of the simulated environment.
Gazebo can be extended to push data into ROS, so that appli-
cations can access sensing information. Then, the behavior of
the robot can be programmed and validated as if the software
were deployed in a real robotic platform.

III. PROPOSED DEVELOPMENT ENVIRONMENT

As far as we are concerned, typical Gazebo-ROS setups
consist of physics simulation (provided by Gazebo) and appli-
cation (usually programmed with ROS). In contrast, the pro-
posed environment provides a cycle-accurate MPSoC model
to support the development of the robotic application. The en-
vironment shown in Figure 1 consists of four parts; (i) physics
simulation in Gazebo (Sec. III-A), including environment
and robot’s sensors and actuators, (ii) hardware simulation
(Sec. III-B), consisting of an MPSoC platform, (iii) software
for the before-mentioned robotics application (Sec. II-C),
and (iv) the message interface between ROS and MPSoC
(Sec. III-D).

- [}
i Gazebo simulation Software Stack !
: Environment Aoplcation SUpport :
: Vehicle pplicat Libraries !
: H—‘l Sensors/ HellfireOS kernel 2!
I I{ Actuators |, SN 4 % :
: ORCA MPSoC S, g :
]
. Nod o
: odes /P /1O =~ EKF § !
! 4 [} |
]
! * [« PID :
[}
: |ROS System i URSA Simulator | i

(*) disabled node — data flow

Figure 1. Organization of the proposed development environment consisting
of Gazebo, a custom ROS-based system, and a simulated MPSoC.

A. Environment and Robot Simulation

Gazebo performs physics simulation, i.e., the environment
and the robot. With the aid of GAZEBO/ROS? plugins, Gazebo
populates specific topics of an ROS-based system; these topics
maps to sensors the simulated robot. In the case of our
control application, these topics correspond to data from ac-
celerometer, magnetometer, barometer, and gyroscope sensors.
Similarly, motors of the quadrotor can be accessed through
topics. The behavior of sensors is implemented by the HEC-
TOR_QUADROTOR [5] package, which models aerodynamics,
propulsion, and sensors within Gazebo. It is important to note
that we slightly modified # the package to bypass the internal
controller. This modification was necessary to access unfiltered
sensing data from outside Gazebo, removing the generation of
noise in the output.

3http://wiki.ros.org/gazebo_plugins
“https://github.com/marceloparavisi/hector_quadrotor.

B. MPSoC Hardware

URSA [6], a framework that is used to develop cycle-
accurate simulators based on the discrete-event simulation
(DES) model, handles the simulation of the MPSoC archi-
tecture. URSA provides an API to describe hardware models
as finite state machines (FSMs) written in the C++ language.
The simulated MPSoC platform, called ORCA, is modeled as
a 2D-mesh Network-on-Chip (NoC) combined with processing
elements.

ORCA allows for the design-time configuration of multiple
MPSoC parameters, including the number of nodes, router
buffer width, and processor memory size. The configuration
adopted in this paper has a message size of 64 16-bit flits.
Communication is carried out by an instance of the Hermes
NoC [3], with a buffer depth of 16 flits, XY routing algorithm,
and wormhole packet switching. We organized tiles in a
2x2 mesh-based topology. One tile is reserved to handle I/O
operations, and two of the remaining tiles run the tasks. In this
configuration, the fourth tile is powered off due to application
requirements. Each processing tile consists of a 32-bit HF-
RISCV processor core [7], with a 3-stage pipeline and RvV32IM
instruction set. Processing tiles, shown in Figure 2, include
2MB of SRAM each, a custom network interface to attach
the processor core to the NoC, and two auxiliary buffers for
incoming (Recv. Mem.) and outgoing packets (Send Mem.).

Processor] E
Core ! <O

Send Mem Ve 0 1 2
~~~~~ o
(7]

LI
Network
Interface

to Udp ? networking tile
network

MPSo

control

to the NoC

P
(0]
2
g -
(0]
3|
Tecv
=send

processing tile

Figure 2. Illustration of the simulated MPSoC and internal hardware.

C. MPSoC Software

The application model adopted in this work includes a
set of real-time tasks executing over a NORMA architecture,
communicating through a message passing mechanism. Task
scheduling and message passing mechanisms are implemented
on top of the HellfireOS [8], a real-time operating system
(RTOS) that is fully preemptive and highly configurable. The
RTOS provides task management and scheduling policies,
along with standard libraries, synchronization primitives, and
inter-task communication drivers. Additionally, routines for
fixed-point operations and matrices manipulation used in this
work are implemented as libraries on the HellfireOS.

D. Interface Between MPSoC and Robot Simulation

In our environment, we use ROS nodes to carry messages
from the MPSoC platform to Gazebo and vice-versa. Two ROS
nodes, to—mpsoc and to-gazebo, wrap up the network
protocols. From the ROS point of view, the MPSoC is an

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:11:00 UTC from IEEE Xplore. Restrictions apply.



ordinary ROS node, as if all the logic of applications reside in
the to-mpsoc node. Similarly, from the MPSoC perspective,
peripherals (sensors and actuators) are connected to the NoC.
Thus, the to—-gazebo node has to handle all necessary
peripheral-specific protocol translation. For this application,
all sensors are updated at the same frequency, and all sensing
data is packed in the same data structure. Sensors in Gazebo
update at 100Hz, which is faster than the maximum frequency
supported by the MPSoC at the moment, 10Hz, as presented in
the results. The to-mpsoc node adds latency compensation
to sensing data, packing multiple sensor readings in the same
packet. On the to—gazebo side, the node uses interpolation
to fill the gaps generated by the latency compensation. It is
important to note that this approach permits multiple instances
of the MPSoC to be associated with multiple robots in Gazebo,
enabling the simulation of complex scenarios.

Figure 3 illustrates the communication between the system
components. Sensing data depart from Gazebo, and become
accessible in the ROS system through three topics (B, U, and
M in Figure 3), to which the to-mpsoc node subscribes to.
Since data arrive in these topics at the same rate, we pack
them all in the same data structure and then send the structure
through the UDP network to the MPSoC simulator. Once
the data arrive at the I/O interface, it traverses the simulated
network-on-chip until they reach the target processing node.
The task responsible for the reception of data from the ROS
system is EKF. The estimated pose from EKF feeds the
PID controller, whose output is transferred through the UDP
network to the to-gazebo node. After the PID generates its
output, the PWM vector is forwarded directly to the motors
of the quadrotor in Gazebo.

IV. FLIGHT STABILIZATION APPLICATION

The quadrotor flight stabilization application consists of
two tasks. First, a quaternion-based EKF performs estimation
of the altitude and attitude of the vehicle. The orientation
information (quaternions) is converted to Euler angles (roll,
pitch, and yaw) and fed to another task, a PID controller.
The PID controller, shown in Figure 4, forces the error
between the estimated states and the desired states (setpoint)
to approximate zero.

A. Extended Kalman Filter (EKF)

The assumptions of linear state transitions and linear mea-
surements with added Gaussian noise are rarely fulfilled in
practice. Linear next state transitions cannot describe most of
the robotic vehicles. Then, simple Kalman filters do not apply
to most trivial robotics problems. In this work, the Extended
Kalman Filter (EKF, shown in Algorithm 1) is used instead,
since it allows for nonlinear equations.

In the EKF algorithm, z;, € R7*! represents the states of
the system (orientation quaternion and gyroscope covariances),
2 € R**! are the sensor inputs, Py, € R7*7 is the covariance
matrix of the states of the system, F}, € R7*7 is the Jacobean
matrix of system’s function f(x,_1) € R™!, Hj, € R™7 is
the linearization of the function for the sensor models h; €

Algorithm 1 EKF Algorithm (z;_1, Px—1, 21)
1: @g — f(.l?k_l)

P+ &'Pk—lF;:;j‘R

Ky PkH]/C(HkPkH]; + Q)71

Xk — T+ Kk(zk :h(f}c))

: Pk < (I — Kka)Pk

. return Py, xy

SN LW

R**!, K;, € R7*% is the correction gain matrix, R € R**4
and Q € R7*7 are the covariance matrices for uncertainties
of sensors, and system’s model, respectively.

B. PID

As previously stated, the PID controller is used to find the
control signal (u;) for all of the states that guarantees the
desired orientation (roll «y, pitch f,p, yaw 6,,) and height
(2) of the vehicle. The PID controller for the roll parameter is
described in Equation 1, where K, is the proportional gain,
K; is the integral gain, K, is the derivative gain, and oy, is
the setpoint for the roll parameter. The same applies for pitch
and yaw parameters. The height control also uses a modified
PID controller [1], shown in Equation 2, where Ty,quity iS
the minimum thrust that overcomes the gravity force. The
aforementioned control laws are used as components for the
signal output for each of the four motors. Equation 3 shows the
control signals of motors for the dynamics of the quadrotor.

t
d
Ug, :Kp(aspfa)nLKi/ (aspfa)dtJrKd%(aspfa); (D
0

1 t
= 5 K, sp Kz sp dt
U Cosacosﬁ( p(zsp —2) + /O(Zp 2)
d
+ Kd%(zsp - Z) + Tgr(wity); (2)
U = —ug + ug + u, Ug = —Uq — Uy + U,

3)

Uz = ug + ug + U, Uy = Uq — Ug + U,

V. ENERGY ESTIMATION AND PRELIMINARY RESULTS

The performance of the proposed environment is bound to
the host machine. In this paper, we used a DELL Precision
Tower 3420 Workstation (Intel Xeon E3-1220 v5 @3GHz, 4x
core, 32GB of RAM, 1TB SSD hard-disk) as host machine,
with ROS (Kinect Kame) and Gazebo (version 7.0.0) running
under Ubuntu 16.04.6 Desktop (x64). The control application
(EKF and PID) was written in C (cross-compiler GCC/G++
version 8.1.0 targeting RISCV32). Models implemented by
the PID and EKF tasks were developed using Matlab and
Python and validated before their port to the platform. In
the experiments, we executed the MPSoC platform running
the EKF plus PID application and calculated the processing
time and energy necessary to run a complete iteration of EKF
and PID, respectively. This means that every sensor message
received into the MPSoC triggers a complete EKF and PID
iteration to update the UAV actuators.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:11:00 UTC from IEEE Xplore. Restrictions apply.



gazebo directionofthe  rosg (to:{mpsoc) ursa ros (tojgazebo) gazebo
- ~ magnetic field r \ ( ~ 0]
(MAG) —
B proper acceleration > E KF s
A (ACC) [1]
U ' pwm[] | ——% U.
height (Z fllteredH —_
G eight (Z) data = 2]
orientation and = — U
M angular velocity| PID —O ;
sensors (SR s - " _>[ ) U4
L y @100Hz | compensation J@10Hz| orca mpsoc | | interpolation J@100Hz| motors

legend: barometer imu @ magnetometer accelerometer gyroscope|:| ros topic . ros node |:| udp socket |:| mpsoc task

Figure 3. Diagram representing the dataflow between the components of the environment.

Figure 4. Illustration of the control scheme.

The proposed MPSoC model can estimate the energy re-
quired by a task. The average energy consumption of every
processor instruction was previously characterized using the
method described by Martins [2]. We compared four different
application setups to determine the best configuration, consid-
ering energy consumption and response time for the task set.
For both tasks, we ran variations of the environment using
a software-emulated floating-point (SEFP), and a hardware
multiplier unit (MU). There were four variations: (i) system
with SEFP only, (ii) SEFP+MU, (iii) MU only, and (iv) none.
For each variation, we collected statistics for 100 iterations of
each task. The fixed-point data is represented in 16.16 format
(16 bit integral, 16 bit fractional parts). The response time
results assume a clock period of 4 ns.

Results, shown in Table I, indicate that MU-only configu-
ration presented the best average response time and average
energy consumption, where less is better for both criteria, for
both tasks. The system with fixed-point arithmetic without MU
performed closer to the SEFP+MU configuration, indicating
that those choices are nearly equivalent when considering only
average response time and average energy as criteria. For both
applications, fixed-point without MU is worse than SEFP+MU
in response time, although SEFP+MU outperforms fixed-point
without MU in energy consumption.

For the numerical quality of results, we compared the output
of EKF and PID tasks against the reference models in Matlab,

roll error ui Table 1
£ Tehares w2 RESPONSE TIME AND ENERGY EVALUATION FOR PID AND EKF TASKS.
z e P I D u3 fmotor_pum Configuration
= z error
5 ud Task SEFP fixed point arith.
g z (Cpressure_neignt ) with MU | no MU | with MU | no MU
w timestamp | ¢ = Avg. Response | PID 25.5 34.0 20.0 27.0
< AcC | . ftime ] Time (ms) EKF 107.01 196.5 87.5 173.0
| Avg. PID 1781.1 2517.4 1480.0 1776.7
slL3 Energy (nJ) EKF 7252.7 13761.6 6460.3 11776.9
% Slals q1 EKF GYR Iraw_imu n
(2 q2 0o
o QUATERNION
= TO EULER q3 MAG 14 . .
ANGLES = { magnetic as well as against the built-in controller of the Hector package.
' As a result, we achieved a mean error between fixed point

and floating point of 0.19%, that is, each component of the
resulting quaternion has a mean value error from its reference
of 0.0019. When comparing the output of the EKF task to the
real pose estimated by the internal controller of Hector, the
mean error was of 0.44%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a software development en-
vironment for robotic applications for MPSoCs, integrating
several tools to simulate computing architecture and physics.
The environment has been evaluated for a robotic application
in a quadrotor, in which an EKF and a PID controller have
been developed to achieve attitude and height stabilization.
Results demonstrated that the proposed environment allows
a quick evaluation of performance and energy trade-offs of
different software implementations.

Future works for the project include (i) adding more control
methods and operation modes to the application, (ii) redoing
the energy evaluation, considering other tasks and the op-
erating system overhead, (iii) synchronize Gazebo with the
MPSoC to eliminate rate compensation, (iv) prototype the
MPSoC in a FPGA attached to a real quadrotor.

REFERENCES

[1] Huang, H. et al. “Aerodynamics and control of autonomous quadrotor
helicopters in aggressive maneuvering.” In: IEEE International Confer-
ence on Robotics and Automation (ICRA). pp. pp. 3277-3282. 2009.

[2] Martins, A. L. D. M. “Multi-Objective Resource Management for Many-
Core Systems”. PhD Thesis. PPGCC - Pontificia Universidade Catdlica
do Rio Grande do Sul (2018).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:11:00 UTC from IEEE Xplore. Restrictions apply.



[3] Moraes F. et al. “HERMES: an infrastructure for low area overhead
packet-switching networks on chip.” Integration the VLSI Journal, Vol.
38, no. 1 (2004).

[4] Colouris, G. et al., “Distributed Systems: Concepts and Design”. 5th Ed.
Addison-Wesley Publishing Company, USA (2001). pp. 242 — 250.

[5] Meyer J. et al. “Comprehensive Simulation of Quadrotor UAVs using
ROS and Gazebo”. In: International Conference on Simulation, Model-
ing and Programming for Autonomous Robots (SIMPAR). pp. 400-411.
2012.

[6] Domingues, A. “URSA: A framework to the simulation of multipro-
cessor platforms”. Online. Accessed October 7, 2019. Available at
https://github.com/andersondomingues/ursa.

[7] Filho, S. J. “HF-RISC SoC”. Online. Accessed October 7, 2019.
Available at https://github.com/sjohann81/hf-risc.

[8] Filho, S. J. “HellfireOS: Realtime Operating System”. Online. Accessed
October 7, 2019. Available at https://github.com/sjohann81/hellfireos.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:11:00 UTC from IEEE Xplore. Restrictions apply.



