
Efficient Task Mapping for Manycore Systems 
Xiqian Wang, Jiajin Xi, Yinghao Wang, Paul Bogdan, Shahin Nazarian 

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA 

 
Abstract— System-on-chip (SoC) has migrated from single 

core to manycore architectures to cope with the increasing 

complexity of real-life applications. Application task mapping has 

a significant impact on the efficiency of manycore system (MCS) 

computation and communication. We present WAANSO, a 

scalable framework that incorporates a Wavelet Clustering based 

approach to cluster application tasks. We also introduce Ant 

Swarm Optimization (ASO) based on iterative execution of Ant 

Colony Optimization (ACO) and Particle Swarm Optimization 

(PSO)  for task clustering and mapping to the MCS processing 

elements. We have shown that WAANSO can significantly 

increase the MCS energy and performance efficiencies. Based on 

our experiments on a 64-core system, WAANSO improves energy 

efficiency by 19%, compared to baseline approaches, namely 

DPSO, ACO and branch and bound (B&B). Additionally, the 

performance improves by 65.86% compared to Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) baseline.  

I. INTRODUCTION  

With the development of modern semiconductor 
technologies, a large number of sources including intellectual 
property (IP) and embedded memory blocks can be integrated 
by the designers on a very tiny scale. However, the growing 
computational resources require tremendous communication 
volume [1]. Also, the maximum operating frequency of a single-
core processor has hit a ceiling due to power dissipation limits 
and other scaling rules such as short channel effects. This 
demands SoC designers to pursue parallel computing in MCS 
designs. As a promising interconnect infrastructure, NoC has a 
significant impact on mitigating the challenges related to on-
chip communication and heterogeneity of cores. However, the 
full potential of MCS can be realized only if the applications are 
suitably parallelized considering task dependencies as well as 
the timing and power constraints [2]–[6]. Applications can be 
either converted from an existing sequential form or written to 
be executed in parallel from scratch. Once the code is compiled, 
it must be mapped efficiently  onto the underlying hardware. 
Many decisions need to be made while mapping and scheduling 
a program onto an MCS. These include determining how much 
of the potential parallelism should be exploited, the number of 
processors to use, how parallelism should be scheduled, etc. The 
best mapping choice depends on the relative costs of 
computation, energy consumption, and other hardware and 
varies from one MCS to another. This mapping can be 
performed manually by the programmer or automatically by the 
compiler or run-time system.  

There have been numerous works related to task scheduling 
and mapping, including those for NoCs. E.g., an ACO-based 
approach  minimizes the energy and the thermal power of NoCs 
[7]. ACO, however suffers from its low convergence because of 
its unknown initial pheromone on the map. The algorithm of [8] 
utilizes B&B to achieve a balance between reliability and 
energy, but it is difficult to set lower bound and upper bound 

accurately. DPSO was proposed to address IP placement with 
some augmentations [9]. Unfortunately, DPSO can get trapped 
in a local optimum and therefore may miss the global optimum. 
More recently there has been a growing surge in using Machine 
Learning (ML) for task scheduling and parallelism [10]–[12].  

We propose WAANSO, a framework that performs task 
mapping for multiple applications onto an MCS while 
optimizing for energy, performance and the required number of 
cores. Wavelet Clustering finds the minimum number of cores 
needed to run the given multiple applications with the minimum 
performance requirement. Our framework also introduces Ant 
Swarm Optimization (ASO) which is based on iterative 
execution of the PSO and ACO, in order to map the clusters of 
tasks provided by the Wavelet Clustering onto the MCS such 
that the overall performance and energy are optimized. 

II. WAANSO FRAMEWORK  

Ideally, the best mapping onto an MCS should provide the 
minimum total energy cost and execution time. However a 
shorter execution time may mean higher energy cost and vice 
versa. Also, shortest execution time for one application may 
mean, longer execution times for some other applications. Our 
goal is therefore to find the best mapping based on three 
constraints: energy consumption, performance of one 
application, and performance of all applications. 

WAANSO acts on the three constraints using two models. 
One deals with the performance of applications independently 
and collectively. Another model provides the balance of energy 
and performance within one application. The basic flow of 
WAANSO is shown in Fig. 1. We first use Wavelet Clustering 
to find the minimum number of cores to run the given 
applications while minizing performance loss. Next ASO 
iteratively finds the task cluster mapping onto MCS cores. 

A. Graph Modeling 

• Each application with n tasks is represented as CG < C,W >, 
which is referred as the communication weighted graph 
[13]. C is the set of n vertices, each representing a task. W 
is the set of edge weights, each modeling the 
communication volume between the two corresponding 
nodes for M applications. our framework deals with M CG 
< C,W > graphs, i.e., one graph per application. 

• The MCS is modeled by an MCS topology graph TG < R, L 
>, where R is the set of routers, and L is the set of links in 
the graph. li, j is the link between router ri and rj. bi, j is the 
bandwidth of the link. The problem is then transformed to 
mapping of M CG < C,W > onto TG <R, L> aiming for 
optimization of a unified energy and performance cost. 



B. Energy Model 

Bit energy Ebit, is used to estimate the dynamic energy 
consumption for each bit [1]. The following equation computes 
the dynamic energy consumed by all bits, Ebit

τi,τj (m), traversing 
the NoC from tile τi to τj passing through n routers in MCS:  

 , ,

1

( )i j i j

n

DyNoc Bit

m

E E m
   

=

=        (1) 

C. Performance Model 

The cost function of performance can be described as:  

   besta

per f costcost f=    (2) 

 fcost is a function to calculate the best result of trade-off between 
the number of executing cores and execution time. Costperf is the 
best trade-off result of performance and energy defined by 
adding up the minimum fcost for every application [14]. 

D. Unified Performance and Energy Cost Model 

Using a hyper parameter α, the objective cost function that 
measures the tradeoff between energy and performance is:  

(1 )
max max

per f ener
total

per f ener

Cost Cost
Cost

Cost Cost
 = + −       (3) 

III. WAVELET CLUSTERING 

A. Wavelet Clustering 

Wavelet Clustering is efficient in managing cases with 
sparse data in multidimensional feature spaces, high orders and 
intense noise of input data [15]. The data X for each application 
is related to the number of idle cycles of the core, and the data 
throughput per cycle [16]. X=x1, x2, ...xP denotes the data for an 
MCS with P cores. Applying Mallat algorithm  by using Discrete 
Wavelet Transform (DWT) j times, the features of xi are defined 
by the general feature, cj

k, and the detailed feature, dj
k, with the 

wavelet coefficient k during this period [17] as follows:  

1
1

2

0

( ) , j
N

j j

k x k

x

c lo x c J
−

−

+

=

=        (4) 

1
1

2

0

( ) , j
N

j j

k x k

x

d hi x c J
−

−

+

=

=      (5) 

lo(x) and hi(x) are low and high pass filters, respectively, and N 
is the length of filter operator. 

Next, the cycle-based behavior information of each core is 
obtained. To cluster similar cores together, we use the following 
DWT steps based on the steps explained in [18], namely 
Quantization, DWT, Significant Grid Identification, and Cluster 
Identification. The outcome of these steps would be the 
minimum number of cores to run the application. However, one 
weakness of Wavelet Clustering is that the connections between 
clusters may cause modifiable areal unit problem (MAUP) [18]. 
This means the required number of connections is so high, that 
few clusters will be found. We therefore recognize the strength 
of these connections between clusters as part of our WAANSO. 

B. Strength of Link 

a) Related Wavelet Entropy (RWE). Using DWT, the WE 

for input xX is calculated using discrete wavelet Dj(k) [19]:  

  

( j, ) ( j, ) ( j, ) ( j, )( , ) [ ln , ln ]D k D k D k D k

j k

WE k j P P P P= − −             (6) 

PD(j,k) is the disorder or complexity that input data presents at the 
jth transform using a wavelet with scale k [19], [20]. PD(j,k) can be 
replaced by cj

k or dj
k [20], therefore:    

( , ) [ ln , d ln d ]j j j j

k k k k

j k

WE k j c c= − −           (7) 

RWE for p, qX is [18]:   

( | ) ,
j j

k k

j j
k k

j j
k k

c d

c d
j kc d

p p
RWE p q p ln p ln

q q

    
    =

    
    

         (8) 

b) Strength of Connection. We define the link strength 

s(i,j) of clusters xi and xj based on the following :  

( )( )( , ) ( , )| , a,
ji

i j i j

a b

s RWE a b b c=            (9) 

sexp is self-adapted to find the most suitable value for the current 
clustering results. The self-adapting process is similar to the 
update method of self-adapting filter [21] and neural networks. 
sexp is calculated per cycle and updated based on (9) and (10) 
below [17], [22]: 

( )( )1
( ) ( )

ji

j j
k k

j j
k k

xx
initial

exp d d
a b c c

Set s var a var b a b
a b

 
 =
 
 

  

( , )sexp exp xi xjs s  =  +    (10) 

s’exp represents sexp in the next cycle. (11) is wavelet variance 
[23], [24]:                                

 

Fig. 1. Framework of WAANSO 



2

( ) j
kd

k j

var x x
 

=  
 

          (11) 

ε is the recursive least squares error [4] from initial to current 
cycle [21], [25]: 

( ) ( )
2

1 ( j j

exp exp

j

current s s =  − −        (12) 

and the updated weight vector of sexp, ω′ in each cycle is [22]:  

( ) ( )
1

22 2

bj j
k kc c

j current k

a  


 
 = +  

 
         (13) 

γ is the learning rate randomly selected from range 1 − 

2γ(MEANak
j + MEANak

j)2   [0, 1]. μ is the forgotten factor 
which is a positive number less than 1 and updated as [21], [23]:   

   ( )
2

1

2 j j
k kd d

j current

MAX a MAX b





 =

+
      (14) 

We can use sexp as the expected link strength when ε is 
minimized. If s(i, j)<sexp , the connection is considered weak and 
hence will be ignored. Hence we can get a more accurate result 
of minimum number of cores since fewer cores are mis-located. 

C. Performance vs. Number of Clusters Trade-off 

Performance is a nonlinear function of the number of cores 
in MCS and saturates as the number of cores is at a certain 
threshold [26]. Furthermore, increasing the number of cores 
cannot help the performance or energy consumption when it 
exceeds the number of task executing paths. The number of task 
clusters is related to the size of NoC grids, i.e., a large grid will 
give few clusters, thus the data with different features may be in 
the same cluster and vice versa. To find the minimized grid size 
that will cluster data more optimally, we first make the grid as 
large as possible and calculate costperf. We then increase the 
number of grids to a point where costperf is saturated. fcost, in Eqn. 
(3), is the reciprocal of sum for n clusters’ self-entropy:                          

1

1
cost n

i
i

i d

f
c

H
m=

=


                               (15) 

where ci is the number of data in cluster i and md is the number 
of total data. Hi the cluster i entropy or diversity of feature of 
data in the cluster, is entropy sum of all data, pj, in the cluster: 

i

i j j

j c

H p lnp


= −      (16) 

2

2

j

k

k
j

j

k

j J k

d

p
d



=



     (17) 

IV. ANT SWARM OPTIMIZATION (ASO) 

PSO is a population-based intelligence optimization 
algorithm [27] where each particle has a location vector Xk =< 
xk,1, xk,2 ··· xk,n > in kth iteration. The velocity vector of a particle 
is Vk

i = (vk
1, vk

2 ···vk
n), which corresponds to the swapped 

sequence of two different mapping results. Particle i in iteration 
k updates its mapping result base on the following: 

1

1 1 2 2( ) ( )k k k k k k

i i i i i iV V c r pBest X c r gBest X+ = + − + −    (18) 

1 1k k k

i i iX X V+ += +                      (19) 

r1 and r2 are two random numbers distributed between 0 and 1, 
c1 and c2, are positive acceleration constants, pBestk

i is the best 
mapping result of particle i in kth iteration, and gBestk

i is the 
global best mapping result found from k iterations. The total cost 
function Costtotal is used as the fitness value to evaluate the 
mapping result of one particle. The properties of the particle are 
adjusted by all particles’ experiences. 

The diversity, namely the ability of preventing the solution 
falling into local optimum, can be increased by changing the 
global and local optimum fitness value in each iteration, and 
applying the random number and the acceleration parameter 
according to ACO. In ACO, the next node is determined by an 
ant based on the pheromone on the map. The idea of improving 
swarm optimization by using the roulette selection rule in ACO 
was presented in [28]. The particle’s velocity is updated 
according to the corresponding global and local optimum values, 
pBestk

i and gBestk
i. We therefore store these values after each 

iteration of PSO. The next global optimum fitness value, Fgb(t + 
1), is calculated based on the following transition rule:   

, 0
[1, ]

,

0

,

1

min( ) ,

( 1)  ,

gb j
j t

gb j
gb

t

gb j

j

F q q

F
F t q q

F



=

 
 
 
 
 
 







=



+



          (20) 

 Fgb is the global fitness value, t is an iteration number, q is a 
random number, and q0 is the threshold value based on 
experience. The particle moves to the current optimum and non-
optimum fitness value, which increases the diversity of a 
particle. After improving PSO, diversity is increased and the 
probability of a particle falling into the local optimum is 
reduced. In a typical setup for PSO, position update at iteration 
t+1 is based on the location and velocity values at iteration t. To 
increase the converging speed of particles, the location vector is 
updated based on the global optimum position value. A random 
velocity, rand(v) has been introduced to increase the diversity: 

1( ) ( 1) ,
( 1)

( ) ( )
1

 
,

i i

i
gb

x t v t q q
x t

p t rand v q q

  
 
 

+ + 
+ =

+
 


   (21) 

q1 is the threshold value based on experience, q′ is a random 

number to compare with the threshold to determine position 
update, and pgb(t) is global best of particle p in the tth iteration. 

V. EXPERIMENTAL RESULTS 

Three mapping techniques, namely B&B, ACO, and PSO 
were used as baselines to evaluate ASO. Also DBSCAN [16] 
was used to evaluate Wavelet Clustering of WAANSO. All 
experiments were simulated on a Linux system with a 2.6 GHz 
Intel Core i7-6700HQ processor with 16GB memory. Wavelet 
Clustering was implemented in MATLAB. We use the B&B of 
[1] and DBSCAN of scikit-learn [29]. ACO, DPSO, and ASO 
were implemented in C++. All algorithms were packaged in 



Python. Although our WAANSO is applicable to heterogeneous 
MCS and various typologies, we used a mesh-based 8x8 NoC of 
(64) homogeneous cores for simplicity. We also utilized a cycle-
based NoC simulator called NOXIM [30], whose energy data 
was modified with data from [8] to fit B&B. We used data and 
model of eight applications from real applications in [26]. 

A. Performance Evaluation 

We first run each application separately using all the 
algorithms listed in Table 1. ASO outperforms B&B, ACO and 
PSO. Also Wavelet Clustering increases performance, e.g., by 
65% in case of WAANSO, whereas DBSCAN based baselines 
are not as effective. 

B. Energy Dissipation Evaluation 

ASO consistently generates the best mapping result with the smallest energy 
consumption (Fig. 2), e.g., about 23.5% lower than that of B&B. Also results 

of Fig.3 confirm that WAANSO produces the best mapping in terms of 

energy consumption.  
TABLE 1. PERFORMANCE EVALUATIONS 

Algorithm Executing Time(No. clock cycles) 

B&B only 1476 

ACO only 1481 

PSO only 1475 

ASO only 1439 

WC + B&B 579 

WC + ACO 592 

WC + PSO 583 

WAANSO 567 

DBSCAN + B&B 1101 

DBSCAN + ACO 1697 

DBSCAN + PSO 1683 

DBSCAN + ASO 1661 

 

 

Fig. 2. Total energy with mapping algorithms only. 

 

 

Fig. 3. Total energy with WC and DBSCAN. 

VI. CONCLUSION 

We presented WAANSO, an iterative MCS task mapping 
framework based on wavelet clustering, ACO and PSO that 
significantly improves performance and energy efficiencies 
compared to B&B, PSO, ACO and DBSCAN baselines. 

REFERENCES 

[1] X. Zhao et al., “Computational and communication resource allocation 
for mobile cooperative cloudlet comp. sys.,” WCSP. 2015. 

[2] P. Bogdan et al., “Taming extreme heterogeneity via machine learning 
based design of autonomous manycore sys.,” CODES/ISSS, 2019. 

[3] Y. Xiao et al., “SOSPCS: a combined compiler, complex networks, 
and machine learning approach,” TVLSI, vol. 27, no. 6, 2019. 

[4] Y. Xiao, S. Nazarian, P. Bogdan., “Prometheus: Processing-in-memory 
heterogeneous architecture design from a multi-layer network theoretic 
strategy,” DATE, 2018. 

[5] Y. Xiao, Y. Xue, S. Nazarian, P. Bogdan, “A load balancing inspired 
optimization framework for exascale multicore systems: A complex 
networks approach,” ICCAD, 2017. 

[6] M. Pedram, S. Nazarian, “Thermal modeling, analysis, and 
management in VLSI circuits: Principles and Methods,” Proc. IEEE, 
Special Issue on Thermal Analysis of ULSI, pp. 1487-1501, 2006 

[7] J. Fang et al., “Improved ant colony algorithm based on task scale in 
network on chip (NoC) mapping,” in Electronics, 2020, vol. 9. 

[8] C. Ababei et al., “Energy and reliability oriented mapping for regular 
networks-on-chip,” NOCS, 2011. 

[9] K. Manna et al., “Thermal-aware application mapping strategy for 
network-on-chip based system design,” IEEE Trans. Comput., vol. 67, 
no. 4, 2018. 

[10] Z. Wang et al., “Partitioning streaming parallelism for multi-cores: A 
machine learning based approach,” PACT. 2010. 

[11] M. Cheng, J. Li, S. Nazarian, “DRL-cloud: Deep reinforcement 
learning-based resource provisioning and task scheduling for cloud 
service providers,” ASP-DAC, 2018. 

[12] M. Cheng, J. Li, P. Bogdan, S. Nazarian, “H2O-Cloud: A Resource and 
Quality of Service-Aware Task Scheduling Framework for Warehouse-
Scale Data Centers,” TCAD, 2019. 

[13] C. Marcon et al., “Exploring NoC mapping strategies: An energy and 
timing aware technique,” DATE, 2005. 

[14] P. K. Sahu et al., “Application mapping onto mesh-based network-on-
chip using discrete particle swarm optimization,” TVLSI, 2014. 

[15] N. Anand et al., “Comprehensive Analysis & Performance Comparison 
of Clustering Algorithms for Big Data,” Rev. Comput. Eng. Res., vol. 
4, no. 2, pp. 54–80, 2017. 

[16] R. G. Kim et al., “Wireless NoC and Dynamic VFI Codesign: Energy 
Efficiency Without Performance Penalty,” TVLSI, vol. 24, no. 7, 2016. 

[17] P. D’Urso et al., “Wavelet-based self-organizing maps for classifying 
multivariate time series,” J. Chemom., vol. 28, no. 1, pp. 28–51, 2014. 

[18] G. Sheikholeslami et al., “Wavecluster: A multi-resolution clustering 
approach for very large spatial databases,” VLDB, no. 24, 1998. 

[19] H. Zheng-you et al., “Wavelet Entropy Measure Definition and Its 
Application for Transmission Line Fault Detection and Identification,” 
ICPST, 2007. 

[20] O. A. Rosso et al., “Wavelet entropy: A new tool for analysis of short 
duration brain electrical signals,” J. Neurosci. Methods, vol. 105, no. 1, 
pp. 65–75, 2001. 

[21] F. J. Taylor, Digital signal processing. McGraw-Hill, 2001. 
[22] R. Cheng et al., “Initialization by a novel clustering for wavelet neural 

network as time series predictor,” Comput. Intell. Neurosci., 2015. 
[23] N. Erdol et al., “Wavelet transform based adaptive filters: analysis and 

new results,” IEEE Trans. Signal Process., vol. 44, no. 9, 1996. 
[24] G. Fitzgerald, “A Survey of Wavelet Theory and Methods Suited for 

Times Series Analysis.” 2017. 
[25] G. Lekutai, “Adaptive Self-Tuning Neuro Wavelet Network 

Controllers.” p. 112, 1997. 
[26] W. Liu et al., “A NoC traffic suite based on real applications,” in 

ISVLSI, 2011, pp. 66–71. 
[27] S. Kiranyaz, “Particle swarm optimization,” Adaptation, Learning, and 

Optimization, vol. 15. Springer, pp. 45–82, 2014. 
[28] D. Li et al., “Research on improved particle-swarm-optimization 

algorithm based on ant-colony-optimization algorithm,”  CCDC, 2017. 
[29] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. 

Mach. Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011. 
[30] V. Catania et al., “Noxim: An open, extensible and cycle-accurate 

network on chip simulator,” ASAP, 2015, vol. 2015–Septe. 


