
NeSe: Near-Sensor Event-Driven Scheme for Low Power
Energy Harvesting Sensors

Sepehr Tabrizchi∗, Mehrdad Morsali†, Shaahin Angizi†, Arman Roohi∗
∗School of Computing, University of Nebraska–Lincoln, Lincoln NE, USA

†Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
shaahin.angizi@njit.edu, aroohi@unl.edu

Abstract—Digital technologies have made it possible to deploy
visual sensor nodes capable of detecting motion events in the
coverage area cost-effectively. However, background subtraction,
as a widely used approach, remains an intractable task due
to its inability to achieve competitive accuracy and reduced
computation cost simultaneously. In this paper, an effective
background subtraction approach, namely NeSe, for tiny energy-
harvested sensors is proposed leveraging non-volatile memory
(NVM). Using the developed software/hardware method, the
accuracy and efficiency of event detection can be adjusted at
runtime by changing the precision depending on the application’s
needs. Due to the near-sensor implementation of background
subtraction and NVM usage, the proposed design reduces the
data movement overhead while ensuring intermittent resiliency.
The background is stored for a specific time interval within
NVMs and compared with the next frame. If the power is cut, the
background remains unchanged and is updated after the interval
passes. Once the moving object is detected, the device switches
to the high-powered sensor mode to capture the image.

I. INTRODUCTION

From energy-harvested surveillance and monitoring systems
in smart cities to smart human-machine interfaces in mobile
devices, smart, low-power, connected sensors are attracting
increasing interest in a wide variety of applications. Moreover,
our environment can be best described through vision, which is
becoming increasingly ubiquitous in video monitoring applica-
tions. Human observers monitor several cameras to detect un-
usual activity and provide immediate feedback. Unfortunately,
human observers lose 90% of their concentration capability
after only 20 minutes of following ten cameras attentively,
which defeats the purpose of this approach. Therefore, the
automatic detection of unusual events in embedded appli-
cations is becoming increasingly significant. Machine vision
applications often begin with background subtraction, making
it an essential component. Inputs from background subtraction
are given to higher-level processes, such as object tracking.
An online video background subtraction usually consists of
two stages: initialization of the background model, in which
the bootstrapping is performed, and the background model’s
maintenance, which involves updating the parameters online.
Interpreting a scene, however, requires large amounts of com-
puting power and data-intensive vision algorithms. As they are
highly parallelizable, pixel-level foreground detectors are ideal
for embedded platforms. CMOS imagers with on-chip feature
extraction and compression have been developed extensively in
the last decade with the primary goal of optimizing computing
resources and reducing overall power consumption [1]–[3].

In this work, we propose a near-sensor event-driven ar-
chitecture, namely NeSe, allowing for a trade-off between
accuracy and power efficiency. NeSe is capable of operating
in different modes, 12 in total, regarding the precision and
box sizes, which will be explained in the following. To the
best of our knowledge, this work is the first that utilizes non-
volatile elements to store the static background, which leads
to a notable reduction in standby power consumption.

II. NEAR-SENSOR PROCESSING BACKGROUND

In the same way that eyes and brains work together, the
sensors that detect the field of view generate a stream of
pixels that represent the scenic event and are sent to a
backend processor. Although there are 130 million pixels on
the retina, the brain only has 1.3 million synaptic connections,
which indicates a high sparsity ratio. This massive sparsity
can significantly reduce power consumption and latency. A
further improvement can be made by reducing the amount of
redundant information sent to the brain. By inspiring from
the observations and taking steps to mitigate the abovemen-
tioned issues, the integration of computing and sensing has
been extensively studied, reducing data movement and ADC
bandwidth. The research outcomes are classified into three
designs, processing-near-sensor (PNS) [4], [5], processing-
in-sensor (PIS) [6]–[8], and finally processing-in-pixel (PIP)
[9], [10]. Most computer vision systems perform background
subtraction as a first step in detecting moving objects within
a video stream without having prior knowledge of the objects
themselves [11]. A background model is generally created
during the background subtraction process. The easiest way to
do this is to manually set a static image for the background that
has no moving objects. Each video frame is then compared to
the static image to compute the absolute difference, referred to
as Static Frame Difference, and is represented by: |Fi−B|>TH.
In the event of changing ambient lighting, a static image may
not be the best choice since the foreground segmentation may
fail completely. Alternately, the previous frame may be used
instead of a static image, referred to as Frame Difference,
and is expressed by: |Fi−Fi−1|>TH. Due to its sensitivity to
threshold TH, this technique may only work properly under
certain frame rates and object speeds, e.g., it fails if the moving
object stops suddenly. Thus, Authors in [12] modeled the back-
ground more accurately using the average, arithmetic mean, or
weighted mean of several previous frames. The equation for
the past n frame is: Bj = 1

nΣn−1i=0 Fj−i. In order to store more
frames in off-chip memory, this model requires high memory

ar
X

iv
:2

30
2.

05
43

1v
1

 [
ee

ss
.S

P]
 7

 F
eb

 2
02

3

Fig. 1. (a) The NeSe architecture, including (b) an MRAM array and (c) a pixel. (d) Schematic and biasing of an MRAM, and (e) pixel’s transient waveform.

storage. Consequently, additional computations and memory
accesses are needed, which conflict with resource-constrained
tiny devices.

III. PROPOSED DESIGN

We propose NeSe as an efficient and reconfigurable always-
on intelligent visual perception architecture as shown in Fig.
1(a) that realizes a near-sensory processing scheme with event
detection capabilities. NeSe consists of a 600×600 pixel array
(PA), a non-volatile Spin-Orbit Torque Magnetic Random
Access Memory (SOT-MRAM) array, a row controller (Ctrl), a
command decoder, a sensor timing Ctrl, a memory/computing
unit, and readout/ADC/SA/comparator circuitry. The storage
element in SOT-MRAM is SHE-MTJ [13] Each cell located
in the MRAM array is connected with a Write Word Line
(WWL), Write Bit Line (WBL), Read Word Line (RWL),
Read Bit Line (RBL), and Source Line (SL). The bit-cell
structure of 2T1R SOT-MRAM and its biasing conditions are
shown in Fig. 1(d). The proposed architecture operates in two
modes, i.e., sensing and event detection. The NeSe architecture
captures the input as a static background and then writes the
central pixels according to the configured settings into the
MRAM cells. Due to the non-volatility feature of MRAMs, if
the power of NeSe is cut, the initial background is still held.
Once the moving object is detected, the architecture switches
to the sensing mode to detect the object(s). To reduce the
overall power consumption, NeSe only updates (sends) the
modified pixels on the MRAM array.

A. Pixel and MRAM arrays

Illustrated in Fig. 1(c), conventional NeSe’s pixel consists of
a three-transistor/one-photodiode (PD) sensor. In the sensing
mode, by initially setting Rst=‘high’, the PD connected to the
T1 transistor turns into inverse polarization and the readout
component captures a V1 = VDD voltage. By turning off T1,
PD generates a photo-current with respect to the external light
intensity which in turn leads to a voltage drop (VPD) at the
gate of T2. Therefore, the voltage values before and after the
image light exposure, i.e., V1 and V2, are sampled by the
readout circuit, and the difference between the two voltages
is sensed, amplified, and then converted to digital data by an
ADC. This value is proportional to the voltage drop on VPD.
Figure 1(e) depicts the functionality of one proposed pixel.
It is worth pointing out that each ADC samples when the

voltage drops, then it subtracts the pixel reset voltage and
converts the output signal. Accordingly, the ADC can skip
to the next row of the array. NeSe is equipped by a near-
sensor CMOS bit-wise XNOR comparator, as shown in Fig.
1(a), to efficiently compare such row-wise digitized pixel data
with the corresponding captured background in the MRAM
array to detect events. To enable this, one row of the MRAM
array, shown in Fig. 1(b), is selected, sensed out, and loaded
as the first operand into a register at the comparator where
the second register is loaded by the pixel data. Accordingly, a
single-cycle XNOR operation is accomplished. If a mismatch
is detected, i.e., an event observed, the MRAM array holding
the central pixels requires to be updated. Computationally, this
stage requires n MRAM write operation. To achieve an ultra-
fast low-energy write operation, the SOT-MRAM cells are
developed with a 20KbT energy barrier. As experimentally
shown in [14], this will reduce the write energy consumption
by half compared with the conventional 40KbT design at the
cost of lower retention time.

B. Event-Detection Mode

The primary task of the always-on NeSe architecture is to
detect an event using background variations. NeSe supports
12 various implementations to consider both efficiency and
accuracy design metrics. Different designs are determined by
the box size ∈ {3, 5, 7} and precision ∈ {1, 2, 3, 4}, where
box size represents height and width of defined groups, and
precision denotes the bit-width of ADCs. Each n × n pixel
box includes only one ON pixel, (n − 1) Disconnect pixels,
and (n2 − n) OFF pixels. An implementation with a larger
box size reduces power consumption at the cost of accuracy
degradation. In NeSe, each column is enabled via a distinct
but common VDD, and each row is chosen using a common
row selector (R) signal. Thus, the ON, Disconnect, and OFF
pixels are formed when R and the column are enabled, R
is disabled, but the column is enabled, and the column is
disabled regardless of the R value, respectively. The R signal
is valued using (nx−1), where n ∈ {3, 5, 7} and x is the row
index ∈ {1, 2, . . . , b600/nc}. Consequently, all the columns
without central pixels are disconnected from the power supply
(OFF), while the rest of the pixels in the columns containing
the central pixel is disconnected using R signal. For instance,
as shown in Fig. 2, by setting box size to 3, all the pixels
are grouped into a 3× 3 shape, where the central pixel (e.g.,

Fig. 2. Boxing pixels with the size of 3× 3 with the possible situations.

P2,2) is ON, other two pixels (e.g., P1,2 and P3,2) in the same
column are disconnected from ADCs because of R values, and
the rest (e.g., P1,1, P2,1, P3,1, P1,3, P2,3 and P3,3) are OFF.

The power consumption and the total number of boxes
regarding different box sizes are summarized in Table II.
Larger box sizes (e.g., 7 × 7) consist of the lower number
of central pixels (7396), which leads to more power saving at
the cost of accuracy loss. Another reconfigurable capability of
NeSe is the precision’s bit-width, which defines the number
of compared bits between a pixel and its previous stored value
in an MRAM. A lower precision requires a smaller number
of comparisons and write-back operations that decreases the
power consumption but again at the cost of accuracy loss.
Thus, a trade-off between efficiency and accuracy can be deter-
mined by the user w.r.t available resources, criteria, etc. Figure
3 depicts different scenarios, including various box sizes,
precisions, light situations, and updating the background. First,
NeSe captures Fig. 3(a) and stores it as a static background
within MRAM cells. Then, an event has occurred in Fig.
3(b), and its results related to different precisions are shown.
Interestingly, even 1-bit precision removes the background
efficiently. Figure 3(c) illustrates the results for varied box
sizes. After comparing the new input (ti+n+5) with the stored
background at time ti, we detect that the chair is moved,
and the mug is left on the desk. A smaller box size (e.g.,
3 × 3) provides sharper output. After a while, as shown in
Fig. 3(d) time ti+2n, light status changed, but NeSe functions
appropriately. Finally, in Fig. 3(e), the background is updated
by these pixels because the chair locations and the mug remain
unchanged for a while. The comparison results using the high
accuracy 3× 3 boxes exhibit no difference between Fig. 3(e)
and the new background.

Algorithm1 shows all the steps, including the event-
detection and sensing modes provided by the NeSe architec-

TABLE I
EFFECT OF BOX SIZE IN NESE PROPERTIES.

Box
Size

Transistors Power
(µW) # BoxesON OFF Disconnected

3× 3 1 6 2 1.31 40000
5× 5 1 20 4 1.48 14400
7× 7 1 42 6 1.64 7396

Algorithm 1 NeSe Algorithm
1: Input2: box size ∈ {3, 5, 7} & precision ∈ {1, 2, 3, 4}-bit
2: Input3: thresholdpixels, timeτ
3: Output: sensor mode status
4: turn on list = []
5: procedure EVENT-DETECTION
6: if time > timeτ : . Merge steady objects with the background.
7: update (background)
8: for i = b box size

2 c+ 1 to 600 with step= box size
9: activate (rowi)

10: pixel values ← parallel_read (columni,j) .
j ∈ {b box size

2 c+ 1, . . . , 600}, with step= box size
11: num changes ← parallel_comp (precision, pixel values, old values)
12: if num changes > thresholdpixels:
13: turn on list.push (i) . i is row index.
14: if (length (turn on list) !=0)
15: time += 1 . Use it to update the background.
16: enable SENSOR MODE
17: else:
18: time = 0
19: end procedure
20: procedure SENSOR MODE
21: while (length (turn on list) !=0) do
22: row = turn on list.pop
23: transfer (row − bbox sizec to row + bbox sizec)
24: end while
25: end procedure

ture. The algorithm takes the size of the box, precision, and
two thresholds, thresholdpixels, and timeτ . The former is used
for minimum changes, whereas the latter is leveraged to update
the background. First, every row containing a central pixel, line
(9), is activated, and the parallel comparison is performed in
line 11 between all the central values and the previous value
of the same pixel. The parallel_comp function takes the
precision, which determines the required number of compared
bits. For example, if precision = 1, only the most significant
bits of pixels are compared. In line 12, if the number of
changes is greater than or equal to thresholdpixels, the row index
is held in the turn on list. After checking all rows, the length
of the turn on array is checked. In the case of non-equality to
zero, the mode is changed to the sensor mode, and the time
counter is increased by one. This variable indicates how many
times NeSe is switched to sensor mode continuously. If this
variable reaches timeτ , we need to update the background with
the new values (line 7). As shown in Fig.3(e), after updating
the background to (d), most of the compared pixels are black.

C. Sensing Mode

In the sensing mode, all the enabled columns, connected
to Vdd, and rows based on the R signal are connected to
ADCs. We assume that the background has already been
stored in the co-processor, e.g., digital on-chip deep learning
accelerator. Thus, in the sensing mode, only row indices in the
turn on list should be updated instead of all rows, which
results in a considerable power saving.

IV. PERFORMANCE EVALUATION

A. Power Consumption

Table II reports the power consumption for event detection,
i.e., to detect a mismatch between a digitized pixel value
and the pre-stored background in MRAM cells assuming two
different ADC precisions. The total power consumption for the
central pixel comparison can be estimated by Ptotal= Ppixel +
PMRAM + Pcompare, where Ppixel represents the pixel sensing

… … ……

1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit 4-bit

3X3 5X5 7X7 3X3

ti ti+n ti+n+5 ti+2n ti+2n+m
Time

(a) (b) (c) (d) (e)

Fig. 3. Detecting object timeframes using NeSe, (a) −→(b) detects a person leveraging different precision (1 to 4 bit), (a) −→(c) calculates differences in the
images based on different box sizes, (c) −→(d) detects light variation as a new object, and (d) −→(e) updates new background.

power that largely depends on the ADC precision. PMRAM

is the SOT-MRAM’s read power and Pcompare denotes the
power consumed by the near-sensor CMOS bit-wise XNOR
comparator. Assuming a 2-bit ADC structure, every central
pixel after readout has to be compared with two SOT-MRAM
cells holding the background value. This means 2×PMRAM

are considered in the evaluations. We observe that the higher
the ADC precision is (here from 4-bit to 2-bit), the higher
power budget is required for the edge device to perform
such a near-sensor computation and within a particular ADC
precision, the larger box size brings higher power efficiency to
the system at the cost of lower accuracy as discussed above.

B. Intermittent-Robust Operation

Power supplies in energy harvesting systems are limited
in capacity. Besides, a CMOS-based design loses data when
powered down, so restoring (writing back) information after a
new power-up consumes power and time. Energy harvesting
devices may undergo a charge/discharge cycle hundreds of
times per second, which means the system might consume a
significant portion of its entire power supply capacity to restore
data. Although NV-MRAMs provide power failure tolerant
designs, the required power consumption of write operations
for non-volatile elements remains an issue. Thermal barriers
between 40 − 60 kT are generally chosen for MRAM to
provide a retention time (τ = τ0 exp(∆/kT)) of 10-15 years,
while the critical spin-current is linearly proportional to the
thermal barrier ∆. Thus, for our application that does not re-
quire retention times of years, we reduce the thermal barrier of
nanomagnets by means of uniaxial anisotropy. Herein, MRAM
components with 20kT energy barriers are investigated that
can achieve retention times ranging from minutes to hours
while providing at least 75% energy reduction. By reducing
the charge currents required for the write operation, significant

TABLE II
POWER CONSUMPTION FOR EVENT DETECTION W.R.T. ADC PRECISION.

Box size 3×3 5×5 7×7
of XNOR (2-bit ADC) 80,000 28,800 14,792

Power (mW) 842 561.3 374.2
of XNOR (4-bit ADC) 160,000 57,600 29,584

Power (mW) 1,852.4 1,234.9 823.2

energy savings can be achieved due to a quadratic relationship
between the Ohmic (I2R) losses and the input write currents.

V. CONCLUSION

This paper proposed a practical background subtraction
approach, NeSe, for tiny energy-harvested sensors leveraging
MRAMs. NeSe allows the accuracy and efficiency of event
detection to be adjusted at runtime based on the application’s
requirements. Furthermore, the proposed design reduces data
movement overhead due to the near-sensor implementation of
background subtraction. Moreover, MRAMs ensure intermit-
tent resiliency, meaning if the power is cut, the background
remains unchanged. Finally, if the moving object is detected,
the device switches to the high-powered sensor mode.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science

Foundation under Grant No. 2216772 and 2216773.

REFERENCES

[1] F. D. Oliveira et al., “Cmos imager with focal-plane analog image
compression combining dpcm and vq,” IEEE TCASI, vol. 60, no. 5,
pp. 1331–1344, 2013.

[2] I. Cevik and S. U. Ay, “An ultra-low power energy harvesting and
imaging (ehi) type cmos aps imager with self-power capability,” IEEE
TCASI, vol. 62, no. 9, pp. 2177–2186, 2015.

[3] N. Cottini et al., “A 33 µw 64× 64 pixel vision sensor embedding
robust dynamic background subtraction for event detection and scene
interpretation,” IEEE JSSC, vol. 48, no. 3, pp. 850–863, 2013.

[4] Q. Li et al., “Ns-fdn: Near-sensor processing architecture of feature-
configurable distributed network for beyond-real-time always-on key-
word spotting,” IEEE TCASI, vol. 68, no. 5, pp. 1892–1905, 2021.

[5] T.-H. Hsu et al., “A 0.5-v real-time computational cmos image sensor
with programmable kernel for feature extraction,” IEEE JSSC, vol. 56,
no. 5, pp. 1588–1596, 2020.

[6] H. Xu et al., “Utilizing direct photocurrent computation and 2d kernel
scheduling to improve in-sensor-processing efficiency,” in 2020 57th
ACM/IEEE DAC. IEEE, 2020, pp. 1–6.

[7] S. Angizi et al., “Pisa: A binary-weight processing-in-sensor accelerator
for edge image processing,” arXiv preprint arXiv:2202.09035, 2022.

[8] M. Abedin et al., “Mr-pipa: An integrated multi-level rram (hfo x) based
processing-in-pixel accelerator,” IEEE JXCDC, 2022.

[9] H. Xu et al., “Macsen: A processing-in-sensor architecture integrating
mac operations into image sensor for ultra-low-power bnn-based intel-
ligent visual perception,” IEEE TCASII, vol. 68, no. 2, pp. 627–631,
2020.

[10] S. Tabrizchi et al., “Ocelli: Efficient processing-in-pixel array enabling
edge inference of ternary neural networks,” JLPEA, vol. 12, no. 4, p. 57,
2022.

[11] B. Garcia-Garcia et al., “Background subtraction in real applications:
Challenges, current models and future directions,” Computer Science
Review, vol. 35, p. 100204, 2020.

[12] A. H. Lai and N. H. Yung, “A fast and accurate scoreboard algorithm
for estimating stationary backgrounds in an image sequence,” in 1998
IEEE ISCAS, vol. 4. IEEE, 1998, pp. 241–244.

[13] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, no. 1, pp. 1–22, 2015.

[14] A. Roohi and R. F. DeMara, “NV-Clustering: Normally-Off Computing
Using Non-Volatile Datapaths,” IEEE TC, vol. 67, no. 7, pp. 949–959,
July 2018.

	I Introduction
	II Near-Sensor Processing Background
	III Proposed Design
	III-A Pixel and MRAM arrays
	III-B Event-Detection Mode
	III-C Sensing Mode

	IV Performance Evaluation
	IV-A Power Consumption
	IV-B Intermittent-Robust Operation

	V Conclusion
	References

