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Abstract

In this paper we propose QContext, a new compiler structure that incorporates context-aware and
topology-aware decompositions. Because of circuit equivalence rules and resynthesis, variants of a gate-
decomposition template may exist. QContext exploits the circuit information and the hardware topology
to select the gate variant that increases circuit optimization opportunities. We study the basis-gate-level
context-aware decomposition for Toffoli gates and the native-gate-level context-aware decomposition for
CNOT gates. Our experiments show that QContext reduces the number of gates as compared with the
state-of-the-art approach, Orchestrated Trios [13].
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1 Introduction

Quantum logic gates are the backbones of quantum information processing (QIP). The quantum logic gates
in a program typically need to be decomposed to the basis gate set (ISA) in an assembly language. Since
the target hardware may have limited connectivity, several recent works [11, 13, 35, 49] propose topology-
aware decompositions that minimize the gate cost when mapping to a target hardware topology. However,
these decomposition approaches use the same template to decompose the same type of quantum gates.
Decomposing the gates with fixed templates lacks the opportunity to fully explore the circuit optimizations.

Gate context represents the predecessors and the successors in the directed acyclic graph (DAG) rep-
resentation of the circuit. Since the different gate contexts could induce different circuit optimization op-
portunities, the quantum gate decomposition should be aware of the context. Here we use an example to
demonstrate the effectiveness of context-aware gate decomposition. When the Toffoli gate in Figure 1b is
decomposed in the canonical template with six CNOT gates, there is no gate cancellation and circuit resyn-
thesis opportunity. However, since the Toffoli gate is a self-inverse gate, inverting all gates in the canonical
template will result in another decomposition template. As shown in Figure 1b, we can perform gate can-
cellation and two-qubit block resynthesis optimizations when decomposing the Toffoli with the inversed
template. Based on the circuit equivalence rules and resynthesis, several variants of a gate-decomposition
template might exist. We develop our context-aware decomposition approach QContext to identify the gate
context structures and explore the circuit optimization opportunities.

QContext provides both topology-aware and context-aware decomposition. QContext first finds the gate
decomposition variants compatible with the target hardware topology. Then QContext selects the best gate
decomposition variant based on successors’ and predecessors’ information in the DAG representation of the
circuit. QContext also performs context-aware decomposition when decomposing the CNOT gates to the
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(a) Canonical fully connected Toffoli decomposition resulting in ten CNOT gates
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(b) Context-aware Toffoli decomposition resulting in seven CNOT gates

Figure 1: Two Toffoli decompositions with different total CNOT gate counts

native cross-resonance (CR) gates and single-qubit gates. We propose new templates for the CNOT gate
to CR gate decomposition. We implemented QContext in Qiskit-Terra and compared it with the state-of-
the-art approach Orchestrated Trios. Our experiments show that by combining the basis-gate-level and the
native-level context-aware decomposition, QContext reduces both two-qubit and single-qubit gate counts in
quantum circuits.

2 Background

Basis Gates and Native Gates: In order to run a quantum program on real hardware, the complex
quantum gates need to be decomposed into the basis gates in an assembly language such as OpenQASM [9].
The basis gates in OpenQASM include single-qubit rotations and two-qubit CNOT gates.

However, the CNOT gates may not be natively supported by the quantum devices. The basis gates
in the assembly language should be decomposed into a sequence of native gates supported by the target
hardware technology. In this paper we focus on the CR gate since it is the native gate for operating fixed-
frequency superconducting devices [36] such as IBM’s superconducting systems. We expect context-aware
decompositions to be applicable to other native gates such as CPHASE and iSWAP on Google [2] and
Rigetti [6] devices.

Quantum Gate Decomposition: Optimal quantum gate decomposition is crucial for quantum compi-
lation. Extensive research [11,31,40,46] has been done to find efficient decompositions for unitary matrices.
Besides the generalized decomposition, researchers have proposed structured templates [38,39] to decompose
certain types of quantum gates.

With the recent development in quantum hardware, several researchers have proposed topology-aware
decompositions [7,22] that minimize the gate cost when mapping to a target hardware topology. Toffoli
gate is one of the most commonly used three-qubit gates in quantum information processing. Duckering et
al. [13] proposed a compiler structure Orchestrated Trios, which efficiently routes and decomposes the Toffoli
gates. They observed that it is more efficient to preserve the Toffoli gate during routing instead of routing
each individual CNOT gate in the Toffoli gate decomposition. The approach first decomposes the quantum
program to the one-, two-, and three-qubit gates and routes the gates. Then a second decomposition step is
performed, which decomposes the Toffoli gate according to the connectivity of the physical qubits.

Quantum Optimization: The state-of-the-art quantum compilers mostly exploit circuit optimizations
at the basis gate level. The Qiskit [1], ¢ |ket) [41], and Cirq [8] compilers contain optimization passes that
identify multiqubit blocks and resynthesize the blocks with KAK decomposition [25] to reduce circuit cost.
Gate cancellation [28] is another useful optimization. Quantum gates may commute, and the compiler can
reorder the gates to optimize the circuits and improve routing with gate cancellation [27]. Other optimizations
include cross-talk mitigation [32], peephole optimization [33], and dynamical decoupling [34].



3 QContext

QContext performs basis-gate-level context-aware decomposition for the Toffoli gates and performs native-
gate-level context-aware decomposition for the CNOT gates. Figure 2 shows the compilation flow of QCon-
text. The boxes with the grey color backgrounds are the original compilation steps in Trios and Qiskit. The
boxes with the orange color backgrounds are the compilation steps introduced and modified in QContext.
Given an input quantum program, QContext first decomposes the gates to 1-qubit gates, 2-qubit gates, and
Toffoli gates. Not decomposing the Toffoli gate allows the routing algorithm to capture the program structure
and reduce the routing overhead [13]. The compiler performs qubit mapping and routing for the gates. We
propose a gate library that contains the gate decomposition variants for the Toffoli and CNOT gates. The
gate library contains 32 Toffoli gate variants and 14 CNOT gate variants. Each gate variant is associated
with a variant_tag. The compiler specifies searches in the library and returns the best matching gate variant
based on the hardware topology and the gate context. Then, the compiler performs circuit optimizations.
After the optimizations, the basis gates need to be decomposed into native gates. For each CNOT gate in
the circuit, the compiler finds the CNOT gate variant that minimizes the number of single-qubit rotations
after optimization.

Input: quantum program
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Figure 2: Compilation flow of QContext. The steps introduced by QContext are marked with an orange
background.

4 Basis-gate-level decomposition

We use the Toffoli gate as an example to discuss the format and the strategies for generating gate variants.



4.1 Variant_tag

We label the gate variants with different tags to differentiate them. The variant_tag for an n-qubit gate is a
tuple with five elements:

variant_tag = (pre_tag, suc-tag, design_tag, topo_tag, opt_-tag) (1)

The first element pre_tag indicates the position of the CNOT gates at the beginning of the circuit that
can be canceled or optimized with the predecessors. As shown in Figure 3, the first CNOT gate is between
q0 and 2. The pre_tag is set to “02” for this gate variant. The second element suc_tag indicates the position
of the CNOTSs at the end of the circuit that can be canceled or optimized with the successors. The last two
CNOTs in the figure are between q0 and ql, and the suc_tag is set to “10.” The order of the bits indicates
the control qubit and the target qubit.

The design_-tag is an integer that indicates the basic design of the template. The gate variants that
are generated by applying the equivalence rules to the canonical Toffoli decomposition will have the same
design_tag = 0. However, the gate variants based on resynthesis will have different designs and should
have different design_tag. The topo_tag suggests the connectivity of the physical qubits. topo_tag can have
four values: F, LO, L1, and L2. “F” or “L” indicates that the three qubits are fully connected or linearly
connected. The integer represents the id of the qubit that is connected to the other two qubits. The
last element opt_tag is used to differentiate the gate variants with similar structures but with different
optimization opportunities. opt_tag can be either “O” or “I,” which differentiates the original decomposition
and the inversed decomposition. The variant_tag provides an efficient way of defining and searching gate
variants.
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Figure 3: Fully connected Toffoli variant by permuting control qubits, variant_tag = (02, 10,0, F, O)
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4.2 Toffoli Gate Variants

We can generate the gate variants based on the circuit equivalence rules [15] and resynthesis. We used three
strategies described below to find gate variants.

1) Self-inverse: For the gates that are self-inverse, we can place the gates in the decomposition template
in a reversed order and inverse each gate to get a new gate variant. Since the front layer of the circuit
permutes with the last layer of the circuit, the variant_tag after inversion is specified by permuting pre_tag
with suc_tag. The opt_tag changes from “O” to “I.” Other self-inverse gates include the CNOT gate, SWAP
gate, Bridge gate [23], and Fredkin gate [5].

2) Permute control and target qubits: For a gate with multiple control qubits, we can permute the
control qubits in a decomposition template to generate new gate variants. Figure 3 shows the gate variant
that is generated based on the canonical decomposition and the permutation of control qubits ¢0, gl. The
variant_tag is specified by switching the associated qubits in the pre_tag and suc_tag. The design_tag,
topo_tag, and opt_tag remain to be the same after permutation.

When the target gate is a NOT gate, we can also permute the control qubit with the target qubit by
converting the multicontrolled NOT gate to the multicontrolled Z gate [15]. The multicontrolled Z gates are
symmetrical; thus any qubit can be the target qubit.

3) Resynthesis: Based on equivalence rules, we can find many gate variants. However, some structures
cannot be generated with the equivalence rules. One solution is to leverage the gate decomposition templates
in prior works. Another solution is to resynthesize [11,42,49] the unitary matrix to the quantum circuit with
the expected structures. A new design_tag will be assigned to the synthesized template.



We can apply the equivalence rules to the canonical 8-CNOT linear Toffoli decomposition to generate gate
variants with linear connectivity. The 8-CNOT linear Toffoli decomposition is assigned with a design_tag
equal to 1, since it is different from the fully connected design. Figure 4 shows one of the linear Toffoli gate
variants. Since g2 is connected to q0 and ql, the topo_tag is set to “L2.”
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Figure 4: Toffoli gate variant with linear connectivity, variant_tag = (21,02, 1, L2, O)

4.3 Variant_tag Calculation

Here we describe the method to specify the variant_tag based on hardware topology and gate context. For
each Toffoli gate node in the DAG, the compiler first determines the topo_tag based on the connectivity of the
physical qubits. Then for each gate variant in the library with the topo_tag, we can estimate the CNOT gate
count reduction after optimization. Since the number of three-qubit gate variants is limited, the compiler
performs an exhaustive search in the library and returns the gate variant with the maximum CNOT gate
count reduction.

5 Native-gate-level decomposition

5.1 Variant_tag

First, we introduce the format of the CNOT gate variant_tag. Two orientations of the CR gate are possible.
The generalized CNOT gate decomposition circuit is shown in Figure 5. The U3 gate is the generic single-
qubit rotation gate with three angles 6, ¢, and A. Since the physical qubit connectivity for the CNOT gate
is always linear, we do not need the topo_tag and opt_tag. The CNOT gate variant tag is a tuple with twelve
elements that specify the four U3 gates in the template and an ori_tag to specify the orientation of the CR
gate.

variant_tag = (61, ¢1, A1, ..., 04, Pa, A, ori_tag)

The variant_tag allows us to quickly find the inverse gate and calculate the native gate count. U3(—6, —\, —¢)
is the inverse gate of U3(0, ¢, \). The generalized U3 gate requires two Rz(90) pulses and three Rz gates.
The Rz gates [29] are implemented in software by frame change and do not introduce any noise. When
decomposing the CNOT gate, the compiler first specifies the ori_tag based on the orientation of the target
physical qubit connection. Then, for each variant_tag that contains the correct ori_tag, the compiler estimates
the total number of Rx(90) pulses after optimization and selects the one with the fewest Rz (90) gates.

—_— = U3(61, 1, A1) U3(02, b2, A2)
N CRy -

—b— —| U3(03, $3, A3) l— U3(04, b4, A\a)

Figure 5: Generalized CNOT gate decomposition template

5.2 CNOT Gate Variants

We have three strategies for finding CNOT gate variants. 1) Self-inverse: The CNOT gate is a self-inverse
gate. We can place the native gates in a reversed order and invert each native gate to get a new gate



decomposition variant.

2) Polarity switch: The CR native gate is implemented with a positive half-CR and a negative half-
CR gate to mitigate noise [43]. We can instead implement the CR gate as a negative half-CR followed by a
positive half-CR gate. This polarity switch [17,18] introduces a side effect that appends two Rz (180) gates
to the left and the right of the CR native gate. We can also combine the polarity switch and the gate inverse.

3) Resynthesis: We used a numerical optimization approach to find novel CNOT gate decompositions.
We may treat the discovery of novel decomposition of the CNOT unitary matrix as a nonlinear least-squares
optimization problem. An objective function can be defined as the square of the Frobenius norm of the
difference between the parameter-generated unitary matrix and the target unitary matrix, where the U3
parameters are adjusted to minimize the objective function. Several standard least-squares optimization
algorithms such as Levenberg-Marquardt [30] and Broyden—Fletcher—Goldfarb—Shanno [21] can be used.

We found gate variants that have a similar number of Rx(90) rotations as the canonical decomposition
but with more gate cancellation opportunities. For instance, the ladder-shaped circuit structure shown in
Figure 6 widely exists in quantum circuits [23,24,26]. Here we use a numerical approach to find the gate
variant that has Us(90,0,0) on the top left and the inverse gate Us(—90,0,0) on the bottom right corner.
When there is a sequence of ladder-shaped CNOTs, the single-qubit gates in between will cancel out. In
Figure 6, the single-qubit gates that will cancel out are marked with a dashed box. Based on the numerical
approach, we obtained six CNOT gate variants that have the self-cancellation property.
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Figure 6: Ladder-shaped CNOT structure and gate decomposition

6 Methodology

Implementation: We implement our QContext framework on the open-source quantum computing frame-
work Qiskit [1]. The version of Qiskit-Terra is 0.18.3, and our implementation is publicly available at
https://github.com/revilooliver/context-aware-decomposition. We compare our results with the
Orchestrated Trios compiler implemented in Qiskit.

Benchmarks: The benchmarks in our experiments are derived from the Toffoli benchmarks in Orches-
trated Trios [12] and the reversible circuits [48]. Besides the benchmarks with Toffoli gates, we include the
VQE UCCSD ansatz for LiH [37] and QAOA for Max-Cut [14]. We use these two benchmarks to study the
performance of CNOT gate decomposition.

7 Evaluation and Discussion

In this section we show the single- and two-qubit gate numbers using QContext compared with Trios on
ibmg montreal which has heavy-hex topology [45].

The CR gate and single-qubit gate reductions are shown in Table 1. All the Toffoli gates are decomposed
into the linearly connected gate variants with 8 CNOTs. Since our optimization focuses on the Toffoli gates
and the CNOT gates, to distinguish the effect of qubit routing and our approach, we separate the CR gates
for qubit routing and the CR gates for the benchmark. CR, represents the CR gates that form the SWAP
gate and are not involved in the optimization. A better routing algorithm may reduce the C'R, number,
but that is beyond the scope of the current discussion. CRy represents the number of CR gates that are
needed for implementing the benchmark. ACR;, is the percentage change in the number of CRy: ACRy
= 1-CRy(QContext)/CRy(Trios). Adsx is the percentage change in the number of total sx rotations:
Atsx = 1 — #sx(QContext) /#sx(Trios). In the native gates, the z-axis rotation Rz gates are implemented


https://github.com/revilooliver/context-aware-decomposition

in software by frame change; only the 90-degree x-axis rotation sz and the 180-degree x-axis rotation x gate
will introduce noise. Here we calculate the total number of x-axis 90-degree rotations as #sx. An = gate is
counted as two sz gates. The CNOT gate context-aware decomposition also optimizes the inserted SWAP
gates, so we do not differentiate the routing circuit when calculating #szx.

Table 1: Number of CR gates of QContext in comparison with Trios [13] on ibmg-montreal

Circuit Trios QContext Comparison
benchmark #Q | CR, | CRy | #sx | CRy | #sx | ACRy Asx T./T:
cnx_half [16] 5 0 35 112 29 64 17.1% | 42.9% 1.14

sym6 [48] 10 99 128 631 100 402 21.9% | 21.7% 1.09
cnx_dirty [3] 11 102 146 666 119 520 18.5% | 21.9% 1.02
cnx_half [16] 19 132 289 | 1204 | 230 841 20.4% | 30.1% 1.26

cnx-log [4] 19 195 163 972 129 799 20.9% | 17.8% 1.32
c.adder [10] 20 507 196 | 1828 | 184 | 1579 6.1% 13.6% 1.19
t_adder [44] | 20 | 483 | 220 | 1859 | 101 | 1532 | 13.2% | 17.6% | 1.04

incrementer [16] 5 105 | 461 | 1585 | 421 | 1114 | 8.7% | 29.7% | 1.02

grover [19] 9 201 724 | 2524 | 609 | 1848 | 15.9% | 26.8% 1.16
QAOA [14] 10 168 96 672 96 592 — 11.9% 1.04
UCCSD [37] 8 654 274 | 2348 | 274 | 2022 — 13.9% 1.10
Geo mean 14.7% | 20.9% | 1.12

#Q denotes the number of qubits. t_adder is the takahashi_adder [44]. c_adder is the
cuccaro_adder [10].
T./T; is the ratio between total transpilation time of QContext and Trios.

As shown in Table 1, QContext reduces the number of single-qubit rotations #sx for all the benchmarks
and reduces C'Ry, for all the benchmarks that contain Toffoli gates. The geometric mean of ACRy, for the
benchmarks that contain Toffoli gates is 14.7%. The geometric mean of Asxz is 20.9%. The results for
the QAOA benchmark and the UCCSD benchmark show the effectiveness of CNOT gate context-aware
decomposition. Note that QAOA and the UCCSD benchmark do not contain any Toffoli gate, therefore,
they will not have any CNOT gate reduction. We also compare the compilation time. The compilation time
is the average of ten runs. The choice of using a library of pre-synthesized templates makes QContext more
scalable in terms of compilation time. The average compilation time on ibmg montreal increases by 12%
compared with that of Trios.

8 Conclusion

In this paper we propose QContext, a new compiler structure that incorporates context-aware and topology-
aware decompositions. We highlight that quantum gate decomposition should be aware of the context.
QContext reduces both the single- and two-qubit gate counts by being aware of the basis-gate-level and
native-gate-level gate context.
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