
© 2023 IEEE. This is the author’s version of the work. The definitive Version of Record is published in the IEEE International
Symposium on Circuits and Systems (ISCAS), 2023.

TrojanSAINT: Gate-Level Netlist Sampling-Based
Inductive Learning for Hardware Trojan Detection

Hazem Lashen, Lilas Alrahis, Johann Knechtel, and Ozgur Sinanoglu
New York University Abu Dhabi

{hl3372, lma387, jk176, os22}@nyu.edu

Abstract—We propose TrojanSAINT, a graph neural network
(GNN)-based hardware Trojan (HT) detection scheme working at
the gate level. Unlike prior GNN-based art, TrojanSAINT enables
both pre-/post-silicon HT detection. TrojanSAINT leverages a
sampling-based GNN framework to detect and also localize HTs.
For practical validation, TrojanSAINT achieves on average (oa)
78% true positive rate (TPR) and 85% true negative rate (TNR),
respectively, on various TrustHub HT benchmarks. For best-case
validation, TrojanSAINT even achieves 98% TPR and 96% TNR
oa. TrojanSAINT outperforms related prior works and baseline
classifiers. We release our source codes and result artifacts.

Index Terms—Hardware Security, Trojan Detection, GNNs

I. INTRODUCTION

Integrated circuit (IC) design and manufacturing has become
an increasingly outsourced process that involves various third
parties. While this has allowed to increase both productivity
and complexity of ICs, it has also made them more vulnerable
to the introduction of hardware Trojans (HTs), among other
threats. HTs are malicious circuitry, causing system failure,
leaking sensitive information, etc [1], [2]. Thus, methods to
accurately check for HTs become increasingly important.

Conventional methods for HT detection include code re-
view [3] and verification against a “golden reference”, i.e.,
a trusted, HT-free version of the design [4]. However, the
former is prone to errors, especially for complex ICs, and
the latter is not always feasible, especially when untrusted
parties are engaged in the design process [4]. Other meth-
ods have been proposed as well, e.g., utilizing side-channel
fingerprinting [5]; however, such are limited to post-silicon
HT detection. Researchers have shown that machine learning
(ML) can successfully adapt to a wide variety of HTs, without
necessitating new techniques for detecting new HT designs [6].

Using graph neural networks (GNNs) is an emerging and
promising method toward this end [3], [7]–[9]. Thanks to their
ability to work on graph-structured data – such as circuits –
GNNs can leverage both a) the features of each gate and b)
the overall structure of the design for the prediction of HTs.

Still, prior art for GNN-based HT detection suffers from the
following limitations (also summarized in Table I).

HT Localization. State-of-the-art GNN-based detection
schemes, GNN4TJ [3] and HW2VEC [7], predict whether
a design contains a HT or not, but they cannot localize HTs.
However, localizing HTs is essential to identify the part of the
design at fault and name the responsible, malicious party.

Scope. Earlier works [3], [7], [10] are limited to register
transfer level (RTL), unable to handle gate-level netlists (GLNs).

TABLE I
COMPARISON OF GNN-BASED HT DETECTION SCHEMES

Method
HT HT Gate-Level Pre- Post-

Detection Localization Netlist Silicon Silicon
GNN4TJ [3] Yes No No Yes No

HW2VEC [7] Yes No No Yes No
GRFTL [10] Yes Yes No Yes No
Our Work Yes Yes Yes Yes Yes

Fig. 1. Concept of TrojanSAINT.

Such methods are restricted to pre-silicon assessment; they
cannot detect HTs in the field. Note that only schemes which
can work on GLNs allow for pre- and post-silicon detection.

Associated Research Challenges. Developing a GNN-based
HT detection and localization scheme that can work on GLNs
imposes the following research challenges (RC).

RC1: GLN Complexity. Compared to RTL, GLN designs
are more complex to analyze, as GLNs are flattened (i.e.,
hierarchical information is lost) and also considerably larger,
in the range of thousands or even millions of gates and wires.

RC2: Imbalanced Datasets. HTs are stealthy and small in
size; HT gates represent a very small percentage, e.g., 0.14–
11.29% or 1.94% on average for the TrustHub suite considered
in this work. Thus, a highly imbalanced dataset arises (e.g.,
the ratio of regular to HT gates reaches up to 719× for the
TrustHub suite), which is difficult to handle for any ML model.

Our Contributions. Here, we propose TrojanSAINT, a GNN-
based method for HT detection and localization that works
well on large-scale GLNs. The concept is outlined in Fig. 1.

As indicated, the graph representations of GLNs are complex
and large, which makes them difficult to handle with traditional
architectures such as graph convolutional networks (GCNs).

This motivates our decision to, without loss of generality
(w/o.l.o.g.), use GraphSAINT [11] for our methodology. Graph-
SAINT is a well-established, sampling-based approach that
extracts smaller sub-graphs for training from the larger original
graph. It has shown good performance for various tasks [11]–

ar
X

iv
:2

30
1.

11
80

4v
1

 [
cs

.C
R

]
 2

7
Ja

n
20

23

Fig. 2. Overview of TrojanSAINT. Black arrows follow the inference process,
orange arrows follow the additional steps needed for training and validation.
In this example, the thresholding value is 0.4.

[13], but it has not been considered for HT detection until now.
We summarize our contributions as follows:

1) A parser for GLN-to-graph conversion (Sec. II-A) which
performs feature extraction tailored for HT detection.

2) A GNN-based method for detection and localization of
HT in GLNs (Sec. II-B), addressing RC1.

3) A procedure for tuning of the classification thresholds to
obtain more accurate predictions, addressing RC2.

4) We demonstrate that our scheme is competitive to tra-
ditional ML baselines and prior art. We also verify the
generalization ability of our scheme – i.e., good prediction
accuracy for unknown HTs on unseen GLNs.

5) We open-source our scheme and related artifacts from
our experimental study [https://github.com/DfX-NYUAD/
TrojanSAINT].

II. TROJANSAINT METHODOLOGY

An overview of our methodology is shown in Fig. 2. Next,
we describe all relevant details.

A. GLN Parsing and Feature Vectors

Parser. We develop a parser that converts GLNs (given in
Verilog format) into unweighted and undirected graphs, where
nodes represent gates and edges represent wires. We are dis-
carding directionality for improved representation learning [14].
Given a set of GLNs, our parser generates one large single
graph, consisting of multiple disjoint graphs, where nodes
are labeled as ‘train,’ ‘validation’ or ‘test,’ depending on the
designation of the GLN they belong to. The graph is encoded
as an adjacency matrix A following a standard procedure.

Feature Vectors. Our parser also generates a matrix X of
feature vectors for all nodes. Vectors cover the following:
• Gate type, represented via one-hot encoding. From exper-

imentation, we are more interested in the functionality of
the gate over the exact implementation. That is, we group
functionally related gates together, e.g., all AND gates
are grouped regardless of the number of inputs and the
driver strengths that the different AND gates support.

• Input, output degrees of gates, i.e., the number of incoming
and outgoing connections.

• Shortest distances to primary inputs/outputs. For gates not
directly connected with a primary input/output, a breadth-
first search is conducted to obtain shortest distances.

For training and validation, we also use a binary label vector
which marks each node as part of some HT or as regular/benign
gate. The related information is derived during parsing.

B. GNN Implementation and Application

Outline. We utilize GraphSAINT [11] for sampling. Further,
we utilize the GNN architecture of GNN-RE [15], along with
GraphSAGE [16]. We tune the classification thresholds for more
accurate predictions. We further utilize a practical validation.
For training and inference, we employ standard procedures.

GNN Architecture. We consider an undirected graph
G (V,A) for representing a GLN, where V is the set of
vertices/nodes/gates, and the adjacency matrix of the graph is
A, where Au,v = 1 and Av,u = 1 if there exists an edge/wire
from vertex/gate u to vertex/gate v. Each vertex u in the initial
graph G has a feature vector xu. This vector represents the
node embedding at layer zero of the GNN. The embedding of
node u is iteratively updated by the GNN, by aggregating the
embedding of the node and its neighbors N(u). The embedding
of a node u after l GNN layers, h(l)

u , is given by:

a(l)
u = AGGREGATE(l)

({
h(l−1)
v : v ∈ N (u)

})
(1)

h(l)
u = COMBINE(l)

(
h(l−1)
u ,a(l)

u

)
(2)

GNN architectures are defined by their implementation
of AGGREGATE(·) and COMBINE(·). For example, Graph-
SAGE [16], which we also use here, works as follows:

h(l)
u = σ([Wl ·AGG({h(l−1)

v ,∀v ∈ N(u)}),Blh
(l−1)
u]) (3)

AGG =
∑

v∈N(u)

h
(l−1)
v

|N(u)|
(4)

where σ(.) is an activation function such as ReLU and
Wl and Bl are trainable weight matrices. In GraphSAGE, the
embedding of node h

(l)
u is determined by first concatenating the

node’s features from the previous layer h(l−1)
u with the output

of the AGG function. Then the Wl and Bl transformations
learns the important components of the neighbors’ features
and the node u, respectively. GraphSAGE is compatible with
different AGG functions. Here, we use the mean aggregator
as described in Equation (4).

Thresholding. From experimentation, we observe that the
classification threshold plays a significant role for prediction
performance. This is because of the considerably imbalanced
datasets (Sec. I, RC2), where the GNN model as is can predict
the minority class, i.e., HT nodes, only with low confidence.

The goal of thresholding is to determine a sufficiently small
value so that HT nodes/gates are classified as such the moment
the GNN captures any hint of malicious structures. In other
words, thresholding allows the GNN to focus more on the
minority class, improving the performance of the entire model.

W/o.l.o.g., we tune the threshold between 0–0.5 in steps
of 1,000 and select the threshold that yields the best score
on validation. Here, best score refers to the average of true
positive rate (TPR) and true negative rate (TNR).

Algorithm 1 TrojanSAINT training algorithm
Input: Training graph G (V,A); Ground truth Y ; Sampler RWS
Output: Trained GNN

1: Compute normalization coefficients α, λ using RWS
2: for each mini-batch do
3: Gs (Vs,As)← Sampled sub-graph of G using RWS
4: Build GNN on Gs
5: {yu | u ∈ Vs} ← Propagating α-normalized {xu | u ∈ Vs}
6: Propagating λ-normalized loss L (yu,yu) to update weights
7: end for

Algorithm 2 TrojanSAINT inference algorithm
Input: Flattened netlist N ; Trained GNN; Threshold th
Output: Trojan classification of all nodes/gates

1: Initiate G (V,A) with V ← GLN to graph(N)
2: for each u ∈ V do
3: zu ← GNN(u) . Compute embedding
4: cu ← fc(zu, th) . Classify node u based on the threshold
5: end for

Practical Validation. We propose an approach where pre-
dictions are made on unknown HTs residing within circuits
that are neither seen during training nor have golden references.
This represents a real-world scenario, where security engineers
do not know in advance which HT to expect, if any at all, and
further need to test circuits without golden references. Prior
art did not necessarily consider such practical validation.

Training. First, we construct sub-graphs using a standard
random-walk sampler (RWS). TrojanSAINT’s training procedure
is shown in Algorithm 1. Due to the RWS, the network can
become biased towards frequently sampled nodes. To alleviate
this issue, we follow the normalization technique of [11]. We
use stochastic gradient descent as optimizer. Gs is sampled
for each minibatch and a GNN is built on the sub-graph. The
cross-entropy loss is calculated for each node in the sub-graph
and the GNN weights are then updated by backpropagation.

Inference. See Algorithm 2. For all test nodes in the graph,
node embeddings are calculated and passed to a fully-connected
layer with softmax activation, to compute class probabilities.
We then apply our thresholding technique, and finally convert
class probabilities into labels.

III. EXPERIMENTAL STUDY

A. Setup

Software. We use Python for coding and bash scripts
for job/data management. TrojanSAINT extends on GNN-
RE, which is obtained from [14] and is implemented in
PyTorch. Our TrojanSAINT platform is available online [https:
//github.com/DfX-NYUAD/TrojanSAINT]. Baseline models
are implemented using Scikit-Learn, except the fully-connected
neural network (FCNN) in PyTorch.

Computation. Experiments for GNN-RE, TrojanSAINT and
FCNN are conducted on a high-performance cluster with 4x
Nvidia V100 GPUs and 360GB RAM; experiments for others
are conducted on a workstation with Intel i7 CPU and 16GB
RAM. Training of GNN-RE and TrojanSAINT takes ≈15–30
minutes per model, FCNN ≈10 minutes per model, and all
others ≈3 minutes in total. All inference takes few seconds.

Benchmarks and Model Building. We use 17 exemplary
GLN benchmarks from the TrustHub suite [17]. For each
benchmark, a respective model is trained from scratch. For our
practical validation, each model does not get to see the design
to be tested at all during training.1

We note that random seeds used in TrojanSAINT’s com-
ponents affect performance significantly. Thus, we conduct
w/o.l.o.g. 6 runs with different seeds and report only results
for each model that performs best on its validation set.

Prior Art, Comparative Study. From Table I, recall that
none of the prior art in GNN-based HT detection works on
GLNs. Thus, a direct comparison is not practical. However,
we consider the following works for comparison.
• GNN-RE [15]: Proposed for reverse engineering of GLNs,

it could also be utilized for HT detection and localization.
This is because GNN-RE seeks to classify gates/nodes
from flattened GLNs into the circuit modules they belong
to; TrojanSAINT’s task of classifying gates/nodes into
begin or HT-infested ones is analogous.

• Related Works [18]–[20]: ML-based, not GNN-based, HT
detection schemes that are working on GLNs. Unlike ours,
these works employ elaborate feature engineering. Also,
these works do not offer native HT localization.

We also implement and run the following well-known
baseline classifiers for a further comparative study.
• XGBoost: A decision tree (DT)-based model that uses

an ensemble of sequentially added DTs. DTs are added
aiming to minimize errors of their predecessor.

• Random Forest: A DT-based model that uses an ensemble
of DTs trained on subsets of the training data.

• Logistic Regression: A classification algorithm that utilizes
the sigmoid function on independent variables.

• Support Vector Machine (SVM): A classification model
that generates a hyperplane to separate different classes.

• FCNN: We implement a three-layer network; each layer
use the SELU activation function [21] and batch normaliza-
tion. The final layer uses sigmoid activation to calculate
classification probabilities.

All these classifiers work on tabular, non-graph data; thus, we
provide them with the feature vectors as inputs. All classifiers,
except SVM, output probabilities; thus, we can study them
considering our proposed thresholding as well.

B. Results

Practical Validation and Impact of Thresholding. In
Table II, we report TPR/TNR results for practical validation
across two scenarios: with thresholding versus without.2

First, the results show that TrojanSAINT outperforms other
methods for this realistic but challenging scenario of HT

1For example, if rs232t1000 is to be tested, none of the other rs232 designs
are used for training, only for validation.

For s15850t100, the only s15850 design in the suite, we randomly select
three other designs for validation.

2Since thresholding is part of our proposed scheme, we do not consider
TrojanSAINT without. We implement the same thresholding strategy (Sec. II-B)
for all models. SVM directly separates data into classes without computing
probabilities, making thresholding not applicable (N/A).

TABLE II
TPR/TNR RESULTS FOR PRACTICAL VALIDATION. BEST RESULTS, CONSIDERING AVERAGE OF TPR AND TNR, ARE MARKED IN BOLDFACE.

TrustHub All With Thresholding Others Without Thresholding

Benchmark TrojanSAINT XGBoost FCNN GNN-RE Logistic Random SVM TrojanSAINT XGBoost FCNN GNN-RE Logistic Random SVM
Regression Forest Regression Forest

rs232t1000 1.00/0.60 1.00/0.57 0.85/0.64 0.77/0.51 1.00/0.46 0.69/0.75 N/A 1.00/0.60 0.23/0.91 0.00/1.00 0.00/1.00 0.00/1.00 0.15/0.92 0.00/1.00

rs232t1100 0.92/0.68 0.83/0.57 1.00/0.61 0.92/0.52 0.83/0.61 0.33/0.90 N/A 0.92/0.68 0.08/0.91 0.00/0.94 0.00/0.94 0.00/1.00 0.08/0.92 0.00/1.00

rs232t1200 0.41/0.80 0.59/0.56 0.59/0.91 0.82/0.27 0.71/0.60 0.35/0.75 N/A 0.41/0.80 0.06/0.90 0.06/1.00 0.06/0.93 0.00/1.00 0.00/0.91 0.00/1.00

rs232t1300 1.00/0.74 1.00/0.57 1.00/0.66 1.00/0.71 1.00/0.43 0.56/0.86 N/A 1.00/0.74 0.22/0.91 0.00/1.00 0.00/0.98 0.00/1.00 0.00/0.92 0.00/1.00

rs232t1400 0.92/0.50 0.92/0.57 1.00/0.56 1.00/0.27 1.00/0.46 0.54/0.70 N/A 0.92/0.50 0.08/0.91 0.08/0.71 0.62/0.94 0.00/1.00 0.00/0.92 0.00/1.00

rs232t1500 0.71/0.82 0.93/0.57 0.93/0.57 0.79/0.61 1.00/0.46 0.57/0.76 N/A 0.71/0.82 0.21/0.91 0.07/0.77 0.36/0.94 0.00/1.00 0.14/0.91 0.00/1.00

rs232t1600 0.73/0.57 0.73/0.57 0.91/0.49 0.55/0.66 0.73/0.59 0.27/0.90 N/A 0.73/0.57 0.18/0.91 0.00/1.00 0.00/0.83 0.00/1.00 0.00/0.91 0.00/1.00

s15850t100 0.35/0.97 0.77/0.94 0.92/0.76 0.88/0.97 0.96/0.73 0.85/0.94 N/A 0.35/0.97 0.12/1.00 0.00/1.00 0.12/1.00 0.00/1.00 0.04/1.00 0.04/1.00

s35932t100 1.00/1.00 0.87/0.98 0.87/0.64 0.93/1.00 0.93/0.44 1.00/0.98 N/A 1.00/1.00 0.20/1.00 0.00/1.00 0.00/0.97 0.00/1.00 0.13/1.00 0.07/1.00

s35932t200 1.00/1.00 1.00/0.98 0.92/0.80 1.00/1.00 0.92/0.44 1.00/0.99 N/A 1.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00

s35932t300 0.97/1.00 0.94/0.98 1.00/0.81 1.00/1.00 0.40/0.81 0.97/0.97 N/A 0.97/1.00 0.63/1.00 0.00/1.00 0.09/1.00 0.00/1.00 0.57/1.00 0.00/1.00

s38417t100 0.92/0.92 1.00/0.82 0.75/0.77 1.00/0.92 1.00/0.35 0.75/0.90 N/A 0.92/0.92 0.33/0.95 0.00/1.00 0.00/1.00 0.00/1.00 0.42/0.94 0.00/1.00

s38417t200 0.40/0.99 0.53/0.86 0.73/0.73 0.47/0.93 1.00/0.35 0.73/0.90 N/A 0.40/0.99 0.27/0.95 0.73/0.90 0.00/1.00 0.00/1.00 0.27/0.94 0.00/1.00

s38417t300 0.98/0.96 0.98/0.82 0.18/0.89 0.98/0.91 0.16/0.87 0.95/0.84 N/A 0.98/0.96 0.14/0.95 0.07/1.00 0.00/0.98 0.02/1.00 0.23/0.95 0.07/1.00

s38584t100 1.00/0.95 1.00/0.87 1.00/0.87 1.00/0.92 1.00/0.52 1.00/0.93 N/A 1.00/0.95 0.22/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.22/1.00 0.00/1.00

s38584t200 0.90/0.98 0.49/0.87 0.89/0.87 0.39/0.95 0.98/0.52 0.84/0.94 N/A 0.90/0.98 0.02/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.02/1.00 0.02/1.00

s38584t300 0.13/0.98 0.08/0.88 0.47/0.94 0.23/0.93 0.94/0.52 0.45/0.94 N/A 0.13/0.98 0.01/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.01/1.00 0.00/1.00

Average 0.78/0.85 0.80/0.76 0.82/0.74 0.81/0.77 0.86/0.54 0.70/0.88 N/A 0.78/0.85 0.18/0.95 0.06/0.96 0.07/0.97 0.00/1.00 0.13/0.95 0.01/1.00

detection considering unknown Trojans within unseen circuits.
The GNN framework underlying of TrojanSAINT is superior to
other models. Recall that others take the same feature vectors
as inputs; such direct comparison is fair. Second, thresholding
is crucial for high prediction performance for this task.

Relaxed Validation. We also study a “best case” validation,
using a leave-one-out split where validation and test sets are
the same. Such setting is often considered in the literature, as
it shows the best performance for any model and benchmark.
As indicated, however, it is not as realistic for HT detection.

With thresholding applied, we observe the following average
TPR/TNR values here:3 0.98/0.96 for TrojanSAINT, 0.93/0.93
for XGBoost, 0.91/0.89 for FCNN, 0.98/0.96 for GNN-RE,
0.89/0.81 for logistic regression, and 0.91/0.994 for random
forest, respectively. Without thresholding applied, we observe
the following average TPR/TNR values: 0.41/0.99 for XGBoost,
0.09/1.00 for FCNN, 0.07/0.97 for GNN-RE, 0.09/1.00 for
logistic regression, 0.40/0.99 for random forest, and 0.11/1.00
for SVM, respectively. TrojanSAINT is superior to almost all
methods across these two cases; only GNN-RE, and only with
thresholding applied, becomes a close contender.

Related Works. In Table III, we compare to more loosely
related works (Sec. III-A). Results are quoted and rounded.
Numbers of nodes/gates are reported as obtained from our
parser.4 The related works employ leave-one-out or “best case”
validation schemes; thus, we also report TrojanSAINT results
for such “best case” validation here.

TrojanSAINT outperforms these related works for all larger
benchmarks, where the ratio of HT gates/nodes to regular ones
is more challenging—this demonstrates superior scalability for

3Due to limited space, we refrain from reporting a table for this scenario.
4Number of nodes/gates may vary across ours and related works, depending

on parsing approach, technology library etc., but overall ranges remain similar.

TABLE III
BENCHMARK PROPERTIES; TPR/TNR RESULTS FOR RELATED WORKS

TrustHub Benign HT Ratio of Nodes, R-HTD [18] [19] [20] TrojanSAINTBenchmark Nodes Nodes HT to Benign (Orig. Samples)

rs232t1000 202 13 0.064 1.00/0.94 1.00/0.99 1.00/1.00 1.00/0.94

rs232t1100 204 12 0.059 1.00/0.93 0.50/0.98 1.00/1.00 1.00/0.93

rs232t1200 199 17 0.085 0.97/0.96 0.88/1.00 1.00/1.00 0.82/0.96

rs232t1300 204 9 0.044 1.00/0.95 1.00/1.00 0.86/1.00 1.00/0.98

rs232t1400 202 13 0.064 1.00/0.98 0.98/1.00 1.00/1.00 1.00/0.96

rs232t1500 202 14 0.069 1.00/0.94 0.95/1.00 1.00/1.00 1.00/0.94

rs232t1600 203 11 0.054 0.97/0.92 0.93/0.99 0.78/0.99 1.00/0.88

s15850t100 2,156 26 0.012 0.74/0.93 0.78/1.00 0.08/1.00 0.88/0.97

s35932t100 5,426 15 0.003 0.80/0.69 0.73/1.00 0.08/1.00 1.00/0.97

s35932t200 5,426 12 0.002 0.08/1.00 0.08/1.00 0.08/1.00 1.00/1.00

s35932t300 5,427 35 0.006 0.84/1.00 0.81/1.00 0.92/1.00 1.00/1.00

s38417t100 5,329 12 0.002 0.67/1.00 0.33/1.00 0.09/1.00 1.00/0.97

s38417t200 5,329 15 0.003 0.73/0.99 0.47/1.00 0.09/1.00 1.00/0.97

s38417t300 5,329 44 0.008 0.89/1.00 0.75/1.00 1.00/1.00 1.00/0.96

s38584t100 6,473 9 0.001 N/A N/A 0.17/1.00 1.00/0.99

s38584t200 6,473 83 0.013 N/A N/A 0.18/1.00 1.00/0.98

s38584t300 6,473 731 0.113 N/A N/A 0.03/1.00 0.99/0.95

Average 3,250 63 0.035∗ 0.84/0.95 0.72/1.00 0.55/1.00 0.98/0.960.019∗

∗The first value is averaged across the column; the second value, more representative of
the overall imbalance, is based on re-calculating the ratio using the average node counts.

ours. For the smaller benchmarks, which are not representative
of real IC designs, related works achieve better results presum-
ably due to feature engineering. In fact, up to 76 features are
considered in [19], [20] which reflects on considerable efforts,
whereas for ours, some simple feature vectors suffice.

IV. CONCLUSION

We have developed TrojanSAINT, a GNN-based method
for detection and localization of HTs. We overcome the HT-
inherent issue of class imbalance through threshold tuning.
Through practical validation, ours is capable of generalizing
to circuits and HTs it has not seen for training. Our method
outperforms prior art and a number of strong ML baselines.

The use of a GNN framework renders TrojanSAINT simple
yet competitive. For future work, we will study the role of
different feature vectors in more details.

REFERENCES

[1] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level synthesis
for security and trust,” in International On-Line Testing Symposium
(IOLTS). IEEE, 2013, pp. 232–233.

[2] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: Identifying and classifying hardware Trojans,” Computer,
vol. 43, no. 10, pp. 39–46, 2010.

[3] R. Yasaei, S.-Y. Yu, and M. A. Al Faruque, “GNN4TJ: Graph neural
networks for hardware Trojan detection at register transfer level,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1504–1509.

[4] S. Faezi, R. Yasaei, and M. A. Al Faruque, “HTnet: Transfer learning
for golden chip-free hardware Trojan detection,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp.
1484–1489.

[5] J. He, Y. Liu, Y. Yuan, K. Hu, X. Xia, and Y. Zhao, “Golden chip free
Trojan detection leveraging electromagnetic side channel fingerprinting,”
IEICE Electronics Express, pp. 16–20 181 065, 2018.

[6] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection using
random forest classifier,” in International Symposium on Circuits and
Systems (ISCAS). IEEE, 2017, pp. 1–4.

[7] S.-Y. Yu, R. Yasaei, Q. Zhou, T. Nguyen, and M. A. Al Faruque,
“HW2VEC: A graph learning tool for automating hardware security,”
in International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2021, pp. 13–23.

[8] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “Embracing graph
neural networks for hardware security,” in International Conference
on Computer-Aided Design (ICCAD), IEEE/ACM. New York, NY,
USA: Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3508352.3561096

[9] L. Alrahis, J. Knechtel, and O. Sinanoglu, “Graph neural networks: A
powerful and versatile tool for advancing design, reliability, and security
of ICs,” arXiv preprint arXiv:2211.16495, 2022.

[10] R. Yasaei, S. Faezi, and M. A. Al Faruque, “Golden reference-free
hardware Trojan localization using graph convolutional network,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30,
no. 10, pp. 1401–1411, 2022.

[11] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[12] L. Alrahis, S. Patnaik, F. Khalid, M. A. Hanif, H. Saleh, M. Shafique
et al., “GNNUnlock: Graph neural networks-based oracle-less unlocking
scheme for provably secure logic locking,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 780–785.

[13] L. Alrahis, S. Patnaik, M. A. Hanif, H. Saleh, M. Shafique, and
O. Sinanoglu, “GNNUnlock+: A systematic methodology for designing
graph neural networks-based oracle-less unlocking schemes for provably
secure logic locking,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 3, pp. 1575–1592, 2022.

[14] L. Alrahis. (2022) Gnn-re: Graph neural networks for reverse
engineering of gate-level netlists. [Online]. Available: https://github.com/
DfX-NYUAD/GNN-RE

[15] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Mohammad
et al., “GNN-RE: Graph neural networks for reverse engineering of
gate-level netlists,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[16] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” Advances in neural information processing systems,
vol. 30, 2017.

[17] H. Salmani and M. Tehranipoor. (2021) Trust-hub: Chip-level Trojan
benchmarks. [Online]. Available: https://trust-hub.org/#/benchmarks/
chip-level-trojan

[18] K. Hasegawa, S. Hidano, K. Nozawa, S. Kiyomoto, and N. Togawa,
“R-htdetector: Robust hardware-trojan detection based on adversarial
training,” 2022. [Online]. Available: https://arxiv.org/abs/2205.13702

[19] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection using
random forest classifier,” in International Symposium on Circuits and
Systems (ISCAS), 2017, pp. 1–4.

[20] T. Kurihara and N. Togawa, “Hardware-trojan classification based on the
structure of trigger circuits utilizing random forests,” in International
Symposium on On-Line Testing and Robust System Design (IOLTS), 2021,
pp. 1–4.

[21] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” Advances in neural information processing
systems, vol. 30, 2017.

