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Abstract—The continuous growth of data pushes novel and
efficient approaches for information retrieval. In this context,
Regular Expression (RE) matching is widely employed and
represents a relevant computational kernel that carries control-
and memory-related issues. Among the several solutions to relieve
these burdens, accelerators seem a promising alternative to
general-purpose systems. However, state-of-the-art benchmarking
presents a highly fragmented scenario without consensus on
the approach and lacks an open-source strategy. Therefore, to
fairly characterize existing execution engines, this work presents
YARB, an open benchmarking methodology. It builds upon
literature solutions, a comprehensive approach, and an in-depth
characterization of heterogeneous systems. Moreover, YARB’s
openness will enable future integrations and engines comparison.

Index Terms—Regex, Benchmarking, System Evaluation

I. INTRODUCTION AND MOTIVATION

Nowadays, given the current technological limitations [1]
and the continuously growing amount of data [2], [3], domain-
specialization represents one of major alternatives for perfor-
mance improvements [4]–[8]. According to this alternative,
ASIC-based Domain-Specific Architectures (DSAs) represent
a mainstream strategy to tackle domain issues. However,
producing a new ASIC-based DSA for each domain might not
always be feasible [9]. Regular Expressions (REs), and their
equivalent form of Finite State Machines (FSMs) [10], are a
widely employed computational kernel [11] exploited also for
efficient information retrieval. Besides being the computational
core of many fields, REs are inherently sequential and may
suffer from data movement bottlenecks.

Within this context, many engines, algorithms, and data
structures have been proposed for efficient REs execution.
CPU-based engines are among the best to handle control-
intensive, variable workloads, and better fit REs matching for
their software-programmability [12]–[14]. Other researchers
proposed an accelerator-based model to offload REs compu-
tations from the CPUs [15], [16]. Some exploit massively
parallel capabilities of GPUs [17], while others exploit the
reconfigurable fabric of FPGAs for FSMs embedding [18].
Other works focus on mixing the performance of hardware-
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based solutions with the flexibility of CPUs, leading to hybrid
DSAs implemented as ASICs or on FPGAs [19]–[22].

Despite this vast plethora of engines, there is still no consen-
sus on a unique benchmarking methodology for the REs do-
main [23]–[25]. Benchmarks are essential to deliver consistent
measurements of speed, efficiency, and accuracy [26]. Building
on top of consistency enables dependable products, reliable
comparisons, and drives innovation. Thus, many devote ef-
forts to create consistent benchmarking. On the one hand,
researchers focused on RE generators for specific domains,
such as intrusion detection systems [27], which lack gener-
ality. On the other hand, utterly general-purpose benchmark
generators may focus on purely theoretical aspects without
strictly applying any real-case scenario [28]. The absence of
a transparent approach to evaluate the REs domain hinders a
clear evaluation of past, present, and future engines.

To cope with REs domain fragmentation, we propose a
novel benchmarking methodology implemented as an open-
source evaluation suite [29], called YARB (Yet Another
Regular Expressions Benchmarking framework). We build
on top of relevant and remarkable past efforts to produce
a transparent and open evaluation methodology for the
REs computational domain across heterogeneous systems. We
designed YARB to be modular and extensible by others.
YARB can exploit state-of-the-art REs and data generators
[27], [28] along with proposed literature ready-to-use bench-
marks [23], [24]. Since we adopt REs as universal language,
we devise a novel Automata to REs translator that can op-
tionally apply different minimization algorithms and explore
solutions’ performance. We analyze open-source literature for
RE matching on heterogeneous systems and select the ones
working on every scenario [14], [30], [31], providing relevant
insights. In summary, this work’s contributions are:

• A clear and novel evaluation methodology implemented
as an open-source benchmark suite called YARB [29],
designed to be methodologically extensible;

• A systematic characterization of REs domain with the
state-of-the-art solutions across different heterogeneous
systems, from embedded CPUs to data center GPUs;

• A novel extensible Automata to REs translator that can
minimize REs, as well a characterized open dataset [29].



II. RELATED WORK AND ENGINES SELECTION

We review the REs domain literature, considering bench-
marking and engines 1, detailing the one selected in §III.

A. Generators and Benchmark Suites

Since benchmarking is primarily critical to consistent work
and solid foundations, many researchers focused on generators
and benchmarking. For instance, Becchi et al. devised a REs
generator called Regex Processor (RP) [27], but it is limited
to Deep-Packet Inspection (DPI). Borsotti et al. proposed
an interesting benchmark generator called REgen to evaluate
advanced and ambiguous REs [28], but they evaluate mainly
the tool performance for ambiguity rather than execution
engines. Wadden et al. devised ANMLZoo [23], a multi-
domain benchmark suite to address the literature gap in
benchmarking. Unfortunately, they designed their benchmark
suite to highlight the Automata Processor (AP) [32] architec-
tural features [24] and exploiting small-scale automata [25],
thus, limiting the generalization. Nourian et al. [25] tried to
overcome ANMLZoo shortcomings and present a benchmark
approach for large-scale automata. Unlike previous works,
the authors presented end-to-end performance accounting for
the whole transmission overhead. Unfortunately, they do not
open their datasets and benchmarking approach. Angstadt et
al. build a collection of available toolchains in the State of
the Art calling this framework MNCaRT [33]. They introduce
the open-source language MNRL to overcome the closed-
source nature of ANML (designed for the AP) and a piece
of software called hscompile to translate from PCRE RE
format to ANML or MNRL. However, MNRL, MNCaRT, and
the included tools are outdated and deprecated. Wadden et
al. [24] build an improved version of ANMLZoo exploiting
the MNRL language, devising open-source generators, and
dropping AP-specific features. Nevertheless, they heavily rely
on hscompile, which requires complicated setup, obsolete
features, making it difficult to use nowadays.

Overall, the benchmark generators and suites have fragmen-
tation in the target scenario, (single versus multi-domain),
language (REs versus ANML/MNRL), and metrics measured.

B. Engines for Regular Expressions Matching

The vast body of research in the field of RE matching op-
timization confirms the community interest in several features
from the efficient representation to the matching process [4],
[12]–[15], [17], [20], [34], [35].

CPU-based engines: The current open-source state-of-
the-art RE execution engines that exploit CPUs are Google
RE2 [30] and Intel Hyperscan [14]. RE2 was designed to
have predictable run-time and bounded memory consumption.
Instead, Hyperscan is a high-performance engine combined
with an efficient representation, which currently supports only
x86 processors and focuses on DPI scenarios. These engines
represent the most flexible solution to RE matching with the
most substantial support, and the highest performance.

1It is noteworthy to remind the reader that Finite Automaton (either
Deterministic/DFA or Non-Deterministic/NFA) are equivalent to a RE [10].

GPU-based engines: To improve the efficiency of RE
matching, two approaches are possible. One based on multiple
data streams against a single DFA (which usually exploits a
depth-first execution approach); the other explores the parallel
paths of an NFA (here, instead, it usually adopts a breadth-first
execution model). Many works aim to exploit these parallelism
degrees on top of a massively parallel architecture such as
GPUs. We exclude closed-source approaches [17], [36], while
selecting the approach proposed by Liu et al. [31] which
exposes several state-of-the-art GPU-based methodologies.

FPGA-based engines: FPGAs are spatial architectures that
enable different approaches. On the one hand, some solutions
embed the automata logic directly on the reconfigurable fabric
exploiting the adaptability at the cost of regenerating new
bitstreams for unseen REs [16], [18], [37], [38]. On the
other hand, others devise programmable DSAs to exploit the
domain specialization offered by the reconfigurable hardware
and expose flexibility in terms of instructions/REs to execute
[22], [39], [40]. Despite some solutions are open-source, they
are not documented, cumbersome to use, or do not provide
means to really execute on hardware; thus, we exclude them
from our work. Other open approaches present limitations in
terms of searching procedure (i.e., can only find REs that
match from the beginning of the data stream), such as the Vitis
Library RE engine [40]. We also exclude engines limited in the
amount of data able to process, such as CICERO [22]. Despite
benchmarking efforts demonstrated that FPGA’s spatial com-
puting capabilities attain the highest performance at the cost
of losing flexibility [25], we exclude such engines since the
open-source ones do not support enough general REs features.

ASIC-based engines: This class mainly exploits the in-
memory approach similar to the FPGA-embedding in different
structures such as Content Addressable Memories (CAMs)
[35], [41], or other special memories [19], [32], [34]. Besides,
others devise DSAs, but they provide simulation results only
[21]. The two primary industrial efforts from IBM with the
Power Edge of Network [19] and the Micron AP [32] report
extremely relevant and remarkable results. However, they are
probably abandoned and unavailable; thus, we exclude them.

Despite the vast number of engines across different kinds
of technologies, the off-the-shelf ones that we could exploit
experimentally restrict to CPU- and GPU-based engines.

III. THE YARB METHODOLOGY AND FRAMEWORK

To cope with REs domain fragmentation, we developed
YARB, an open-source benchmarking methodology. YARB
is powered by benchmark suites, generators, software, and
engines available in the State of the Art coupled with custom-
developed software. We design our framework to: 1) exploit
other researchers’ efforts and build on the REs as universal
language; 2) extensively study the REs domain under different
aspects and evaluate different implications systematically
and in a semi-automated approach; 3) be methodologically
extensible, modular, and open to contributions. Figure 1
represents YARB with green part coming from the literature,
while the purple blocks represents our novel contributions.
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Fig. 1. YARB Framework overview. We exploit state-of-the-art benchmarks and generators (in green) to build a REs database enriched with an Automata-
to-REs versions. Based on the input capabilities of the engine (e.g., RE or ANML), we analyze the execution time performance on (different) data portions.

A. Regular Expression Engines

We select the available engines as described in §II and
represented in A of Figure 1. Indeed, YARB’s engines cur-
rently are: RE2 [30], Hyperscan [14], and the ones presented
by Liu et al. [31]. RE2 is a C++ general-purpose library
that guarantees execution time linear in the input length and
fixed stack footprint, able to target any CPU regardless the
ISA. Differently, Hyperscan targets only x86 CPUs and is a
production-ready project. Besides, it exploits a RE decompo-
sition algorithm to enable an efficient compilation of the REs
and a SIMD-based pattern matching approach to enable multi-
string matching and fast bit-based NFA. Finally, Liu et al.
[31] implement several GPU-based algorithms, (that YARB all
supports) including their state-of-the-art version called Obat.
We select Obat since it combines a dynamic scheme resource
allocation with a lookup-to-computation optimization. RE2
and Hyperscan support single- and multi-match REs, while
Obat supports only multi-match. While the first two engines
support RE(s)-based pattern and data stream, the GPU one
works with ANML-based patterns.

B. Automata to REs framework

Since current, and likely future, engines could support
natively different Automata Description Languages (ADLs),
or REs, we design a novel converter from Automata to REs
(A2RE) B of Figure 1. This A2RE builds on a three-step
translation process. It begins with an ADL-specific front-end
that parses the input. Then, it breaks the complex multi-
NFA into single automaton represented according to our
Intermediate Representation (IR). Then, we can optionally
minimize the IR-based Automata according to different state-
of-the-art algorithms [10]. All these algorithms build on the
states’ reordering according to some automaton metrics and
can apply both a single pass or iteratively. §IV-A characterize
the minimizations, that are open for future research [29].

C. Benchmark Suite and Generators

We build a set of databases (DBs) for REs and data to
analyze based on different suites and generators, represented
as C Figure 1. We build the base YARB benchmarks on top
of ANMLZoo and AutomataZoo [23], [24]. These suites are

composed of REs and NFA represented in ANML (MNRL)
ADL(s), along with different sizes of input stimuli. We natively
integrate REgen [28] as a possible source of benchmarks in
YARB. We slightly modify REgen to decouple REs from
the input data and use its output immediately. Moreover, we
integrate benchmarks derived from the Regex Processor (RP)
generator used by Liu et al. [31] as ANML inputs. We envision
DBs enrichment with more benchmarks and input data stimuli.

D. New Custom Software in YARB

YARB offers an automated benchmarking flow through a
set of additional software utilities, marked as D in Figure 1.

Given the requirement of input ANML files for Obat [31]
and the absence of an open standard definition, we design
an adaptation flow to translate the REs into an ANML file
through the only open tool, namely hscompile [33]. In this
way, YARB supports GPU-based engines devised in [31].

Besides, RE matching is a process that is highly dependent
on the target RE(s) and the input stimuli. Therefore, we design
a data splitter to characterize the effect of dividing the input
data into smaller chunks with a parametric overlapping factor.
This component breaks down the data with a user-defined
threshold and supports any size of chunking.

IV. EXPERIMENTAL SETUP AND RESULTS

YARB and GPU handling code are in Python, while the
CPU-based engines code C++. We evaluated YARB on a high-
end Intel Xeon Platinum 8167M, an embedded ARM A53,
and a high-end NVIDIA V100 GPU. We focus on the engines’
performance for the single RE with multi-match mode.

A. Characterization of Minimization Algorithms

YARB Automata to REs framework (Figure 1 B ) imple-
ments four different minimization algorithms that reorder the
automaton states according to specific features: degrees of
in(out)going edges, serial-interconnection first, bridge states
last, weighted according to Delgado and Morais [42]. More-
over, each reordering procedure could be repeated each time
a state is eliminated (i.e., iterated or “-i”), or only once (i.e.,
“-o”). We characterize the performance of these algorithms
considering the normalized difference (ND) in number of
characters for each benchmark b with minimization m as



TABLE I
AVERAGE ND PER BENCHMARK OF YARB AUTOMATA TO RES.

Minimizations
Benchmarks

ANMLZoo AutomataZoo Regex Processor
[23] [24] [31]

Degree-o 0% 0.1% 0%
Degree-i 1.6% 9.6% 0%
Serial-o 19% - † 6%
Serial-i 34% 54% 6.1%

Bridge-o 71% 91% 26.2%
Weight-o 77% 95% 30%
Weight-i 84% 95% 30%
† Not reported, since it attains larger REs length than baseline.
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Fig. 2. Average execution time per benchmark for each execution engine in
logarithmic scale (the lower, the better) of single RE multi-match mode.

ND(b,m) = WO(b)−MINm(b)
WO(b) [%], where WO(b) is without,

and MINm(b) is with the benchmark minimization m applied.
Table I reports the characterization results. Our analy-

sis showcases the weight-based minimizations as the top-
performing ones across the different benchmarks and lan-
guages. Bridge-o reveals to be the third most performing
algorithm on the evaluated datasets. Our insights suggest
that the Weight-based minimization procedure [42] optimally
combines, through the weight formula, different contributions
for the state elimination procedure.

B. Comparing the Regular Expressions Engines

We now move our characterization on the analysis of the
execution time automatically extracted by YARB. We analyze
the single RE performance excluding any data transfer and
re-iterating each test ten times to mitigate cache-warmup-
related effects. Figure 2 illustrates the average execution
time performance of YARB engines RE2, Hyperscan, and
Obat on the corresponding architectures. The displayed av-
erage for each engine and each benchmark is computed
as Avgbench(Avgchunk(Exetime)), i.e., the average of the
overall execution time per benchmark, considering the average
execution time of the whole benchmark even when our data
chunking applies. We bound our analysis to chunk sizes of
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Fig. 3. Scaling of the average execution time for different single chunk sizes
breakdown for ClamAV; logarithmic scale; single RE multi-match mode.

1, 4, 8, 16KB, and the whole 1MB input file to study input
size variability. The figure clearly displays that Obat GPU
engine does not make any sense when considering the single
RE evaluation (even excluding data transfers). We compute
the corresponding speedups and calculate the geomean of the
speedups. Indeed, RE2 on the ARM showcases a geomean
speedup of 44.5× though running on an embedded device.
Finally, considering the Xeon, Hyperscan (hs in the chart)
outperforms the other solutions achieving geomean speedups
of 3.8×, 21.3×, 947.3× against RE2 on the Xeon, the ARM,
and Obat, respectively.

C. Breakdown Chunk Analysis on Real Signature Detection

Figure 3 illustrates the scalability of Hyperscan and RE2
on the breakdown of the single execution times per single
chunk of ClamAV, an ANMLZoo benchmark from a public
dataset for signature detection. The engines scale sublinearly
with respect to the chunk size. Therefore, whenever possible,
increasing the data size processing capabilities is beneficial
for CPU-based engines. Another interesting insight regards the
processing time variability against the input data size. Impres-
sively, Hyperscan demonstrates to be the engine less affected
by the data sizes, possibly mitigating chunking effects.

V. FINAL REMARKS AND FUTURE WORK

This work presented YARB, an open-source benchmark
suite that aims to cope with REs domain fragmentation. We
designed YARB to be modular, extensible, and to exploit
state-of-the-art RE engines, data generators, and benchmarks
across heterogeneous systems. Since YARB adopts the REs
as the universal language, we design a novel ADL-to-REs
converter to unify the languages. Moreover, YARB enables a
systematic characterization of matching engines, datasets, and
generators in the REs domain. We believe YARB will enable
fair comparisons across different possible metrics of interests.

Our next steps concern a deeper analysis of the available
engines in terms of multi-REs evaluation. Hence, we will find
the breakeven point where exploiting accelerators, like GPUs,



are more effective than CPUs. Finally, we strongly believe
characterizing the energy efficiencies of these engines will be
an essential point for YARB.
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