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Abstract—There has been a surge in Explainable-AI (XAI)
methods that provide insights into the workings of Deep Neural
Network (DNN) models. Integrated Gradients (IG) is a pop-
ular XAI algorithm that attributes relevance scores to input
features commensurate with their contribution to the model’s
output. However, it requires multiple forward & backward
passes through the model. Thus, compared to a single forward-
pass inference, there is a significant computational overhead to
generate the explanation which hinders real-time XAI. This work
addresses the aforementioned issue by accelerating IG with a
hardware-aware algorithm optimization. We propose a novel
non-uniform interpolation scheme to compute the IG attribu-
tion scores which replaces the baseline uniform interpolation.
Our algorithm significantly reduces the total interpolation steps
required without adversely impacting convergence. Experiments
on the ImageNet dataset using a pre-trained InceptionV3 model
demonstrate 2.6-3.6× performance speedup on GPU systems
for iso-convergence. This includes the minimal 0.2-3.2% latency
overhead introduced by the pre-processing stage of computing
the non-uniform interpolation step-sizes.

Index Terms—Explainable AI (XAI), Deep Neural Networks
(DNN), Hardware-Aware Algorithm Design, GPU systems

I. INTRODUCTION

There has been a massive growth in the field of Machine
Learning (ML) and Artificial Intelligence (AI). However, the
black-box nature of DNN models has hindered its ubiquitous
utilization [1]. Explainable-AI (XAI) provides insights into the
workings of these models to enable adoption in safety-critical
tasks [2] which require transparency and interpretability [3].
Within the field of XAI, feature attribution methods generate
an explanation by scoring input features proportional to their
contribution to the network’s output [4]. For image based
applications, these relevance scores are visualized as a heatmap
[5]. These post-hoc techniques can be applied to existing
pre-trained models [6]. Integrated Gradients (IG), a feature
attribution algorithm, has become popular thanks to its ease
of implementation, axiomatic theoretical underpinnings, and
applicability to any differentiable model [7].

IG accumulates gradients along a straight-line interpolation
path between a baseline and the input. A baseline is indicative
of missingness or lack of input [8]. For example, a black
image is a commonly used baseline for vision tasks. IG
requires multiple forward (inference) and backward (gradient
backpropagation) passes through the model for each input.
Thus, there is a large computational overhead in generating
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the explanation (50-1000× slower) compared to just evaluating
the model’s output which required a single forward pass. As
noted in this XAI deployment study [9], it is necessary to
reduce this overhead to enable real-time low-latency XAI. It
is vital to overcome the technical limitations of computing
explanations quickly in domains like smart healthcare [10],
medicine [11], finance [12], and hardware security [13] where
IG is being utilized.

Several optimizations over baseline IG have been proposed
to improve the quality of the generated heatmaps. [8] proposes
averaging the attributions obtained by using several different
baselines. Google’s XRAI [14] segments the input into several
regions and applies IG on each segment before stitching
the results together. Captum, a PyTorch based XAI library
developed by Meta [15], uses Noise Tunnel which averages the
IG attributions over several noisy copies of the original input
[16]. Despite using baseline IG multiple times in their pipeline,
none of these algorithms attempt to reduce its computational
overhead. Thus, they stand to gain significant performance
benefits from an IG implementation optimized for low-latency
on the underlying hardware platform.

Fig. 1. Overview of Feature Attribution using the Integrated Gradients
(IG) algorithm (a) Inputs to the algorithm: Image (x) and Baseline (x′) (b)
Interpolated images along straight line path between Baseline (k = 0) and
Image (k = m) (c) Visualization of accumulated gradients to highlight input
features relevant for classifying image as American Chameleon (target class)

All the currently known implementations of IG use uniform
interpolation between baseline and input to approximate the
continuous IG integral [Eq. 1] as Riemann-sum [Eq. 2]. In
this work, we propose a non-uniform interpolation scheme
to reduce the discretization steps required while maintaining
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similar convergence accuracy. We first identify regions in the
IG path with higher information content. By having smaller
step-size in these regions and larger step-size outside of them,
the overall compute overhead of IG is reduced.

In summary, this work makes the following contributions:
• To the best of our knowledge, our work is the first of

its kind to design and employ a non-uniform interpola-
tion scheme along the IG path to compute the discrete
Riemann-sum approximation of the IG integral.

• Based on the experimental observations, we propose and
justify the use of change in classification probability
along the IG path as an information content metric to
determine the non-uniform discretization step-size.

• We demonstrate the performance improvement achieved
on GPU systems and quantify the latency overhead in-
troduced by our algorithm compared to the baseline IG
which uses a uniform interpolation scheme.

II. INTEGRATED GRADIENTS (IG)

The Integrated Gradients (IG) algorithm is a feature attri-
bution method [Fig. 1]. Formally, for a given input (x) and
a model function (f ), a feature attribution method assigns a
relevance score (φi(x, f)) to the ith input feature. The score is
a measure of that feature’s contribution to the model’s output.

The simplest way to assign a relevance score is to evaluate
the gradient of the model’s output with respect to the input
feature. A large gradient value implies that small changes in
the feature value produce a large change in the model’s output,
thereby, indicating higher relevance. However, gradients are
a local explanation method that can suffer from saturation
effects. Path attribution methods (PAM) overcome this issue
by accumulating gradients along a path between a baseline
and the actual input [17]. These are mathematically motivated
and satisfy desirable properties such as completeness and
sensitivity. IG is a subset of PAM which considers a straight-
line path between the baseline (x′) and the input (x) as shown
in Eq. 1. The commonly used baselines for computer vision
applications include black, white, or random noise images [8].
They represent the notion of missingness or lack of any input.

φi (f, x, x′) = (x− x′)×
∫ 1

0

∂f(x′ + α(x− x′))
∂xi

dα (1)

In Eq. 1, f is the model function and α is the interpolation
constant along the straight-line path. In practice, to evaluate
IG attributions, the continuous integral is approximated as a
Riemann sum with m+ 1 uniform steps as shown in Eq.2.

φi (f, x, x′) = (x− x′)× 1

m

m∑
k=0

∂f(x′ + k
m (x− x′))
∂xi

(2)

The number of steps (m) typically ranges from 200 to 1000
[18]. Its value is chosen based on the convergence metric (δ)
which is defined (Eq. 3) using the completeness property [17]
satisfied by the continuous integral formulation of IG.

δ =

∣∣∣∣∣∑
i

φi(f, x, x
′)− [f(x)− f(x′)]

∣∣∣∣∣ (3)

From Eq. 2, we observe that for every input, the IG
algorithm creates several interpolated versions [Fig. 1(b)]. It
then computes the gradient of the model’s output with respect
to input features for each one. This step requires a forward and
a backward pass through the model. These gradients are then
aggregated to assign the overall attribution score [Fig. 1(c))].

III. METHODOLOGY

Background. The run-time latency of IG depends on the
number of interpolation steps [Fig. 2(a)]. More steps yield
better convergence δ [Fig. 2(b)] at the cost of higher latency.

Fig. 2. (a) Latency increases with increase in number of interpolation steps
[values normalized relative to the latency for m=1] (b) Decreasing convergence
δ with increasing steps implies better convergence at reduced interpolation
step-size. Thus, there is a latency penalty for better convergence.

Objective. The goal of this work is to reduce the compute
overhead of IG for generating explanations. The typically used
range of values for the number of steps lies beyond the knee-
point of the latency v/s step-count graph [Fig. 2(a)]. Thus,
for lower latency, the number of interpolation steps must be
decreased without compromising convergence [Fig. 2(b)].

Observation. Along the interpolation path, close to the
baseline (small values of α), the actual input image is un-
recognizable from its interpolated version. However, after a
certain α, the input can be identified. Beyond this threshold,
as we move towards the input along the IG path, the brightness
of the interpolated image increases. Intuitively, for a human
observer, the change in classification confidence is not uniform
along the IG path as seen in Fig. 3(a).

We test this intuition on the model. The classification
probability of the model changes sharply as we increase the
interpolation constant α [Fig. 3(b)] along the IG path. At
α = 0.25, the classification probability (0.83) is >90% of
its final value (0.89) for the input image (α = 1). Thus, the
model’s confidence about the prediction is built over a small
interval along the IG path with minimal change outside of it.

The IG algorithm accumulates the gradient of the classifica-
tion probability with respect to input features for each interpo-
lated image. Thus, the change in classification probability can
be used as a metric for information content along the IG path.



Fig. 3. Variation along the IG path of (a) Distinguishability of the image
from its interpolated copies (b) Classification probability of the model (c)
Contribution to the convergence term based on the relative gradient magnitude.
Thus, a small region along the IG path contains most of the information.

In regions of large change, the gradient values are also larger
[Fig. 3(c)] and contribute more to the overall IG attribution.

Proposed Method. We propose a non-uniform interpolation
scheme to replace the baseline uniform interpolation [Fig.
4(a)] along the IG path. Specifically, the IG path is divided
into multiple intervals and uniform interpolation is performed
within each interval using a different step-size. Based on the
earlier observation [Fig. 3], we can use a smaller step size in
the regions where there is a large change in the classification
probability. Outside of such regions, a larger discretization step
size can be used. Overall, the total steps are non-uniformly
distributed along the IG path with a bias towards regions with
higher information content.

Fig. 4. (a) Uniform interpolation with constant step size for the entire IG
path (b) Non-Uniform Interpolation with small uniform step size in the region
of large change and large uniform step size in the region of small change.

Algorithm. The proposed algorithm comprises two stages.
The first stage takes the number of intervals (nint) as a
parametric input to divide the IG path into nint equal pieces.
The classification probability of the interpolated images at the
interval boundaries is evaluated to calculate its normalized
change in each interval [∆f(xint)]. The total number of steps
(m) is then distributed across each interval proportional to

the square root of the change [
√
|∆f(xint)|]. We observed

that linear dependence (mint ∝ ∆) allotted negligible dis-
cretization steps to regions with small change. Hence, we use
mint ∝

√
∆ to attenuate the bias towards intervals of large

change. In the second stage, we perform uniform IG within
each interval with the respective step count. The IG attributions
of different intervals are then summed up to determine the
overall IG attribution. The proposed algorithm is, therefore,
uniform-in-intervals but non-uniform overall along IG path.
Fig. 4(b) illustrates this for nint = 4.

IV. RESULTS

Experimental Setup. The proposed method can directly
replace the baseline IG algorithm and be applied to any
differentiable model. To demonstrate its efficacy, we test it
on the ImageNet dataset [19] using a pre-trained InceptionV3
model [20]. We consider our baseline to be the existing
IG implementation that employs uniform interpolation. We
compare it against our proposed non-uniform interpolation
algorithm and vary the number of intervals (nint) parameter.

Fig. 5. For different IG interpolation schemes, the variation of (a) Conver-
gence delta (δ) as we increase the total interpolation steps (m) (b) Total
interpolation steps required for reaching the convergence threshold (δth).

Convergence. In Fig. 5(a), we demonstrate the effect of
the total number of steps on the convergence δ for different
interpolation schemes. For any given number of steps (m), our
proposed algorithm achieves better convergence δ compared to
baseline. Thus, for iso-convergence, the proposed algorithm is
able to reduce the total steps needed.

In practice, the total interpolation steps for IG are deter-
mined by fixing a threshold tolerance for the convergence.
For example, in Fig. 5(a), this threshold (δth) is set to 0.015.
The total number of steps is then chosen such that the
convergence δ lies below the threshold [Fig. 5(a)]. We vary
δth and determine the number of steps required for different
interpolation schemes [Fig. 5(b)] to meet the convergence
criterion. For all δth values, our proposed algorithm requires
fewer steps and outperforms the baseline. Increasing the
number of intervals further reduces the steps required for
convergence. The benefits are more pronounced at smaller δth
values. For δth = 0.02, we observe a 2.7× reduction while for
δth = 0.005, we observe a 3.6× reduction in the total steps
required for convergence.



We further observe that increasing the number of intervals
(nint) up to a certain point reduces δ. Further increasing nint
causes δ to increase since certain intervals are allotted negligi-
ble discretization steps which negatively impact convergence.
Consequently, it increases the number of steps required to meet
δth. We observe that nint > 8 manifests this issue.

Fig. 6. For each IG interpolation scheme, the variation of (a) normalized
latency to meet the convergence threshold (δth) (b) latency overhead (% of
total latency) of the first stage of the non-uniform interpolation algorithm.

Latency. Since our method is applicable to any differ-
entiable model and the performance benefit is not specific
to a hardware architecture, we report normalized latency
values. The latency is normalized relative to the algorithm
configuration which yields the smallest run-time latency. In
our experiments, we measure the run-time latency for running
IG on InceptionV3 model with batch-size of 16 on a NVIDIA
TITAN Xp GPU using the PyTorch benchmark profiler. The
profiler supports CUDA (excludes the overhead of thread
synchronization), performs an initial warm-up, and averages
over multiple runs to determine accurate execution latency.

The normalized latency [Fig. 6(a)] depends on the number
of interpolation steps (m) which in turn depends on the
convergence threshold (δth). We make two observations. First,
the latency increases as we decrease δth because of an increase
in m. However, the relative increase in latency as we reduce
δth from 0.02 to 0.005 is higher for baseline (3.3×) when
compared to non-uniform interpolation (2.3-2.5×). Second, in
terms of performance, our proposed non-uniform interpolation
scheme outperforms the baseline across all δth values. The
latency reduces as we increase nint yielding higher perfor-
mance benefits. For δth = 0.02, we achieve a 2.6× and
for δth = 0.005, we achieve a 3.6× latency reduction when
compared to the baseline.

Overhead. Determining the number of steps for each in-
terval is the overhead of our proposed scheme. The memory
overhead is minimal since we only store the classification
probability of nint + 1 interpolated images to determine the
step-sizes. The latency overhead is measured as a fraction of
the total latency of running the IG algorithm [Fig. 6(b)]. The
overhead varies between 0.2-3.2% of the total latency.

We observe that the absolute value of the latency overhead
depends only on the parameter nint. This is because we
run the inference pass through the network nint + 1 times
to determine the classification probability change in each

interval and distribute the total steps commensurately. Thus,
the absolute overhead increases as we increase nint. However,
the relative value of the overhead depends on both nint and
δth [Fig. 6(b)] because these parameters affect the total steps
required and hence the overall latency of non-uniform IG.

V. DISCUSSION & RELATED WORK

With XAI research being in its infancy, there is a paucity
of work that focuses on improving performance (low-latency,
high throughput, real-time) either through (a) specialized hard-
ware architectures or (b) algorithmic optimizations with a
hardware-aware design approach (this work).

Pan et al. [21] accelerates model-distillation based explana-
tion on TPU or systolic-array hardware substrate. This method
is unsuitable for low-latency explanation generation since it
requires training a new model which locally mimics the input-
output behavior of the black-box model for each input. In this
work, we focus on a post-hoc explanation method that is di-
rectly applicable to any off-the-shelf differentiable model. Bhat
et al. [22] accelerates gradient based heatmap visualization on
FPGA platform. However, the implemented feature attribution
algorithms suffer from local saturation effects. In this work, we
focus on IG which overcomes this issue via path-attribution.
Although we demonstrate our results on GPU systems, our
algorithm is agnostic to the underlying hardware.

Sotoudeh et al. [18] proposes exact computation of the IG
integral but achieves smaller performance gains (upto 1.7×)
compared to this work (upto 3.6×). Kapishnikov et al. [23]
avoids high-loss regions by updating a subset of features with
low gradient magnitude at each point along the path. However,
the next step is dynamically determined which limits the
performance on GPUs as batch-size is restricted to 1. In our
work, we design a static processing stage to pre-determine the
discretization step size and leverage batching on GPU systems.
Rahman et al. [24] modifies the path by performing a local
gradient ascent around each uniform interpolation point in the
IG path. This magnifies the compute overhead of generating
the explanation. Although both methods modify the baseline
IG path to improve the quality of attribution heatmaps, they
require more steps thereby incurring a performance overhead.
Our work modifies the IG path to improve performance while
maintaining iso-convergence with baseline IG.

VI. CONCLUSION

In this paper, a novel Non-Uniform Interpolation scheme
for computing the Integrated Gradients attribution is pre-
sented. Our methodology is motivated by the observations
we made on the baseline uniform interpolation. Regions of
high-information content along the straight-line IG path are
identified using the change in classification probability. Uti-
lizing classification probability as an information metric is
justified based on its correlation with gradient magnitude and
its contribution to the overall IG attribution. The proposed
algorithm distributes the steps among intervals with a bias
towards ones with higher information content. Compared to
the baseline, our algorithm meets iso-convergence thresholds



with fewer total steps. We quantify the performance benefit
on GPU systems using pre-trained models on the ImageNet
dataset. Our experiments show that we can achieve a speed-
up of 2.6-3.6× at a very low latency overhead of 0.2-3.2%. In
summary, our hardware-aware algorithm design enables low-
latency real-time explainable AI.
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