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Abstract—This paper proposes a learning-based video com-
pression framework for variable-rate coding on YUV 4:2:0
content. Most existing learning-based video compression models
adopt the traditional hybrid-based coding architecture, which
involves temporal prediction followed by residual coding. How-
ever, recent studies have shown that residual coding is sub-
optimal from the information-theoretic perspective. In addition,
most existing models are optimized with respect to RGB content.
Furthermore, they require separate models for variable-rate
coding. To address these issues, this work presents an attempt
to incorporate the conditional inter-frame coding for YUV 4:2:0
content. We introduce a conditional flow-based inter-frame coder
to improve the inter-frame coding efficiency. To adapt our codec
to YUV 4:2:0 content, we adopt a simple strategy of using space-
to-depth and depth-to-space conversions. Lastly, we employ a
rate-adaption net to achieve variable-rate coding without training
multiple models. Experimental results show that our model
performs better than x265 on UVG and MCL-JCV datasets in
terms of PSNR-YUV. However, on the more challenging datasets
from ISCAS’22 GC, there is still ample room for improvement.
This insufficient performance is due to the lack of inter-frame
coding capability at a large GOP size and can be mitigated by
increasing the model capacity and applying an error propagation-
aware training strategy.

Index Terms—video compression, YUV format, variable rate,
conditional inter-frame coding

I. INTRODUCTION

Since deep neural networks have demonstrated their great
potential in computer vision tasks, learning-based video com-
pression has rapidly risen in recent years. DVC [13] is the
first work that integrates neural networks with the predictive
coding concepts for video compression. Following works like
M-LVC [10] and HLVC [20] utilize multi-reference frames to
improve the coding efficiency. Furthermore, FVC [7] performs
predictive coding operations in the feature domain with the
deformable convolution. ELV-VC [16] proposes to effectively
send the incremental flow based on the flow map predictor.
Nevertheless, several issues remain unsolved for learning-
based video compression.

First of all, the effectiveness of the residual coding is
a concern, and the learning-based approach should provide
more flexibility than traditional predictive coding. Ladune et
al. [8] first point out the inefficiency of the residual coding
from the perspective of information theory. They explain
that given the motion-compensated frame xc for coding the
target frame xt, the expected entropy of residual coding
should be greater than or equal to the conditional coding
H(xt − xc) ≥ H(xt − xc|xc) = H(xt|xc). To this end,
they propose to use conditional VAE that concatenates the

motion-compensated frame with the target frame and the latent
features in the encoding and decoding processes. DCVC [9]
improves Ladune’s work by replacing the motion-compensated
frame with its latent representation. Additionally, a conditional
temporal prior is introduced for better entropy coding. How-
ever, how to effectively use conditional information is still an
issue to be discussed.

Secondly, the use of a single model to implement variable-
rate coding and rate control is also a challenge for learning-
based video compression. Most learned video compression
methods can only be optimized for a single rate point and will
cause high memory consumption. Choi et al. [21] propose a
multi-rate image compression network with conditional convo-
lution. Conditional convolution performs channel-wise scaling
and shifting of the intermediate features. By replacing each
convolutional layer with conditional convolution (CConv), it
reprograms the feature to adapt to different dynamic ranges.
For video compression, Lin et al. [11] further apply the similar
technique but without the shifting operation to both motion and
residual coder. Though these research provide solutions for
variable-rate image and video compression, it is still unable
to achieve precise rate control.

Finally, most learning-based compression models operate
on RGB color space, and YUV color format is more popular
among actual video standards. To obtain better coding effi-
ciency, how to deal with YUV 4:2:0 input format for learning-
based video compression is still an open question.

Considering all the above issues, we propose a conditional
flow-based video compression framework that uses YUV 4:2:0
video as input format. Our framework can also use only one
model to adapt to multiple bit rates, and it can be extended
to achieve rate control. The experimental results show that
our method performs better than x265 on UVG [15] and
MCL-JCV [18] datasets in terms of PSNR-YUV. However,
on the more challenging datasets from ISCAS’22 GC, there
is still ample room for improvement. We believe that this
inferior performance is due to insufficient inter-frame coding
at a large GOP size, which can be improved by increasing
the model capacity and applying an error propagation-aware
training strategy.

II. RELATED WORK: AUGMENTED NORMALIZING
FLOW-BASED IMAGE COMPRESSION (ANFIC)

ANFIC [6] is an image compression framework that lever-
ages the VAE-based image compression in a flow-based
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Fig. 1: The architectures of (a) ANFIC intra-frame coding [6]
(N=128, M=192, K=320, L=192) and (b) the proposed con-
ditional inter-frame coding (N=128, M=192, K=128, L=128),
where N, M, K, L are the channel number of autoencoding
transforms, hyperprior transform, ẑ2, and ĥ2.

model. Fig. 1a illustrates the architecture of a 2-step AN-
FIC, which includes a stack of autoencoding transforms
(gencπ1

, gdecπ1
, gencπ2

, gdecπ2
) and a hyperprior transform (hencπ3

, hdecπ3
).

ANFIC encodes an input image x together with the augmented
noise ez , eh into the latent representation (x2, ẑ2, ĥ2). Taking
gencπ1

, gdecπ1
as an example, the transformation is defined as:

gencπ1
(x, ez) = (x, ez +menc

π1
(x)) = (x, z1) (1)

gdecπ1
(x, z1) = (x− µdecπ1

(z1), z1)= (x1, z1) (2)

The second autoencoding transform gencπ2
, gdecπ2

follows the
same operations but takes (x1, z1) as input.

As for the autoencoding transform of the hyperprior
hencπ3

, hdecπ3
, it follows [3] for the entropy coding and the

transformation can be written as:

hencπ3
(z2, eh) = (z2, eh +menc

π3
(z2)) = (z2, ĥ2) (3)

hdecπ3
(z2, ĥ2) = (bz2 − µdecπ3

(ĥ2)e, ĥ2)= (ẑ2, ĥ2) (4)

where b·e denotes the nearest-integer rounding operation
(sketched as Q in Fig.1), and menc

π , µdecπ are element-
wise additive transformation parameters learned by the neural
networks.

In a nutshell, ANFIC vertically stacks multiple autoen-
coding transforms for greater model expressiveness and hor-
izontally extends an additional autoencoding transform of
hyperprior for entropy coding. The latent variables ẑ2 and ĥ2

are expected to capture most of the information about the input
x and force x2 to approximate 0. Therefore, we only need to
transmit ẑ2, ĥ2 while x2 is replaced with 0 during decoding.

III. PROPOSED METHOD

In this section, we describe our video compression system
in detail. First, we present an overview of the proposed system,
followed by an introduction to our conditional inter-frame
coding and how it addresses the coding of YUV 4:2:0 content.
Second, we show how the proposed system is extended to

TABLE I: λI and λP for variable-rate encoding.

λP 1024 4096 16384 65536
λI 5e−3 ∼ 5e−2 1e−2 ∼ 1e−1 2e−2 ∼ 2e−1 2e−1 ∼ 5e−1

a variable-rate system for supporting variable-rate encoding
without having to train separate networks. Lastly, we give the
training procedure.

A. System Overview

Fig. 2 depicts our proposed system for coding YUV 4:2:0
content. As shown, it comprises an I-frame coder (the left part
of Fig. 2) and a P-frame coder (the right part of Fig. 2). We
adopt ANFIC [6] as our I-frame coder. However, ANIFC is
design primarily for RGB content; it needs to be adapted to
YUV 4:2:0 content. To this end, we apply the space-to-depth
(s2d) operation to the Y component, in order to convert it
into a 4-channel signal that has the same spatial resolution as
the UV components. The resulting signal is then concatenated
with the UV components to form a 6-channel input. Whenever
appropriate, we perform the depth-to-space (d2s) operation to
recover the Y component in its original spatial resolution.

Our P-frame coder consists of the motion module and
the inter-frame coder (G,G−1 in Fig.2). The motion mod-
ule includes three networks: the motion estimation network
(PWC-Net), the motion coder, and the motion compensation
network (MC-Net). These networks serve to synthesize the
prediction frame x̃t. The process begins with PWC-Net [17]
estimating a dense optical flow map between x420

t and x̂420
t−1. In

particular, PWC-Net performs flow estimation in YUV 4:4:4
domain, where the UV components are first up-sampled and
concatenated with the Y component as input (x444

t and x̂444
t−1

in Fig. 2). This is because we want to minimize the effort
to fine-tune PWC-Net, which is initially designed for 4:4:4
content.

For the flow map coding, we adopt a motion coder similar
to that of DVC Pro [14]. In particular, the warping of the
UV components takes f̂uv , which is downsampled bilinearly
from the decoded motion f̂y . Both the warped frame and the
previously decoded frame undergo the space-to-depth (s2d)
operation before they are fed to the MC-Net to generate the
6-channel motion-compensated frame x̃420

t .
The purpose of the inter-frame coder is to encode x420

t

conditionally based on the motion-compensated frame x̃420
t ,

without evaluating explicitly a residual frame. We modify
ANFIC [6], which is designed for learning the unconditional
distribution of images, to learn the conditional distribution
p(x420

t |x̃420
t ) in two ways. First, the encoding transforms

of ANFIC are conditioned on x̃420
t by concatenating inputs

of every encoding transforms with x̃420
t . Second, instead of

requiring p(x2) to follow the standard Normal N (0, I) as
for learning an unconditional distribution with ANFIC [6],
we now require p(x2) be governed by N (x̃420

t , I). In other
words, the encoding process of our inter-frame coder is to
transform the input x420

t into a single approximating x̃420
t .

The latent code captures the information needed to signal such
transformation.
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Fig. 2: The overall architecture of our proposed framework.
The left-hand side shows the I-frame coder, and the right-
hand side shows the P-frame coder. x420

t denotes the current
coding frame and x̂420

t−1 means the previously reconstructed
frame. To deal with YUV 4:2:0 format, several space-to-depth
(s2d) and depth-to-space (d2s) operations are performed. It is
worth noting that x̃420

t is a 6-channel format.
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Fig. 3: The architecture of the rate-adaption net. The rate-
adaption net takes λ as input condition, which can be an
one-hot vector or a scalar variable. The output feature can
be modulated by conditional input.

B. Variable-rate Encoding

To achieve variable-rate encoding with a single network,
we use a rate-adaption net to modulate the latent features.
Specifically, the rate-adaption net outputs a set of affine
transformation parameters, which are applied channel-wisely
to feature maps in every convolutional layers. It adapts the dy-
namic ranges of feature maps according to the λ value for the
rate-distortion trade-off. Fig. 3 shows the detailed architecture
of the rate-adaption net, where the input λ can be a one-hot
vector for discrete-step rate adaption or a real-valued scalar
for continuous-step rate adaption. In our implementation, we
adopt continuous-step rate adaption on the I-frame coder and
discrete-step rate adaption on the P-frame coder. In particular,
the λ values of the I-frame coder λI are partitioned into
4 overlapping groups, with each group corresponding to a
particular λP value for the P-frame coder (see Table I). At
inference time, to encode a video at a target bit rate, we first
choose the combination of (λI ,λP ) which yields a rate point
matching closely the target. We then fine-tune λI continuously
while fixing the chosen λP until the target rate is met.

C. Training Procedure

I-frame Coder: To train the I-frame coder, we follow the
training procedure in [6] and train the model for the highest
rate point with λI = 5e−1. We then enable the rate-adaption
net to train the variable-rate model by minimizing:

L =
1

N

∑
λI∼ΛI

R+ λI · (2MSEY +MSEU +MSEV )/4,

where λI is chosen randomly from the set ΛI =
[5e−3, 5e−1], and N denotes the batch size.

P-frame Coder: In a similar way to training the I-frame
coder, we first train the single-rate P-frame coder and then
fine-tune it for the variable-rate case. For the single-rate case,
the training is done sequentially: the motion module is updated
first, followed by updating the conditional inter-frame coder
while fixing the motion module. Next, the whole system is
fine-tuned end-to-end and jointly.

For training the variable-rate model, we take the single-
rate model as the pre-trained model. We then update the rate-
adaption net by enabling it in all the convolutional layers inside
the conditional inter-frame coder, while fixing the pre-trained
weights. In the next training stage, the rate-adaption net is
applied to the motion module, where the motion estimation
network is kept untouched. Again, only the rate-adaption net
is updated in this stage. Finally, the whole system is fine-tuned
end-to-end. The training objective of the P-frame coder is:

L =
1

N

∑
λP∼ΛP

R+ λP · (2MSEY +MSEU +MSEV )/4,

where λP is chosen randomly from ΛP =
{1024, 4096, 16384, 65536} in a mini-batch. It is worth
nothing that when training the P-frame coder, the reconstructed
I-frame is regarded as a constant; no gradient will be back-
propagated to the I-frame coder.

IV. EXPERIMENTS

Implementation Details: The architecture of our intra-
frame coder is similar to ANFIC [6] (see N, M, K, L in
Fig. 1), but with only three Conv and two GND layers due
to s2d operation. The inter-frame coder has a similar model
architecture to the intra-frame coder, but has additional condi-
tioning variables concatenated to the input of each encoding
transform and different K and L (see Fig. 1). The motion coder
has exactly the same architecture with hyperprior [3] with N =
M = k = L = 128. For training, we use Vimeo-90k dataset [19].
Since Vimeo-90k is in RBG format, we generate the training
data by converting Vimeo-90k into YUV 4:2:0 format with
resolution 448x256. During training, we randomly crop the
frames to 256x256, so the sizes of the chroma components
are 128x128. We adopt Adam optimizer [5], and the learning
rate is fixed at 1e−4 before 300k iterations, and is decreased
to 1e−5 then.

Evaluation Methodologies: For evaluation, we test our
scheme on UVG [15], MCL-JVC [18], HEVC Class B [4]
and the test dataset provided by the Grand Challenge (GC) [2].
All the test sequences are in YUV 4:2:0 format. We follow
the common test protocol to set GOP size to 12 for UVG [15]
and MCL-JVC [18], 10 for HEVC Class B [4], and 32 for
ISCAS’22 Grand Challenge (GC) [2]. The PSNR is measured
according to PSNR = (6PSNRY +PSNRU+PSNRV )/8
and the bit-rate is measured in bits per pixel (bpp).



(a) UVG, PSNR (b) HEVC Class B, PSNR
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Fig. 4: Rate-distortion performance evaluation on UVG, HEVC Class B, MCL-JCV, and ISCAS’22 GC datasets.

Baseline methods: To generate the x265 baseline results,
we use ffmpeg [1] with medium preset and low delay configu-
ration. The QPs are set to 22, 27, 32 and 37. For the learning-
based baseline, we train DVC-YUV, which has the same intra-
frame and motion coders as our scheme but replaces the
ANF-based inter-frame conditional coder with the VAE-based
residual coder [14]. To make a fair comparison, we expand
the channel number of the residual coder of DVC-YUV to
N = 192, so that DVC-YUV and our proposed model have
comparable model sizes.

Experimental Results: Fig. 4 and Table II show the rate-
distortion performance of our proposed single-rate model,
variable-rate model, x265, and DVC-YUV.

On UVG (Fig. 4a) and MCL-JCV datasets (Fig. 4c), both
our single-rate model and variable-rate model show better rate-
distortion performance than x265. A significant improvement
is observed at higher rates, while comparable performance can
be seen at lower rates. In terms of BD-rate savings (Table II),
the single-rate model achieves 18% and 13.1% rate reductions;
in contrast, the multi-rate model shows 10.9% and 4.5% rate
reductions.

On HEVC Class B dataset (Fig. 4b), our models show
comparable performance to x265 at both high rates and low
rates, resulting in 1% overall rate reductions with the single-
rate model and 7.7% rate inflation with the variable-rate
model. In particular, our model shows 9.6% rate inflation
on the ISCAS’22 GC test dataset as compared with x265
(see Fig. 4d). It is worth noting that on this dataset, a much
larger GOP size of 32 is used, as compared to 10 or 12 on
UVG, MCL-JCV, and HEVC Class B datasets. The worse
performance of our model is due to the use of the less
capable inter-frame coder and the training strategy. To see
this, we additionally train a more powerful model (denoted

TABLE II: BD-rate comparison with x265 (LDP medium)
serving as the anchor.

Methods BD-rate (%) PSNR
UVG HEVC-B MCL-JCV ISCAS’22 GC

Ours -18.0 -1.0 -13.1 9.6
Ours (variable-rate) -10.9 7.7 -4.5 24.9
DVC-YUV 3.2 12.3 3.6 29.6
Ours* - - - 3.1

as Ours*) with the channel numbers N = M = k = L = 192.
We also include the temporal prior [9] and follow [12] to
train several additional epochs to alleviate error propagation
for large GOP’s. As can be seen from Fig. 4d and Table II,
the enhanced model (Ours*) achieves better performance than
x265 at higher rates. However, at lower rates where the
motion overhead plays a more critical role, there is still room
for improvement. Nevertheless, our models outperform DVC-
YUV by a significant margin on all the datasets. Note that
there is still a large gap between the HM Random Access
anchor and our scheme. Apparently, bi-prediction is a tool
that needs to be incorporated.

CONCLUSION

In this paper, we propose a learning-based conditional inter-
frame coding scheme for YUV 4:2:0 video. Our experimental
results show that the proposed scheme can outperform x265
on UVG and MCL-JCV. However, on the more challenging
datasets from ISCAS’22 GC, there is still ample room for
improvement. One reason of the inferior performance of our
model on this dataset is insufficient infer-frame coding at
a large GOP size, which can be improved by increasing
the model capacity and applying an error propagation-aware
training strategy. In addition, how to enhance the motion coder
to improve the low rate performance is among our future work.
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