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Abstract—Resource-constrained devices are increasingly the
deployment targets of machine learning applications. Static
models, however, do not always suffice for dynamic environments.
On-device training of models allows for quick adaptability to new
scenarios. With the increasing size of deep neural networks, as
noted with the likes of BERT and other natural language pro-
cessing models, comes increased resource requirements, namely
memory, computation, energy, and time. Furthermore, training is
far more resource intensive than inference. Resource-constrained
on-device learning is thus doubly difficult, especially with large
BERT-like models. By reducing the memory usage of fine-tuning,
pre-trained BERT models can become efficient enough to fine-
tune on resource-constrained devices. We propose Freeze And
Reconfigure (FAR), a memory-efficient training regime for BERT-
like models that reduces the memory usage of activation maps
during fine-tuning by avoiding unnecessary parameter updates.
FAR reduces fine-tuning time on the DistilBERT model and
CoLA dataset by 30%, and time spent on memory operations
by 47%. More broadly, reductions in metric performance on the
GLUE and SQuAD datasets are around 1% on average.

Index Terms—Transformers, BERT, DistilBERT, NLP, Lan-
guage Models, Efficient Transfer Learning, Efficient Fine-Tuning,
Memory Efficiency, Time Efficiency, Edge Machine Learning

I. INTRODUCTION

Large language models employing attention-based architec-
tures have revolutionized Natural Language Processing (NLP)
with the likes of BERT and GPT-3, achieving numerous state-
of-the-art scores on well-studied tasks [1], [2]. As language
models move from the cloud to resource-constrained devices
(i.e., edge devices), their deployment is made difficult by
constraints in available resources such as memory, computa-
tion, energy, and time [3]–[5]. Solely considering inference
for edge learning is insufficient as the operating environment
may be dynamic, and input data may change over time
[5]. Learning on edge devices allows models to continually
adapt to their environments and to the requirements of their
users, without revealing data to the cloud [4]–[6]. However,
training requires about three times more memory operations

* Equal contribution.

than inference1 and more resource utilization generally. Tools
like model compression are not enough to bridge the gap
(i.e., a model 1/3 the size with similar performance is hard
to achieve), and compressed models may not be training-
efficient [7]. The problem specifically lies with the greater
memory requirements of training compared to inference, since:
1) accesses to main memory are two orders of magnitude more
energy intensive than computation; and 2) large models can
not fit in cache, meaning that higher latency accesses to main
memory are required [7]–[9].

Enabling on-device learning for large language models
necessitates two conditions: 1) using a compressed model to
reduce baseline memory requirements, and 2) training in a
resource-efficient manner. To achieve the latter condition we
propose Freeze And Reconfigure (FAR), a memory-efficient
fine-tuning regime for BERT-like models. We focus first and
foremost on reducing memory usage during the backward pass
by reducing the largest contributors to said usage: activations
and gradients. We introduce a methodology that identifies
which parameters to freeze and which to continue training.
Freeze here refers to disabling parameter updates during back-
propagation. We also propose a method of dynamic architec-
ture reconfiguration such that frozen and non-frozen parame-
ters are grouped separately. Reconfiguration reduces poorly-
structured memory accesses which, for example, encumber
unstructured pruning methods. The contributions of this paper
are summarized as follows:

• We introduce a novel learning metric that tracks the size
of weight updates over contiguous groups of parameters
during fine-tuning using the L1 norm. According to the
metric, the best-learning subsets of nodes are selected.

• We introduce a novel parameter freezing scheme that ex-
ploits architectural reconfiguration, grouping frozen and
nonfrozen parameters, reducing training-time resource
consumption.

FAR achieves sizeable reductions in the resource consump-
tion of fine-tuning. Our results show that when fine-tuning
DistilBERT on CoLA with 60% of the model parameters
frozen, fine-tuning time is reduced by 30% and memory

1During inference only the parameters and data are retrieved from memory
(2 operations). During training, the parameters must be retrieved at least twice
and stored once after being updated, activations are stored and retrieved, and
data is retrieved (6 operations).978-1-7281-0397-6/22/$31.00 ©2022 IEEE
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access time is reduced by 47%, while metric performance is
maintained. Similar results are achieved for other GLUE and
SQuAD tasks. Evidently, FAR makes training more efficient
while maintaining metric performance.

II. BACKGROUND AND RELATED WORK

A. Transformers and BERT Models: Training and Efficiency

Transformers and BERT-like models make use of Attention
and Feed-Forward Network (FFN) sublayers to extract linguis-
tic knowledge and achieve state-of-the-art scores [10]. BERT
in particular uses the Transformer Encoder architecture to
model languages by pre-training on large datasets of relatively
simple language tasks. To deploy BERT-like models to a
new downstream task, the model must be fine-tuned [1]. This
allows the use of a single set of weights, the pre-trained BERT
weights, as the starting point for various, faster converging,
fine-tuning tasks, avoiding the large overhead of pre-training
the full BERT model2. Various methods have been proposed
to compress BERT including DistilBERT [11], MobileBERT
[12], and TinyBERT [13]. A detailed discussion of compress-
ing large language models is found in [14], including analysis
of the major bottleneck of Transformer-based models: the FFN
sublayers, which contribute more parameters, runtime memory
consumption, and inference latency than all other sublayers.
Model compression is useful for enabling on-device learning,
but greater efficiency during training is desirable to further
enable the realization of large models on edge devices.

B. Efficient Learning

On-device learning has been detailed in [5], including
methods of data compression and theoretical approaches to
efficiency. When considering on-device learning, a fundamen-
tal trade-off must be kept in mind to train in a reasonable
amount of time: either the training-time resource requirements
of a model must be decreased, or the hardware resources
must be increased. The former approach is usually studied
in terms of model compression such as in [11]–[13]. Others
take the problem as reducing the real requirements of train-
ing without altering model architecture. One such approach,
[15], trains only the best-learning weights of a feed-forward
neural network, while keeping the others at their initialization
values. Trained weights are selected by tracking the largest
accumulated weight updates over some initial training steps.
The authors also further reduce memory requirements by
regenerating frozen weights from a pseudorandom number
generator, thereby trading memory for extra computation. This
approach does not work for BERT-like models as the weights
of the pre-trained model are not randomly generated. Addition-
ally, the unstructured selection of weights leads to inefficient
memory accesses, an issue which we address with structured
selection in FAR. A similar approach, BitFit [16], freezes all
BERT weights during fine-tuning and only applies updates
to bias terms. The authors report near-baseline performance

2As reported in [1], 4 cloud tensor processing units running for 4 days are
required to pre-train BERT’s 110 million parameters.

despite the large drop in trained parameters. While BitFit
works on uncompressed (i.e., highly overparameterized) BERT
models, on the more compressed variants like DistilBERT,
it is expected to fail due to the smaller network size and
lower capacity. We address this issue by fine-tuning a greater
proportion of the parameters.

III. FREEZE AND RECONFIGURE

On-device learning of large language models requires com-
pressed models and efficient training procedures. The reduc-
tion in memory usage provided by these requirements has
knock-on effects: higher energy efficiency, reduced computa-
tion, and reduced memory access times. In the case of memory
access time, reducing the number of parameters decreases the
amount of information transferred across a system.

FAR is specifically designed for use with compressed lan-
guage models, specifically DistilBERT, whose capacity and
adaptability are diminished from their uncompressed counter-
parts [17]. This is accomplished by fine-tuning a subset of
linear layer weights (called FFNs in DistilBERT) as well as
their biases, in contradistinction to BitFit, which trains only
the biases of BERT.

In FAR, the sets of fine-tuned weights in the linear layers
are selected in a structured manner to avoid sparse memory
accesses which would delay memory operations [18]. Each
node in an FFN layer is considered a single group of param-
eters. These nodes are classified as learner and nonlearner
nodes depending on how well a node performs during fine-
tuning. The parameters of the nonlearner nodes are frozen
while learner nodes are fine-tuned. Frozen nodes no longer
require gradient calculations during the backward pass, storage
of activations, or memory accesses during the backward pass.
Reconfiguration of the FFN layers is completed during fine-
tuning by separating learner and nonlearner nodes into distinct,
newly created, FFN sublayers.

Each Transformer block in DistilBERT is made up of a
multi-head attention layer which feeds an FFN. The FFN
consists of two dense layers which contain 3072 and 768 nodes
respectively. The weights of the FFNs make up more than
66% of the parameters of the whole network. Thus, freezing a
subset of these weights has a considerable effect on the overall
number of updated parameters of the model. Past work has
shown that freezing up to 80% of feed-forward neural network
parameters results in minimal changes in accuracy for smaller
models and simpler tasks [15].

A. Selection of Learner Nodes

The set of learner nodes is decided upon after an initial
set of fine-tuning iterations during a process we call priming
(cf. Figure 1, green nodes in left figure are learner nodes).
During priming, a copy of the pre-trained FFN weights is
stored and the network is fine-tuned for some percentage,
p, of the total number of optimization steps. The priming
percentage, p, is kept small so as to avoid the additional burden
of fully fine-tuning a large model for a greater proportion
of the optimization steps. It is expected, however, that more



Fig. 1. Overview of priming steps and the dynamic reconfiguration of nodes
in FFN. In the left, the learner (green) and nonlearner (red) nodes are chosen
after the priming steps. In the right, the nodes are reconfigured to disable
gradient computation for red weights. The output of the FFN is permuted
after reconfiguration.

priming should result in higher metric performance. After
fine-tuning the model during priming, the initial FFN weight
vectors, we,i

n , are subtracted from the fine-tuned FFN weight
vectors, φe,i

n , for each Transformer Encoder, e, FFN sublayer,
i, and node, n. We employ the L1 norm to compute the total
amount learned by each node in the FFN. This is in distinction
to [15], where each weight is chosen individually based on
the difference in its initial and trained value. Usage of the L1

norm allows for the weights of the FFN node to be grouped so
that architectural modifications can be made later for greater
memory savings. The learning metric is computed as:

me,i
n =

∥∥φe,i
n −we,i

n

∥∥
1

(1)

Finally, to compute the set of learner nodes, a retention
percentage, r, is defined as the ratio of learner nodes to the
total number of nodes. After sorting the learning metric for
each FFN, the r% of nodes with the largest metric are classi-
fied as learners; the rest as nonlearners. Note that decreasing
the node retention results in more nonlearner nodes, which
in turn reduces memory utilization during fine-tuning. Using
higher retention values is expected to have a positive impact on
metric performance as it increases the model’s ability to adapt
to the down-stream task. In addition, the priming and retention
hyperparameters are defined as percentages to allow them to
scale to larger datasets and varying models. For example, a
more compressed model may require higher node retention to
avoid substantial losses in metric performance.

B. Dynamic FFN Reconfiguration

After assigning the learner and nonlearner nodes, the FFNs
of each Transformer block are reconfigured to separate the
nonlearner nodes from learner nodes. As shown in Figure 1,
FFN nodes are reconfigured into two parallel sub-modules.
Such reconfiguration ensures that the memory of learner nodes
is grouped together, allowing only the fine-tuned parameters
to be retrieved during fine-tuning. Finally, the reconfigured
FFNs need to have their output order restored such that their
outputs are coherent with the parameters of the model, so a

TABLE I
EFFECTIVENESS OF PRIMING AND RETENTION WITH 5 AVERAGED RUNS

ON DISTILBERT FOR EACH DATASET

MNLI CoLA

p
r 10% 25% 40% 10% 25% 40%

1% 81.8 81.9 82.1 52.8 53.1 53.3
5% 81.8 82.1 81.9 51.9 52.7 53.7

10% 81.9 82.0 82.2 53.4 52.5 54.0

permutation is applied to the output vectors. The combination
of reconfiguration and permutation trades memory accesses
for additional time spent on computation and data movement,
which is far less costly [8].

Using nodes as parameter groupings and reconfiguring the
model this way allows us to avoid memory access issues that
arise in methods like unstructured pruning. Since individual
weights are never solely accessed, we avoid sparse memory
accesses. Reconfiguration is also beneficial for practical imple-
mentation since in PyTorch, automatic gradient computation
can not be disabled for singular parameters, but instead only
for whole layers or sublayers. Thus, unlike unstructured prun-
ing, no special hardware or libraries are needed to implement
FAR.

IV. EXPERIMENTS

We test FAR using the compressed BERT-based model
DistilBERT [11]. DistilBERT is a pre-trained language model
and can be fine-tuned to downstream tasks. DistilBERT has six
Transformer encoder layers, each with two FFN sublayers (i.e.,
e ∈ {1, · · · , 6} and i ∈ {1, 2} in Equation 1). We fine-tune
the model using a learning rate of 2e−5, with a linear learning
rate schedule, batch size of 16, using at most 5 epochs.

Experiments are run on NVIDIA Tesla V100 Volta GPU
accelerators to gather metric results for all datasets. Wher-
ever timing is reported, these results have been gathered on
the NVIDIA Jetson Xavier NX edge device. Memory access
time is computed using the NVIDIA’s profiling tool, nvprof.
Memory access time is the summation of the execution time
for memory-related API calls, namely cudaStreamSynchronize,
cudaMemcpyAsync and cudaMemsetAsync.

FAR is tested against conventional and efficient fine-tuning
approaches using standard NLP datasets from the GLUE
benchmark and SQuAD 2.0 [19], [20]. All the GLUE tasks
are included in the experiments except for RTE, MRPC, STS-
B because of their small dataset sizes and WNLI because of
its confounding results [21]. This leaves MNLI, QQP, QNLI,
SST-2, and CoLA. CoLA (9594 training examples) and MNLI
(433k training examples) are used to find effective priming and
retention percentages in grid searches (Cf. Table I). MNLI
and CoLA are believed to represent small and large datasets,
respectively [19]. Each reported value is the average of 5 fine-
tuning attempts with random seeds to ensure consistency.

In order to test the hypothesis that higher priming and higher
retention percentages produce better metric performance, we
complete a grid-search style test on CoLA and MNLI. The



TABLE II
METRIC PERFORMANCE OF DISTILBERT WITH AND WITHOUT FAR ON GLUE AND SQUAD 2.0 - 1% PRIMING AND 10% AND 40% RETENTION. EACH

FAR RUN IS ACCOMPANIED WITH ITS PERCENTAGE DROP COMPARED TO THE BASELINE. THE LAST COLUMN SHOWS THE AVERAGE SCORE DROP
PERCENTAGE ACROSS ALL TASKS. † SHOWS OUR IMPLEMENTATION.

CoLA MNLI QNLI QQP SST2 SQuAD 2.0
Matthews Corr. Acc. Acc. Acc. Acc. EM F1 Avg

Baseline † 53.6 82.1 89.1 90.2 91.1 65.0 67.9
52.8 81.9 88.2 90.0 91.1 63.3 66.4FAR10 -1.58% -0.24% -1.01% -0.22% 0.00% -2.59% -2.27% -1.13%
53.3 82.1 88.5 90.2 91.3 63.6 66.6FAR40 -0.55% 0.00% -0.67% 0.00% 0.22% -2.14% -2.01% -0.74%

Fig. 2. Overall time and total memory access time for fine-tuning DistilBERT
on CoLA using FAR with various retention percentages on the NVIDIA Jetson
Xavier NX. Priming percentage is set to 1% across all runs. Values for FAR10,
FAR40 and the baseline (FAR100) are indicated with green, red and blue dots,
respectively.

results are listed in Table I. The table shows that with higher
retention percentage and higher priming percentage, fine-
tuning produces a higher metric score, with the highest score
occurring with 10% priming and 40% retention. Moreover, the
difference between 1% and 10% priming is small enough to
warrant the use of 1% priming for FAR. This also means that
the training overhead is made minimal since extra priming
does not necessarily correlate to better performance. Hence-
forth, FARx will represent FAR using 1% priming and x%
node retention. FAR10 and FAR40 are used to demonstrate
two trade-off points between metric performance and resource
utilization. The former has lower resource utilization while
also producing lower metric performance and vice-versa for
the latter. The results of this comparison are listed in Table
II alongside with the baseline implementation of DistilBERT
using the Hugging Face python library [22], without freezing
any weights during fine-tuning. We observe higher metric
scores for FAR40 compared to FAR10 and a lower drop in
performance compared to the baseline at just 0.74% compared
to 1.13% respectively. The largest drops in performance occur
on SQuAD 2.0, which is the most complex dataset tested.

Figure 2 shows the effect of changing the retention percent-
age on training time and memory access time. A similar trend
is observed in both figures, showing that using setups with
lower retention values reduces both fine-tuning and memory
access time. These results indicate that FAR reduces the
resource consumption of fine-tuning, and as a result also
reduces training time. FAR10 and FAR40 are also indicated
with green and red dots, respectively. In terms of overall fine-
tuning time, FAR10 and FAR40 each respectively show 30%

TABLE III
COMPARISON OF FAR10 WITH RANDOM NODE SELECTION AND BITFIT

CoLA MNLI SQuAD 2.0
Mathews Corr. Acc. EM F1

FAR10 52.8 81.9 63.3 66.4
Random

Selection10
52.0 81.8 62.8 65.7

BitFit 51.7 81.5 49.8 49.8

and 17% reductions compared to the baseline. For memory
access time, 47% and 36% are the time reductions associated
to FAR10 and FAR40.

Finally, we carry out an ablation study to measure the
effectiveness of our method against related works and to show
that FAR is in fact necessary for efficient fine-tuning. First, to
show the effect of using priming, we perform an experiment in
which the learner and nonlearner nodes are randomly selected.
Table III shows that for the same retention value of 10%,
FAR, which uses priming to select nodes, performs better than
random node selection, with the gap being wider in the more
complex SQuAD task. Comparing FAR with BitFit, which
freezes all the weights of all dense layers across the network,
we see a drop in performance of less than 2% for CoLA
and MNLI. However, BitFit performs poorly on SQuAD 2.0,
proving its failure to cope with complex tasks on compressed
models like DistilBERT. The memory access and training
times of fine-tuning on DistilBERT using BitFit on CoLA
are 237 and 384 seconds. Clearly, BitFit spends more time
accessing memory, but around the same time fine-tuning as
FAR10 (Figure 2).

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose FAR, a novel method to reduce
fine-tuning memory consumption by exploiting the overpa-
rameterization of large language models. We show that for a
compressed BERT-based model, it is not enough to simply
freeze large sections of the model during fine-tuning, but
that freezing must be selective and structured. Despite large
decreases in the number of fine-tuned parameters, metric
performance remains near baseline levels, while fine-tuning
time and memory usage are significantly reduced. Future work
involves investigations into new domains such as Transformers
on NLP and vision tasks. We will also apply FAR to other
backbone models such as MobileBERT to demonstrate the
generalizability of the method.
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