
An Efficient FPGA-based Accelerator for Deep
Forest

Mingyu Zhu, Jiapeng Luo, Wendong Mao, Zhongfeng Wang
School of Electronic Science and Engineering

Nanjing University, Nanjing, China
Email: mingyu.zhu@smail.nju.edu.cn, luojiapeng1993@gmail.com, wdmao@smail.nju.edu.cn, zfwang@nju.edu.cn

Abstract—Deep Forest is a prominent machine learning algo-
rithm known for its high accuracy in forecasting. Compared with
deep neural networks, Deep Forest has almost no multiplication
operations and has better performance on small datasets. How-
ever, due to the deep structure and large forest quantity, it suffers
from large amounts of calculation and memory consumption.
In this paper, an efficient hardware accelerator is proposed for
deep forest models, which is also the first work to implement
Deep Forest on FPGA. Firstly, a delicate node computing unit
(NCU) is designed to improve inference speed. Secondly, based
on NCU, an efficient architecture and an adaptive dataflow are
proposed, in order to alleviate the problem of node computing
imbalance in the classification process. Moreover, an optimized
storage scheme in this design also improves hardware utilization
and power efficiency. The proposed design is implemented on an
FPGA board, Intel Stratix V, and it is evaluated by two typical
datasets, ADULT and Face Mask Detection. The experimental
results show that the proposed design can achieve around 40×
speedup compared to that on a 40 cores high performance x86
CPU.

Index Terms—Deep Forest, Random Forest, Decision Tree,
Machine Learning, Hardware Acceleration, FPGA

I. INTRODUCTION

With the rapid development of machine learning, deep
neural networks (DNN) [1] have achieved great breakthrough
in artificial intelligence literature. Though DNN has dominated
the machine learning research fields nowadays, it has some
obvious deficiencies such as high computational complexity,
slow training speed, and lack of flexibility on small datasets.
In 2017, a new tree-based ensemble learning method, Deep
Forest (DF), was proposed by Zhou and Feng [2]. As shown
in Fig. 1, its cascade structure makes DF able to do represen-
tation learning like deep neural networks. As an alternative
to conventional deep learning methods, it has the following
advantages over deep neural networks. Firstly, DF has almost
no multiplication operations, which means low computational
complexity. Secondly, DF can perform well when there are
only small datasets or low-dimension datasets in contrast to
DNN which requires large datasets. Thirdly, there are less
hyperparameters in DF than in DNN, which makes DF easy
to train. However, as the number of forests and the depth
of the model increase, the computational complexity grows

This work was supported in part by the National Natural Science Foundation
of China under Grant 62174084, 62104097 and in part by the High-Level
Personnel Project of Jiangsu Province under Grant JSSCBS20210034, the
Key Research Plan of Jiangsu Province of China under Grant BE2019003-4.
(Corresponding author: Zhongfeng Wang.)

severely. Since the CPU cannot meet the real-time application
requirements, it is of great necessity to accelerate the inference
of the deep forest on hardware.

Fig. 1. Illustration of the cascade forest structure.

Many hardware accelerators have been developed for tree-
based models like Random Forest [3] to improve the speed.
When it comes to Deep Forest, we face more problems. Firstly,
since Deep Forest contains a large-scale ensemble of decision
trees, it is a big challenge to store all the trees in limited space.
Secondly, if we traverse all trees in parallel, the problem of
node computing imbalance will arise due to the different path
length of different trees and inputs.

In this paper, we propose the first hardware accelerator for
DF based on FPGA, which improves processing speed with
high classification accuracy and low power consumption. The
main contributions of this paper are summarized as follows:

• A delicate node computing unit (NCU) is designed to
decompose the inference of a single decision tree into
fine-grained logic calculation, in order to accelerate the
processing. Meanwhile, an optimized storage scheme is
introduced to store a large number of trees with limited
on-chip memory resources.

• Based on the NCU, a specialized hardware architecture,
together with an efficient dataflow is proposed to alleviate
the problem of node computing imbalance in the clas-
sification process, while maintaining high classification
accuracy and low power consumption.

• The design is implemented on Intel Stratix V FPGA,
which is also the first work for accelerating Deep Forest
on hardware. The experimental results show that the pro-
posed design can achieve around 40× speedup compared
to that on a 40 cores high performance x86 CPU.

ar
X

iv
:2

21
1.

02
28

1v
1 

 [
cs

.L
G

] 
 4

 N
ov

 2
02

2



Accepted by 2022 IEEE International Symposium on Circuits and Systems

II. BACKGROUND

A. Hardware Acceleration for Tree-based Algorithms
Several previous works have targeted hardware acceleration

of the single decision tree and Random Forest. In 2012, Van
Essen et al. [4] conducted a comparative study on the acceler-
ation of inference processing of random forests by multi-core
CPU, GP-GPU and FPGA. The experimental results showed
that FPGAs can provide the highest performance solution
while GP-GPUs still have high energy consumption that is
sensitive to sample size and makes it difficult to be applied to
mobile devices or edge devices. In their hardware design, the
calculation cycle of each node is 5 clock cycles which can be
further shortened. Saqib et al. [5] designed a pipeline structure
for DT inference, and proposed an acceleration architecture
composed of parallel processing nodes. Nakahara et al. [6]
proposed a multi-valued decision diagrams based on random
forests. In the diagram, each variable only appears once on
the path in order to reduce inference latency. The disadvantage
is that the number of nodes increases which will slow down
the training process as a result. Alharam et al. [7] improved
the real-time performance of the random forest classifier by
reducing the number of nodes and branches to be evaluated,
and reducing the branch length by numerical splitting.

However, different from the other tree-based models, Deep
Forest is an ensemble of ensembles which makes it a big
challenge to deal with the large resource consumption and
the large number of calculations. In addition, the prior works
mainly focus on shortening the branch length of each tree
which brings small speed improvement. In this paper, we
accelerate the inference of DF with the aid of the NCU and
propose a special overall architecture for DF based on FPGA.

B. Deep Forest
The deep forest algorithm includes two parts: Multi-Grained

Scanning and Cascade Forest.
Inspired by the layer-by-layer processing of the original

features in DNN, Deep Forest adopts a cascading structure, as
shown in Fig. 1. The cascade forest structure stacks multiple
forests in this way to obtain enhanced features and better
learning performance. In the cascade forest, the input of the
first layer is the feature vector of the instance, and the output
of each layer is a set of class vectors. The output vectors of the
previous layer and the original feature vector are concatenated
together as the input of the next layer. Here we use two random
forests [3] and two completely-random tree forests [8] in each
layer.

Fig. 2 illustrates the generation of the class vector. The
traversed paths of the instance are highlighted in orange. For
each instance, each forest averages the percentages of different
classes of training data given by all trees in the same forest.

The overall procedure of Deep Forest uses the multi-grained
scanning process to enhance the cascade forest. By using mul-
tiple sizes of sliding windows, the transformed feature vectors
contain more information and different kinds of outputs are
sent to the corresponding layer of the cascade forest. DF
terminates training when the performance cannot be improved.

Fig. 2. Illustration of class vector generation.

III. PROPOSED DESIGN

A. Node Computing Unit

Deep Forest contains a cascade structure of ensemble trees,
which makes it have higher computational complexity than
other tree-based models, so it is important to reduce memory
requirements and improve inference speed. Firstly, the storage
scheme optimizes the format used to store the trees, while
including all the information of each node in a 32-bit word.
Secondly, we propose a computation-efficient node computing
unit (NCU) and it can shorten the node operation period to 4
clock cycles while [4] uses 5 clock cycles.

Fig. 3. Storage of trees and memory layout of each node.

In traditional storage scheme of tree-based models, the in-
formation of a single tree includes address of feature, threshold
and addresses of the left and right child nodes. Our goal is
to store each node of a tree in a 32-bit word. However, if the
address of feature occupies 8 bits and the threshold occupies
16 bits, the left 8 bits memory is not enough for the addresses
of all child nodes of an 8-depth tree. To tackle the problem, we
propose an optimized storage scheme. Fig. 3 shows the storage
of trees and the memory layout of each node. In our design,
one nodes RAM stores the information of 8 trees of maximum
depth d, and each tree has at most 2d-1 nodes. The format
of each node includes three fields. For non-leaf nodes, the
first field stores the feature idx deciding which feature will be
used. The second field stores the threshold (n bits) which will
be compared with the selected feature. For the addresses of
child nodes, we use the pre-order traversal method to store the
nodes, which means the memory position of a left child node
always follows its parent node. In this way, we can deduce
the address of a left child node from its parent node address.
Therefore, the third field only stores the address of the right
child (m bits) with a sign bit. When it comes to the leaf nodes,
the sign bit of the right idx turns to 1, which distinguishes
two kinds of nodes. For the leaf nodes, the second field stores
the leaf value (n bits) which is the output of the tree. In our
design, m is 9, and without the address of the left child node,
20% storage space of trees are saved.

2



Accepted by 2022 IEEE International Symposium on Circuits and Systems

Fig. 4. The NCU and the node updating module. The NCU includes the
nodes RAM memory storing the information of all trees in a group and the
logic carrying out the comparison and accumulating the output of the trees.

In our design, all trees in a forest are divided into several
groups and one NCU takes charge of a group of trees stored
in one RAM. The description of the NCU and the node
updating module is shown in Fig. 4. The design includes the
nodes RAM memory, a main input, currentnode idx, which
is used to store the address of current node, a main output,
nextnode idx, which is used to store the address of next node,
and the logic that carries out the comparison and accumulates
the prob total, which is the output of the trees. To start, as the
nodes RAM stores 8 trees, the currentnode idx is concatenated
with the finish count to get the information of the current
node from the nodes RAM. Then, the feature idx of the non-
leaf nodes is concatenated with the finish count to select one
feature from all input features. After a clock cycle, we get
the feature and it is compared with the threshold reg. In
our design, we use the combinational logic instead of the
sequential logic to implement the comparator. Finally, the
comparison result is sent to a multiplexer, deciding whether
the left child or the right child will be the next node. To
obtain the address of the left child, left idx, we add 1 to the
currentnode idx. As the output, the nextnode idx needs to be
sent to the update module to get the currentnode idx which
will be used in the next round.

If the current node is a leaf node, the is leaf value is 1 and
is sent to the counter to get the counting result, finish count.
Meanwhile, the leaf value is accumulated with the previous
prob total to get a new one. As a result, the overall calculation
cycle of each node is shortened to four clock cycles which is
one clock cycle less than that of [4].

B. Overall Architecture and Dataflow

For Deep Forest inference, the cascade forest occupies most
of the time, so it’s crucial to accelerate this part on hardware.
We insert a pipeline at the end of each layer in order to
accelerate the processing. The proposed overall architecture

is illustrated as Fig. 5. In our design, each layer occupies
different on-chip resource. There are two forests in one layer,
each of which is processed by one PE. A forest consists of 32
trees and 8 trees are packed into a group and are processed by
one and the same NCU. Therefore, each PE is composed of 8
NCUs and all of them are run in parallel. The final prediction
is obtained by averaging the output of the last layer, and then
sent to the off-chip DRAM.

There are three kinds of buffers to store data on the chip.
Input Buffer, whose basic unit is RAM, stores three feature
vectors produced by the multi-grained scanning, supposing we
use three sizes of sliding windows. Layer 1∼4 Buffer and
Output Buffer store the input features of layer 1∼4 and the
output vector of the whole on-chip logic.

Average is composed of adders and a shift register. The
adders accumulate the classification results of all NCUs in
one PE. As there are 32 trees in a forest, a shift register is
used to get the mean value of all trees. When the averaging
is finished, the result will be stored in a register.

Update contains a counter and a register. The counter
records the period of the NCU. Once the period reaches four
clock cycles, the address of the current node in a register,
currentnode idx, is replaced by the address of the next node,
nextnode idx. When the module receives the finish signal from
the corresponding NCU, currentnode idx turns to zero.

Controller receives the finish signals of all layers and
counts the number of final results. It takes charge of data
transport from off-chip DRAM to Input Buffer and from
registers to Layer 1∼4 Buffer. It is worth noting that we
concatenate the data fetched from Layer 1∼4 Buffer with the
original feature vector fetched from the corresponding Input
SRAM when Layer 1∼4 Buffer receives the signal from the
controller.

Since different samples have different path lengths, it will
cause the problem of node computing imbalance. To solve
this problem, we propose the following dataflow. All NCUs
in one PE are run in parallel, and each NCU is responsible
for a group of trees instead of only one decision tree as
the traditional methods. Once the NCU finishes a tree, it
immediately processes the next one. The decision trees in the
same group are sequentially traversed in a serial manner. In
this way, we can mitigate the impact of gaps between various
path lengths. Moreover, we insert a pipeline at the end of each
layer to improve data throughput.

IV. EXPERIMENTS

A. Configuration

In this section, we use two DF models trained on ADULT
[9] and Face Mask Detection [10] respectively. Face Mask
Detection is a new image dataset distinguishing whether a
person wears a mask correctly or not. For ADULT, the multi-
grained scanning is abandoned considering that the features
have few sequential or spacial relationships. There are 4 layers
in this model and each layer consists of one completely-
random tree forest and one random forest, each containing 32
trees. For Face Mask Detection, 3 sizes of sliding windows

3



Accepted by 2022 IEEE International Symposium on Circuits and Systems

Fig. 5. The overall architecture. Each layer contains two PEs and each PE contains eight NCUs, each of which processes eight trees.

are used in the multi-grained scanning. The cascade forest is
composed of 3 layers and the configuration of each layer is
the same as the model trained on ADULT.

B. Results

We run the above two models on Intel Xeon Gold 6148
CPU (40 cores), and our hardware design is implemented on
FPGA (Intel Stratix V), reaching a clock frequency of 400
MHz.

The proposed design decreases the usage of on-chip re-
sourses. The resource utilization of our design on Intel Stratix
V is shown in Table I. Because of the different data sizes,
the models trained by the two datasets are implemented on
different chips.

TABLE I
THE RESOURCE UTILIZATION OF OUR DESIGN

ADULT Face Mask Detection
Device Stratix V 5SGXMA3 Stratix V 5SGXEAB
ALMs 41,377 / 128,300 (32%) 213,104 / 359,200 (59%)

Memory (KB) 314 / 2,392.5 (13%) 420 / 6,600 (6%)
DSP Blocks 0 0

Table II shows the comparison of our implementation on
FPGA at a clock frequency of 400 MHz with CPU. We
evaluate the throughput rate on the two datasets, and find that
our design achieves great speedup compared to the 40 cores
high performance x86 CPU. It increases the throughput rate
40 times on ADULT and 1,871 times on Face Mask Detection.
The proposed design also brings a great improvement on the
latency.

Since the complexity of the deep forest algorithm is higher
than the other tree-based algorithms, the energy efficiency
becomes another important performance when these methods
are implemented on FPGA. Table III shows the comparison
of our work with [4]. In our design, the energy efficiency on

TABLE II
THE COMPARISON OF OUR DESIGN ON FPGA (400MHZ) WITH CPU

Throughput Rate
(Ksamples/s)

Latency
(µs)

CPU Ours Speedup CPU Ours
ADULT 37.59 1,525 40× 34,000 2.52

Face Mask Detection 0.75 1,413 1,871× 877,000 2.36

TABLE III
THE COMPARISON OF OUR WORK WITH [4]

Ours [4]

Platform Intel Stratix V
5SGXMA3

Xilinx Virtex 6
XC6VLX

Number of FPGAs 1 2
Frequency (MHz) 400 100

Throughput Rate (Ksamples/s) 1,525 31,250
Power (W) 2.64 11

Energy Efficiency (GOPS/W) 517,117 499,968

ADULT surpasses that of [4], but the latter needs more than
one FPGA to implement the same number of trees as one layer
in our model.

V. CONCLUSION

In this paper we propose an efficient hardware architecture
for the deep forest model which is also the first work to
accelerate DF. Implemented on Intel Stratix V FPGA, the
proposed design achieves at least 40× speedup compared
to that on a 40 cores high performance x86 CPU. Since
there are no previous works on hardware acceleration of DF,
we compare it with the hardware accelerator of Random
Forest and find our design has comparable energy efficient
while consuming less hardware resources. There are many
potential applications for the proposed design, especially some
classification tasks on mobile devices.

4



Accepted by 2022 IEEE International Symposium on Circuits and Systems

REFERENCES

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
Deep Learning, 2016.

[2] Z. H. Zhou and J. Feng. Deep Forest: Towards An Alternative to Deep
Neural Networks. 2017.

[3] Breiman. Random forests. Machine Learing, 2001,45(1)(-):5–32, 2001.
[4] Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger.

Accelerating a Random Forest Classifier: Multi-Core, GP-GPU, or
FPGA? In IEEE International Symposium on Field-programmable
Custom Computing Machines, 2012.

[5] Saqib, Dutta, Plusquellic, Ortiz, Pattichis, and MS. Pipelined Decision
Tree Classification Accelerator Implementation in FPGA (DT-CAIF).
IEEE Transactions On Computers, 2015,64(1)(-):280–285, 2015.

[6] H. Nakahara, A. Jinguji, S. Sato, and T. Sasao. A Random Forest Using
a Multi-valued Decision Diagram on an FPGA. In 2017 IEEE 47th
International Symposium on Multiple-Valued Logic (ISMVL), 2017.

[7] A. K. Alharam and A. Shoufan. Optimized Random Forest Classifier
for Drone Pilot Identification. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), 2020.

[8] Fei Tony Liu, Kai Ming Ting, Yang Yu, and Zhi Hua Zhou. Spectrum
of Variable-Random Trees. Journal of Artificial Intelligence Research,
32(1):355–384, 2008.

[9] K. Bache and M. Lichman. UCI Machine Learning Repository. 2013.
[10] Péter Baranyi. TP Toolbox. https://www.kaggle.com/ashishjangra27/

face-mask-12k-images-dataset.

5

https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset
https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset

	I Introduction
	II Background
	II-A Hardware Acceleration for Tree-based Algorithms
	II-B Deep Forest

	III Proposed design
	III-A Node Computing Unit
	III-B Overall Architecture and Dataflow

	IV Experiments
	IV-A Configuration
	IV-B Results

	V Conclusion
	References

