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Abstract— Spacecraft pose estimation is an essential com-
puter vision application that can improve the autonomy of in-
orbit operations. An ESA/Stanford competition brought out
solutions that seem hardly compatible with the constraints
imposed on spacecraft onboard computers. URSONet is among
the best in the competition for its generalization capabilities but
at the cost of a tremendous number of parameters and high
computational complexity. In this paper, we propose Mobile-
URSONet: a spacecraft pose estimation convolutional neural
network with 178 times fewer parameters while degrading
accuracy by no more than four times compared to URSONet.

I. INTRODUCTION
Estimating the relative position and orientation (commonly

called Pose estimation) of a known but uncooperative space-
craft from a monocular image is an essential computer
vision application that allows improving the autonomy of
in-orbit spacecraft operations: formation flying, autonomous
docking, satellite maintenance, debris removal, etc... [1].
Debris removal is crucial for the future of low earth orbit
operations as the exploitation of this orbit grows, especially
with the Starlink and OneWeb constellations. A significant
increase of debris will accompany these new constellations.
Several research projects aim to solve this problem: Re-
moveDEBRIS from the Surrey Space Center, Restore-L from
NASA, Phoenix program from DARPA [2], or more recently
the ClearSpace-1 mission from the European Space Agency
(ESA) [3].

Sharma et al. were the first to propose using Convolutional
Neural Networks (CNNs) for Spacecraft Pose Estimation
(SPE) [4]. However, the popularity of CNNs applied to
SPE increased in 2019 when ESA and Stanford SLAB
(Space Rendezvous Laboratory) organized a competition
that brought together 48 participants. Each team proposed
a solution that is based at least in part on deep neural
networks, now a dominant technique [5]. The competition
was based on the SPEED (Spacecraft PosE Estimation
Dataset) dataset introduced earlier by Sharma et. al [6].
The dataset contains 12000 synthetic images of the Tango
satellite to train the models; 2998 synthetic images on which
the participants were ranked (synthetic test set); and 300
real images, which allow characterizing the generalization
capacity of the proposed models (real test set). A post-
mortem webpage dedicated to model predictions evaluation
is still available as the labels of the test sets are not provided
[7].

Sharma et al. [6], Chan et al. [8] and the EPFL CVLab
team used a 3-step process to estimate spacecraft pose [5].
First, they use an object detection CNN to determine the
region of interest and crop the input image. Then, another
CNN regress keypoints. Finally, they solve Pose estimation
using an off-the-shelf Perspective-n-Point (PnP) solver. Black
et al. follow the same 3-step process, but instead of using
large CNNs, they use a MobileNet-v2 as keypoint regression
network. Nevertheless, their method uses a complex pipeline
in which the MobileNet-v2 CNN only represents 20.4% of
the inference execution time[9]. Moreover, using keypoints
limits the method to known spacecraft.

Proença et al. proposed URSONet: a straightforward way
to solve SPE by regressing position and orientation using
a single CNN [1]. It allows to directly optimize ESA
competition metrics [5]. They also proposed to deal with
the orientation estimation as a soft classification task which
significantly improves the results. The orientation is encoded
as a Gaussian random variable in a discrete output space
so that the CNN learns to predict a mass density function
[1]. Then, they used a softmax function and the quaternion
averaging technique to predict the orientation [10]. URSONet
stands out for its generalization capabilities as Proença et
al. obtained a good score on both synthetic and real test
sets. In addition, as they do not rely on keypoints, their
method would be able to generalize to objects with unknown
geometry using SLAM [1]. However, it comes at the cost of
a tremendous amount of parameters (500 million) and high
computational complexity as they use an ensemble method
based on three ResNet-101 CNNs [1].

In the spirit of MobileNet proposed by Google [11],
we propose Mobile-URSONet: a spacecraft pose estimation
convolutional neural network adapted to spacecraft onboard
computers. Our lightest model has 178 times fewer param-
eters while degrading accuracy by no more than four times
compared to URSONet.

The outline of this paper is as follows: Section II explains
the methodology we adopted to optimize URSONet for
embedded systems. Section III presents the experimental
results obtained, and section IV concludes the paper.

II. PROPOSED METHOD

Our analysis is based on the ESA competition evaluation
metrics [5] which includes: the mean absolute position error
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et (in meters), the mean absolute orientation error eq (in
degrees), and the mean ESA score E (lower is better) which
is evaluated on both the synthetic (Esyn) and real test sets
(Ereal).

A. Generalization metric

Many solutions proposed during the ESA competition do
not obtain as good a score on the real images as on synthetic
images. Kisantal et al. explains that it comes from the
change in statistical distribution between the synthetic and
the real images [5]. However, they do not explain the huge
differences in generalization between the different models.
We propose a generalization metric to characterize these
differences: G f actor. It represents the ratio between the mean
ESA score obtained on the real and synthetic test sets:

G f actor =
Ereal

Esyn
(1)

Table I presents the results and generalization factors
of the first four participants of the ESA competition [5]
(including the baseline solution of Stanford SLAB [6]), and
the latest work published on the domain by Black et al. [9].
We observe a wide variability in generalization factors: from
2.7 for the third in the competition (Proença et al.) to 39.9 for
the winners of the competition (Chen et al.). Beyond solving
the SPE task using a single CNN (without PnP methods),
which is a path to pose estimation of unknown objects,
Proença et al. solution offers the best generalization factor.
As robustness to changes in distribution is a key criterion
when integrating such networks into embedded systems, we
base our work on that of Proença et al.

TABLE I
ESA SCORE ON THE TEST SETS AND CORRESPONDING

GENERALIZATION FACTOR

Participants Esynth Ereal G f actor
Chen et al. [8] 0.0094 0.3752 39.9
EPFL cvlab 0.0215 0.1140 5.3
Black et al. [9] 0.0409 0.2918 7.13
Proença et al. [1] 0.0571 0.1555 2.7
Sharma et al. [6] 0.0626 0.3951 6.3

B. Neural network architecture

To ensure a good ranking in the ESA competition, Proença
et. al. focused on minimizing the ESA score regardless of
the complexity of their model. We focused on the trade-off
between the ESA score, the number of parameters, and the
computational complexity of our model. Figure 1 shows an
outline of Mobile-URSONet, the neural network we propose
in this work. In the following paragraphs, we will explain in
detail our architectural choices.

The first component of a CNN is the backbone that extracts
features from the input image (Fig. 1). Proença et al. used
a ResNet-101 backbone, a CNN that achieves 77% top-
1 accuracy on the standard ImageNet benchmark. We use
a MobileNet-v2 backbone that achieves only 72% top-1
accuracy on ImageNet but has 13 times fewer parameters.

Fig. 1. Mobile-URSONet architecture

Bianco et. al. show that MobileNet-V2 has a top-1 accuracy
density (i.e. accuracy per million parameters) more than 10
times better than the ResNet-101 used by Proença et al. [12].
They also show that MobileNet-v2 inference requires only
0.3 GFLOPs (floating-point operations), while a ResNet-
101 inference requires almost 8 GFLOPs. The computational
complexity of our backbone is 26 times less than the original
URSONet.

Moreover, MobileNet-v2 is designed to run in real-time
on smartphone ARM processors [13]. Table II shows that
it also run on weaker ARM processors now used in the
space domain. For instance, the Eye-Sat nanosatellite embeds
a Zynq 7030 MPSoC (Multiprocessor System on a Chip)
developed by Xilinx, which has two ARM A-9 cores [14].
More recent projects consider using MPSoC featuring four
ARM A-53 cores [15] [16].

TABLE II
INFERENCE LATENCY OF MOBILENET-V2 ON VARIOUS ARM

PROCESSORS [13] [17]

Processor (compiler) Latency
Qualcomm ARM A-72 (TF-Lite) 75 ms
Xilinx ARM A-53 (TVM) 132 ms
Xilinx ARM A-9 (TVM) 265 ms

The second part of the neural network is the bottleneck
(Fig. 1). Many standard CNN architectures uses average
pooling such as MobileNets [11] [13] and ResNets [18]. It
aims to merge semantically similar features [19] by reducing
the spatial dimension of the feature maps. Thus, it reduces
the number of parameters and computational complexity of
the subsequent layers. Proença et al. replaced the standard
average pooling layer by a 3x3 convolution layer with a
stride of 2 [1]. They show that increasing the number of
feature maps in the bottleneck layer decrease the position
and orientation error. We summarize their results in table
III. The first line of the table (i.e. the configuration with
eight feature maps) has the same amount of parameters
as an average pooling configuration. The table shows that
multiplying the number of parameters by six only leads to a
3 degrees improvement in orientation error and 0.24 meters
improvement in position error. In our opinion, it is not a
suitable trade-off for an embedded system. That is why we
kept the original average pooling layer.



TABLE III
BOTTLENECK SIZE vs. NUMBER OF PARAMETERS, ORIENTATION AND

POSITION ERROR ON URSONET [1]

# feature maps # params (M) Ori err. (°) Pos err. (m)
8 40 10.2 0.72

128 80 7.8 0.54
512 240 7.2 0.48

Moreover, the number of parameters of the neural network
is agnostic to input image resolution thanks to the average
pooling layer. Proença et al. show that orientation estimation
is sensitive to image resolution (i.e. increasing image resolu-
tion improves accuracy). Thus, increasing image resolution is
a more efficient solution to improve accuracy than removing
the bottleneck as the power consumption highly depends on
memory accesses [20].

The last part of the neural network is the two branches
(Fig. 1): the first part estimates orientation, while the other
estimates position. Proença et al. use two fully connected
layers. We use a single fully connected layer to minimize the
number of parameters. Our position branch has only 3843
parameters. The number of parameters of our orientation
branch depends on the configuration: in regression, it has
5124 parameters; in soft classification, it has between 0.6 and
5 million parameters. It is 39 to 325 times fewer parameters
than Proença et al., which has approximately 195 million
parameters in their branches.

C. Loss functions

Target’s position estimation is an easy task solved us-
ing direct regression. It allows using ESA metrics as loss
functions, as proposed by Proença et al.. The same cannot
apply to orientation estimation, which explains why we try
two methods (i.e. regression and soft classification). In ESA
metrics, the position error depends on the distance from
the target spacecraft; the neural network is increasingly
penalized as the target spacecraft is closer. However, this is
not the case with the orientation in ESA metrics. We propose
a variant of the loss function when orientation estimation is
considered a regression task:

Lori =
arccos |q · q̂|
||t||2

(2)

In our experiments, it does not lead to significant improve-
ments compared to the regression loss function proposed by
Proença et. al. Thus, we also estimate orientation using soft
classification as Proença et. al. does. The associated loss
function is a standard negative log-likelihood [1].

III. EXPERIMENTS

A. Implementation and training details

Networks are trained on one Nvidia Tesla P100, using
Pytorch on the SPEED dataset. We use the MobileNet-v2
backbone pre-trained on ImageNet to speed up training. We
reserve 15% of the training SPEED dataset as a validation
set. Parameters are updated using the SGD algorithm with a

momentum of 0.9. We use a batch size of 32 images resized
to 384 * 240 pixels. The learning rate starts at 0.01 for
the first 30 epochs. Then it is decayed to 0.001 for the
following 15 epochs. It finishes at 0.0001 for the last five
epochs. We employ data augmentation on the training set
using OpenCV to rotate the camera across the roll axis for
half images with a maximum magnitude of 25°. We also
use Pytorch transformations to add a Gaussian blur and
randomly change the brightness, contrast, saturation, and
hue of training images. When using soft classification, we
have set ∆ which controls the Gaussian width at 3 to act
as a regularizer. The number of bins per dimension varies
between 8 and 32. All hyper-parameters are tuned on the
validation set. Our code is available at [21].

B. Results

Orientation estimation through regression is done with
very few parameters but leads to an average error of 32°
on the validation set. Orientation estimation through soft
classification implies many more parameters in the orien-
tation branch: it depends on the cube of the number of bins
per dimension (we encode rotations as three Euler angles
and then convert it to quaternions). However, using soft
classification improves the orientation error by a factor of
three to five. Table IV shows the results we obtain, with 8
to 32 bins per dimension. The 16-bins model has 2.6 times
more parameters than the 8-bins model and an orientation
error divided by 2. However, the 32-bins model has six times
more parameters than the 16-bins model, with no significant
improvement on the orientation error. The 24-bins model also
does not bring improvements. It demonstrates a saturation
effect on orientation error when increasing the number of
bins per dimension. In addition, we notice that the 32-bins
model is much more prone to overfitting. Based on these
results, we believe that going beyond 16 bins per dimension
is not worth it as we focus on the trade-off between the
orientation error and the number of parameters of the CNN.

TABLE IV
EFFECT OF THE NUMBER OF BINS PER DIMENSION ON ORIENTATION

ERROR AND THE NUMBER OF PARAMETERS

# bins per dim. # params (M) eq train (°) eq valid (°)
8 2.8 9.74 11.3

12 4.4 5.69 7.43
16 7.4 4.5 6.29
24 19.9 4.18 6.12
32 44.2 4.92 7.29

Table V shows the orientation and position error of our
selected models (from 8 to 16 bins) compared to [1]. As
we said before, target position estimation is an easy task
solved using direct regression. Position error is the same in
all our experiments. It seems to depend only on the number
of parameters of the backbone, as increasing the number of
parameters in the position branch only increases overfitting.
Our backbone uses 13 times fewer parameters than Proença’s
backbone while degrading position error by no more than
three times. Using soft classification, orientation error highly



depends on the number of parameters of the orientation
branch. Proença et al. used between 24 and 64 bins per
dimension but only published the orientation error for their
24-bins model. The high number of parameters of URSONet
causes overfitting that Proença et al. mitigates using a data
augmentation strategy more refined than ours. It explains
why they achieve a better orientation error of 4.0°, while
our best model achieves only 6.3° orientation error.

TABLE V
ORIENTATION AND POSITION ERROR ON VALIDATION SET COMPARED TO

PROENÇA et al.

# bins per dim. eq (°) et (m)
Ours (8 bins) 11.3 0.54
Ours (12 bins) 7.43 0.51
Ours (16 bins) 6.29 0.56
Proença et al. (24 bins) [1] 4.0 0.17

Figure 2 shows the position and the orientation error of our
12-bins model on the validation set as a function of distance
to the target. We see that the position error highly depends
on the distance to the target satellite. We observe the same
property for the orientation error. It is surprising as the loss
function we use does not involve the distance with the target
spacecraft (in soft classification configuration). High position
and orientation errors appear when the target spacecraft is
more than 10 meters apart from the camera. The number
of outliers is small enough and occurs only when the target
spacecraft is more than 15 meters apart from the camera. The
closer the target spacecraft is, the more confidence we can
have in the predictions of our model. It is a crucial property
for autonomous docking or debris removal applications. It
also offers an avenue to reduce both the position and the
orientation error: zooming and cropping the image around
the target instead of resizing the whole image as we do now.

Fig. 2. Position and orientation error by distance for our 12-bins model

Table VI summarizes the results of our models compared
to our competitors. We propose the most lightweight space-
craft pose estimation models: ranging from 2.2 to 7.4 million
parameters while keeping a good score on the synthetic test

set and a good generalization factor. Our 8-bins model has
178 times fewer parameters while degrading the ESA score
by no more than four times compared to URSONet. It has an
accuracy density (i.e. ESA score per parameters) 139 times
higher than the original URSONet. However, we notice that
increasing the number of bins per dimension leads the model
to overfit the synthetic images. Proença et al. demonstrated
that a 2.7 generalization factor is achievable while using 24
to 64 bins per orientation dimension. We believe we still
have some margin to improve the generalization capabilities
of our models by using a more advanced data augmentation
technique and by investing more effort in hyper-parameter
tuning.

TABLE VI
ESA SCORE ON TEST SET AND GENERALIZATION FACTOR

Participants # params (M) Esynth Ereal G f actor
Black et al. [9] 6.9 0.0409 0.2918 7.13
Sharma et al. [6] 11.2 0.0626 0.3951 6.31
Proença et al. [1] 500 0.0571 0.1555 2.72
ours (regression) 2.2 0.6160 0.7997 1.30
ours (8 bins) 2.8 0.2520 0.7868 3.12
ours (12 bins) 4.4 0.2104 1.2231 5.81
ours (16 bins) 7.4 0.1947 1.2074 6.20

C. Future work

Future works will explore in-depth embeddability by using
quantization and pruning. It will further optimize the memory
footprint of the parameters and the inference computational
complexity of Mobile-URSONet. We plan to deploy these
models on promising commercial chips for future satellite
onboard computers, such as the Xilinx MPSoCs featuring
ARM-A53 cores and programmable logic.

IV. CONCLUSIONS

In this paper, we analyzed URSONet, a popular neural
network used for spacecraft pose estimation that seems
hardly compatible with the constraints of onboard spacecraft
computers. We found that three architectural choices have a
dominant effect on both the number of parameters and the
computational complexity of the CNN: the backbone, the
bottleneck size, and the number of bins per dimension while
predicting orientation using soft classification. By analyzing
trade-offs for each of these three architectural choices, we
were able to propose Mobile-URSONet, a mobile version of
URSONet in the spirit of Google MobileNets. We showed
that Mobile-URSONet achieves accuracy close to URSONet,
while keeping the number of parameters and computational
complexity compatible with the constraints of spacecraft
onboard computers.
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