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Abstract—Three-dimensional generative adversarial networks
(3D-GAN) have attracted widespread attention in three-
dimension (3D) visual tasks. 3D deconvolution (DeConv), as an
important computation of 3D-GAN, significantly increases com-
putational complexity compared with 2D DeConv. 3D DeConv has
become a bottleneck for the acceleration of 3D-GAN. Previous
accelerators suffer from several problems, such as large memory
requirements and resource underutilization. To handle the above
issues, a fast algorithm for 3D DeConv (F3DC) is proposed in
this paper. F3DC applies a fast algorithm to reduce the number
of multiplications and achieves a significant algorithmic strength
reduction. Besides, F3DC removes the extra memory requirement
for overlapped partial sums and avoids computational imbalance
to fully utilize resources. Moreover, we design an F3DC-based
hardware architecture, which consists of four fast processing
units (FPUs). Each FPU includes a pre-process module, a EWMM
module and a post-process module for F3DC transformation.
By implementing our design on the Xilinx VC709 platform
for 3D-GAN, we achieve a throughput up to 1700 GOPS and
4× computational efficiency improvement compared with prior
works.

Index Terms—Three-Dimensional Generative Neural Net-
works, Deconvolution, Transposed Convolution, Hardware Ar-
chitecture, Fast Algorithm.

I. INTRODUCTION

With the development of deep learning, three-dimension
(3D) deep neural networks have been widely used in many vi-
sual fields. Among them, Three-Dimension Generative Adver-
sarial Networks (3D-GAN) have been used for various visual
tasks, such as 3D object recognition and reconstruction [1],
[2], 3D model generation [1], medical image analysis [3]–[5],
human action recognition [6], and so on. 3D-GAN usually
contain operations like 3D convolution, 3D deconvolution
(DeConv), which is also called transposed convolution. Many
works [7], [8] investigated the acceleration of 3D convolution
for 3D Convolutional Neural Networks (CNNs). For example,
Winograd algorithm is adopted in [7] to propose a template-
based methodology for 2D and 3D CNNs and designed
corresponding accelerators. [8] introduced a fast FFT-based
algorithm and F3D-based hardware architecture for 3D CNNs,
which significantly reduced the computational complexity of
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3D convolution operations. Even though the basic computation
schemes of 3D convolution and 3D DeConv are similar,
3D DeConv needs to insert zeros into the original input
feature maps before performing normal convolution. However,
directly applying the methods of 3D convolution for DeConv
leads to severe hardware underutilization.

Besides, some works [9]–[11] proposed efficient solutions
to accelerate 2D DeConv. However, 3D DeConv has higher
computational complexity compared with 2D DeConv, which
makes it hard to accelerate 3D DeConv by 2D methods. For
instance, [9] presented a novel Wino-transCONV dataflow to
accelerate 2D DeConv, but 3D DeConv is more complicated
than 2D DeConv, which makes it hard to employ DeConv
dataflow. [10] applied input oriented mapping (IOM) method
to accelerate 3D DeConv. However, the generated overlapped
partial sums will increase along with the size of kernels by
using the IOM method, which leads to increased computing
resources and complex dataflow. [11] accelerated 3D DeConv
by taking advantage of the fixed sparsity pattern of interme-
diate data tiles, but resulted in unbalanced computations.

To tackle these problems, we propose a fast algorithm
named F3DC to accelerate 3D DeConv. Specifically, the
contributions of this paper are concluded as follows.

• By investigating the mathematical formation of 3D De-
Conv, we propose an efficient computation method,
namely F3DC, for 3D DeConv based on a fast transfor-
mation algorithm [12], which greatly reduces the compu-
tational complexity and simplifies the computation flow.

• Based on the F3DC, we develop an efficient architecture
to implement 3D DeConv layers. Fast processing unit and
fast processing array are designed to implement F3DC
transformation and improve parallelism, respectively.

• The proposed design is implemented on the Xilinx ZC709
platform and achieves a computational throughput of
1700 GOPS and up to 4× improvement on computational
efficiency compared with prior works.

II. BACKGROUND

Compared with 3D convolution, the 3D DeConv needs to
insert zeros before performing normal convolution. Fig. 1
shows the process of 3D DeConv.

DeConv is used to expand the input characteristics, which
is different from convolution. For the convolution process, the
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relationship between input feature map and output feature map
is represented by the following Eq. (1):

o =

⌊
i+ 2p− k

s

⌋
+ 1, (1)

where i and o represent the size of input and output feature
map, respectively, and k means the kernel size of the convo-
lution. p and s denote the padding and stride.

it

pt
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Ot /I
It /O
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Fig. 1. Illustration of 3D deconvolution.

As illustrated in Fig. 1, multiple parameters are introduced
to describe 3D DeConv. The relationship of parameters are
shown by the following Eq. (2):

it = o+ (s− 1)(o− 1),

pt =
(k − 1) + (k − 2p− 1)

2
= k − p− 1,

kt = k,

st = 1,

Ot = i =
it + 2pt − kt

st
+ 1,

(2)

where it represents the result size of inner zero inserting, pt,
kt and st means the padding, kernel and stride for DeConv,
respectively. Ot means the size of DeConv output.

The inserted zeros occupy more than seventy-five percent of
data in 3D DeConv, which results in a large amount of invalid
operations. Avoiding invalid operations is necessary to reduce
computational complexity.

Some works [9], [10] focused on accelerating transposed
convolution. For example, Wang et al. [10] introduced the
IOM method to accelerate 3D DeConv. However, the over-
lapped partial sums of the IOM lead to increased computing
resources and complex dataflow. Di et al. [9] presented the
novel Wino-transCONV dataflow and corresponding hardware
architecture design, but the data rearrangement process is more
complicated for 3D DeConv. Hence, we propose the F3DC to
tackle the inserted zeros and reduce computational complexity.

III. F3DC ALGORITHM

A. Computational Procedure

Since 3D DeConv has higher computational complexity
than 2D DeConv, it is necessary to exploit fast algorithms to
reduce the algorithmic complexity. Hence, we design F3DC, a
computationally efficient 3D DeConv algorithm based on fast
transformation algorithm (FTA) [12].

FTA is an algorithm to transform 2D DeConv into matrix
multiplications by the following Eq. (3):

Y = AT
[(
H · g ·HT

)
�
(
PT · d ·P

)]
A, (3)

where g is a k × k 2D DeConv kernel and d is an Ir × Ir
2D input tile. However, 3D DeConv has an extra dimension
compared with 2D DeConv. The extra dimension leads to
2D methods can not directly exploit the acceleration potential
of 3D DeConv. To tackle this problem, F3DC is developed
to specifically accelerate 3D DeConv, which avoids zeros
insertion and further reduces computational complexity.

The computation process of F3DC is shown in Eq. (4).
Multiply and accumulate (MAC) are transformed to element-
wise multiplication (EWMM) by transformation matrix during
the process. The process reduces the number of multiplications
and results in lower computational complexity.

Y =
{
AT

{[(
H · g ·HT

)R ·HT
]

�
[(
PT · d ·P

)R ·P]}
A
}CR

A.
(4)

In Eq. (4) � represents EWMM. g is a k×k×k 3D DeConv
kernel and d is an Ir × Ir × Ir 3D input tile. H denotes
an Er × k matrix to preprocess 3D kernels and PT denotes
an Er × Ir matrix to preprocess input tiles. AT represents
an Or ×Er post-processing matrix to obtain final output tile,
where Ir = d(k+r×s−1)/se, Er = k+(r−1)×s, Or = s×r.
r means the order of transformation. R and CR denote the
clockwise and counterclockwise rotation, respectively.

Fig. 2 shows the whole process for F3DC. The computation
of F3DC is presented in the following four procedures. Pre-
process: the pre-process is shown in Fig. 2. The DeConv
kernel and input tiles are sliced for matrix multiplication by H
and PT firstly, and then a 90 degrees clockwise rotation with
vertical axis is performed to involve depth dimension before
repeating slice and matrix multiplication. By above process,
the size of DeConv kernel and input tiles are transformed from
k× k× k and Ir × Ir × Ir to Er ×Er ×Er, respectively. For
the rotation, because the matrix could not directly conduct
multiplication with 3D cubes, the cubes need to be sliced
for matrix multiplication, which distinguishes 2D and 3D
DeConv computation methods. Besides, 3D DeConv needs to
exploit extra dimension for acceleration compared with 2D
computation, and as a result, rotation is a necessary procedure
for 3D DeConv.

PT =



1 0 −1 0 0
0 1 1 0 0
0 −1 1 0 0
0 −1 0 1 0
0 1 0 −1 0
0 0 1 1 0
0 0 −1 1 0
0 0 −1 0 1


H =



0 0 0 1
0 1

2
0 1

2
0 − 1

2
0 1

2
0 1 0 0
0 0 1 0
1
2

0 1
2

0

− 1
2

0 1
2

0
1 0 0 0



AT =


1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0
0 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0
0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1


(5)

EWMM: the two transformed cubes perform EWMM to get
the resulting cube for post-processing. EWMM performs Er×
Er × Er multiplications for each transformation. EWMM is
presented in Fig. 2.
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Fig. 2. An example of F3DC computational procedure, where the DeConv kernel size is 4 and the stride is 2, r represents the order of F3DC.

Post-process: the results of EWMM are sliced to perform
multiplication with post-processing matrix AT, then a 90
degrees counterclockwise rotation with vertical axis is con-
ducted before repeating slice and matrix multiplication. The
opposite direction of rotation is due to the 3D DeConv data
arrangement. The result size of post-process is Or×Or×Or.
Post-process is presented in Fig. 2.

Accumulation and Splicing: the result tiles are accumu-
lated channel-wise and spliced for the output feature maps.

The transformation matrix of different kernels could refer
to [12]. Here, we use Tr(o3t , k

3
t ) to denote an r-order F3DC,

where o3t and k3t represent the size of the output and kernel,
respectively. Considering 4 × 4 × 4 is a common size for
3D DeConv kernel, a usual example of 3-order 3D DeConv
T3(6

3, 43) transformation matrix is presented in Eq. (5) for
clarity.

B. Complexity analysis

Table I presents a comparison between F3DC, zero-inserting
method (ZIM), and winograd-based method [11] on algo-
rithmic reduction towards 3D DeConv. A winograd-based
algorithm is adopted in [11] to compute 3D DeConv on zero-
inserted feature maps. The method only removes zeros in the
edges leading to insufficiently exploits acceleration potential
of fast algorithm, and can not reach the optimal speedup.
The arithmetic complexity of F3DC for r-order is denoted as
µ(Tr[o

3
t , k

3
t ]), it is computed as:

µ
[
Tr

(
O3

r , k
3
)]

=
[k + (r − 1)× s]3

(r × s)3
. (6)

As shown in Table I, F3DC achieves 27× reduction on
multiplications per output compared with ZIM in k = 4, s = 2,
which significantly improves computational efficiency for 3D
DeConv.

IV. THE PROPOSED ARCHITECTURE AND DATAFLOW

A. Architecture Overview

As shown in Fig. 3, the proposed architecture consists of
three data buffers (input buffer, kernel buffer, output buffer),
fast processing array (FPA), fast processing unit (FPU) and two

TABLE I
ALGORITHMIC COMPLEXITY COMPARSION∗

k = 3
s = 2

k = 4
s = 2

k = 5
s = 2

k = 9
s = 2

ZIM 27 64 125 729
Winograd-based [11] 3.375 8 15.625 91.125
T3

(
O3

3 , k
3
)
(Ours) 1.59 2.37 3.375 10.17

∗ The algorithmic complexity indicates the average number of
multiplications required to obtain one result.

accumulators. The FPA consists of four FPUs to form 2 × 2
array. Each FPU includes a pre-process module, a EWMM
module and a post-process module. The pre-process module
executes the transformation of 3D DeConv kernel and input
tiles by the matrix of Eq. (5). Each EWMM module includes
512 (8×8×8) multipliers, and four EWMM modules consume
2048 DSP resources. The post-process module also uses the
matrix in Eq. (5) to obtain output tiles before channel-wise
summation. The accumulator focuses on the accumulation of
output tiles from different channels.
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Fig. 3. Overview of the proposed hardware architecture.

B. FPU Module

As shown in Fig. 4, an FPU is designed for matrix transfor-
mation and EWMM in F3DC by utilizing the simple coeffi-
cients in the matrix and the computation for EWMM. The pre-
process module implements matrix multiplication responsible
for the transformation of kernel and input tiles. Since the
number in the transformation matrix mainly consists of 1,
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Fig. 4. Overall architecture of FPU and the detailed transformation circuit
of each module. (a) Input transformation circuit in pre-process module. (b)
Weight transformation circuit in pre-process module. (c)EWMM circuit for
multiplication. (d) Output transformation circuit in post-process module.

-1, 1/2 and -1/2. The multiplication of the number can be
easily implemented by invert or shift operation, which greatly
simplifies the hardware design. The post-process module is
similar to the pre-process module in transformation matrix.
Besides, the computation procedure for F3DC is suitable for
a variety of convolution kernels with little adjustment for the
transformation circuits and the number of DSPs of EWMM
module. The specified circuit for T3(63, 43) is shown in Fig. 4.

C. FPA Module

In order to improve throughput of the architecture, we
design the FPA which consists of four FPUs and two accumu-
lators. Four FPUs form a 2 × 2 array to increase parallelism
by computing two input channels and two output channels at
the same time. For each row of FPUs, they share the same
tile from the same input channel, and each column of FPUs
computes the same output channel by an accumulator. FPA
could execute more computations for one address access and
improve data utilization compared with non-parallel design.

D. F3DC Dataflow

Given that it may not be feasible to load data on chip for all,
especially for 3D neural networks. We apply weight stationary
[13] with a loop order of output channel, depth tile, height tile,
width tile and input channel. For each input channel loop, the
procedure of Fig. 2 is computed. Besides, we unroll the loop of
the output channel and input channel to increase parallelism.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
We choose 3D-GAN [1] model as the benchmark to evaluate

our design. The inputs and weights are quantified into 16 bits
and 8 bits, respectively. We implement all modules of the
architecture with Verilog HDL, and evaluate our architecture
on the Xilinx VC709 board with a frequency of 150 MHz.
Implementation results are reported by Xilinx Vivado 2020.1.

B. Performance Analysis
As illustrated in Table II, we implement a computationally

efficient F3DC-based accelerator, which not only executes
zero-free operations, but also further reduces the computa-
tional complexity. The proposed design achieves 0.83 perfor-
mance density compared with [9]. Even though [9] uses a fast
algorithm to accelerate DeConv computation, the rearranged
filters result in computational imbalance and reduce compu-
tation efficiency. [10] applies IOM method on 3D DeConv,
which means the intermediate results will increase storage
overhead. Our method simplifies the dataflow and avoids the
storage of intermediate results. [11] uses Winograd algorithm
on the zero-inserted input feature maps to accelerate 3D
DeConv, and uses the sparsity of intermediate results to avoid
some redundant computations. However, [11] has complex
pre-processing parameters, which increase hardware overhead.
The processing parameters of our method are simplified to
save hardware resources. In brief, our design can significantly
improve computational efficiency and meanwhile reduce hard-
ware complexity.

TABLE II
COMPARISON WITH OTHER WORKS

Works [8] [9] [10] Ours

Platform Xilinx
VC709

Xilinx
ZCU102

Xilinx
VC709

Xilinx
VC709

Model C3D 3D-GAN 3D-GAN 3D-GAN
Clock(Mhz) 200 200 200 150

BRAMs Used 1071 - 712 1470
Flip-Flops Used 265750 - 566182 212195

LUTs Used 257210 - 292292 192342
DSP Used 1536 2520 2304 2048

Performance
(GOPS) 864.1 482.4 450∗(3600) 1700

Performance Density
(GOPS/DSP) 0.56 0.19 0.20 0.83

∗ Performance is normalized by removing zero-related computations.

VI. CONCLUSION

In this paper, we first introduce F3DC, a fast algorithm for
3D DeConv, capable of reducing the computational complexity
and eliminating invalid operations related to inserted zeros.
Furthermore, an efficient hardware architecture is proposed
to implement the F3DC-based acceleration of 3D-GAN. Fi-
nally, we evaluate our architecture by implementing 3D-
GAN model on the Xilinx VC709 platform. The experimental
results demonstrate that the proposed architecture can achieve
a throughput of 1700 GOPS, which surpasses prior works
significantly.
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