
Complexity Reduction of Learned

In-Loop Filtering in Video Coding

Woody Bayliss

Queen Mary University

of London MMV

London, United Kingdom

W.Bayliss@qmul.ac.uk

Luka Murn

British Broadcasting

Corporation R&D

London, United Kingdom

Luka.Murn@bbc.co.uk

Ebroul Izquierdo

Queen Mary University

of London MMV

London, United Kingdom
Ebroul.Izquierdo@qmul.ac.uk

Qianni Zhang

Queen Mary University

of London MMV

London, United Kingdom

Qianni.Zhang@qmul.ac.uk

Marta Mrak

British Broadcasting

Corporation R&D

London, United Kingdom

Marta.Mrak@bbc.co.uk

Abstract— In video coding, in-loop filters are applied on

reconstructed video frames to enhance their perceptual

quality, before storing the frames for output. Conventional in-

loop filters are obtained by hand-crafted methods. Recently,

learned filters based on convolutional neural networks that

utilize attention mechanisms have been shown to improve upon

traditional techniques. However, these solutions are typically

significantly more computationally expensive, limiting their

potential for practical applications. The proposed method uses

a novel combination of sparsity and structured pruning for

complexity reduction of learned in-loop filters. This is done

through a three-step training process of magnitude-guided

weight pruning, insignificant neuron identification and

removal, and fine-tuning. Through initial tests we find that

network parameters can be significantly reduced with a

minimal impact on network performance.

Keywords — neural networks, video coding, in-loop filtering,

quality enhancement, pruning, sparsity

I. INTRODUCTION

Recent research efforts show that learned tools, such as
deep Neural Networks (NNs), can be successfully applied to
improve the performance of video compression algorithms.
For example, the upcoming Versatile Video Coding (VVC)
standard already includes a tool derived from learning-based
techniques [1]. Furthermore, methods based on deep learning
have been used as intra/inter-prediction [2-5], quantisation,
entropy coding [6] and loop filtering tools [7].

 When compressing a video at higher quantization rates,
artifacts can occur due to poor frame reconstruction. In-loop
filtering is a well-known video compression method applied
at the end of the coding process that aims to reduce or
completely remove artifacts. VVC implements three filters,
namely the Deblocking Filter (DBLF), the Sample Adaptive
Offset filter (SAO), and the Adaptive Loop Filter (ALF).

 The loop filtering process can be expanded with new
filters that apply deep learning techniques, as demonstrated
with Attention-Based Dual-Scale CNN (ADCNN) [7].
ADCNN utilises Coding Unit (CU) maps as an attention
mechanism that guides the neural network, to remove
artifacts such as blocking.

 ADCNN has exhibited improved compression
performance over the baseline VVC. However, the encoder
processing time is increased by 66% on a Central Processing
Unit (CPU). The decoder processing time is increased by
more than 130 times when processed by a Graphics
Processing Unit (GPU), and by more than 450 times with a
CPU. The substantial increase in coding running time makes
this method unfeasible for practical solutions.

This paper proposes to reduce the coding complexity of
learning-based methods within video coding applications by
developing an automated NN pruning methodology. Pruning

identifies redundant parameters from trained NNs and
removes them to reduce the NN size with minimal impact on
network accuracy. The presented approach inspired by
ADCNN, is an initial attempt to test the feasibility of pruning
NN in-loop filters. This work focuses on pruning three
single-branch networks at the decoder stage, each processing
separate Y, U, V components.

The rest of the paper is organised as follows. Section II
introduces related work in the areas of deep learning, in-loop
filtering and neural network pruning. Section III describes
the proposed pruning methodology, while Section IV
analyses the experimental results of the trained network
applied within VVC. Section V presents conclusions.

II. RELATED WORK

A. In-loop Filtering

In-loop filtering is an essential operation for lossy video
coding standards, as compression removes information from
raw video data to reduce its bitrate. Modern video coding
standards such as High-Efficiency Video Coding (HEVC)
[8] and VVC [1] divide regions of an input frame into
Coding Tree Units (CTUs), which further separate regions
into rectangular blocks or CUs. During the encoding step,
each CU is predicted with different methods, such as
inter/intra-prediction, merge mode or skip mode. The final
choice is selected according to the approach that minimizes
the Rate-Distortion (RD) cost in the presence of quantisation.
The level of quantisation is defined by a Quantisation
Parameter (QP), high QP values can cause artifacts within
the reconstructed frame.

Video coding artifacts are present in many forms. For
example, blockiness can occur within frames on the borders
of adjacent CUs. Additionally, ringing artifacts can appear in
large CUs. VVC applies several filters to reduce artifacts.
DBLF is used to apply deblocking and softens the borders
between CUs, while SAO reduces ringing distortions [9]. A
third filter, ALF/ALF-CC, is used to restore the objective
quality, expressed in PSNR, lost by the application of the
previous filters [9].

B. Deep Learning Approaches for In-loop Filtering

When applied to video coding, deep learning methods for
in-loop filtering often utilise residual models [7,10,11].
Residual models learn the difference, or the residual,
between the output and the input of the network [12].
Learning the residual means that the network weights are
sparser than if required to learn the entire frame
reconstruction, and it is therefore an easier task to
approximate. Additionally, by stacking multiple repeated
residual layers, weights in each subsequent layer become
more specialised [13], improving model performance.

Challenging deep learning tasks such as image
restoration, denoising and super-resolution share similar
properties with loop filtering problems, as they also aim to
restore and enhance frame quality. Therefore, Convolutional
Neural Networks (CNNs) used for these tasks have also been
successfully applied to in-loop filtering. The seminal Super-
Resolution Convolutional Neural Network (SRCNN) [14]
extracts features from the input and maps them to high
resolution patch representations to improve the resolution of
JPEG encoded images. SRCNN was extended in size [15]
and applied to picture compression artifacts, spatial temporal
information further improved model performance in [2].

Inspired by the SRCNN structure, an In-loop Filtering
CNN (IFCNN) was proposed in [16] and used as a
replacement for the DBLF and SAO filters in HEVC,
achieving -4.8 % Bjøntegaard-Delta rate (BD-rate) [17]
savings under the All-Intra (AI) configuration. A residual
network called Enhanced Deep Convolutional Neural
Network (EDCNN) achieved a -6.45 % BD-rate reduction on
average for all HEVC configurations [10]. A CNN
architecture for post-processing and in-loop filtering called
MFRNet was introduced in [11] and achieved up to -5.1 %
coding gains when integrated within VVC. However, it
increased the decoder running time more than 80 times.
Combining wide activated models [18] and squeeze-
excitation models [19] resulted in an Attention-Based Dual-
Scale CNN (ADCNN) [7] which, when implemented in
VVC, achieved -6.54%, -13.27% and -15.72% BD-rate
savings over traditional filters for the Y, U and V channels,
respectively. This model is attention based, with the attention
input being the CU map extracted from the decoder, selected
filtered blocks are signalled with flags in the bit stream.

C. Neural network pruning

Neural network pruning identifies redundant components
within a trained neural network. Learned parameters are
zeroed out [20] or removed from the model entirely [21].

 Sparsity pruning is applied on pre-trained networks and
aims to reduce the number of active neuron connections. The
network is sparsified by setting weight values in network
layers to zero. When applied to large-scale deep NNs,
sparsity pruning can remove up to 80 % of learned network
connections with a minimal impact on network performance
[20]. While sparsity pruning does not reduce model
parameters, structured pruning physically removes neurons
from neural networks [21]. Structured pruning is highly
dependent on its application and the type of NN used.

For visual data applications that utilise CNNs, structured
pruning can remove entire trained convolutional channels
from layers of the network [22,23], significantly reducing the
trained network size. The approach in [22] structurally
prunes image recognition networks ConvNet, AlexNet,
VGG-16 and ResNet-50 by removing channels, achieving
speed ups in computation up to 4 times.

Several algorithms for identifying redundant neurons in
structured NN pruning have been proposed. A data-driven
approach in [24] uses validation data to calculate the
Average Percentage of Zeros (APoZ) for a given layer. A
high APoZ indicates many redundant neurons. Filter
clustering identifies similar filter groups and retains one filter
per group [25]. Filters can also be removed based on the L1
norm of their weights [26] or their overall contribution to the
output feature maps [27].

III. METHODOLOGY

The ADCNN architecture, illustrated in Fig. 1a. provides
significant improvements when compared to traditional
filters. The basic structural blocks used in ADCNN are used
for constructing the separate models of our approach. Spatial
attention was removed from the blocks of ADCNN, as the
proposed pruning method is only applicable on single-branch
networks.

 The resulting model was named Uni-Component Loop
Filter (UCLF), shown in Fig. 1b. for the Y channel. Two
models for the U and V channels also have the same
architecture as the one for Y. The architectures are separated
into three stages, each stage consists of generalised residual
and non-residual blocks. The residual block structure is
displayed in Fig. 2a. with two convolutional layers (2DConv)
of 3-by-3 kernel sizes followed by two dense layers. Non-
residual blocks follow the same structure as residual ones,
without the input being added to the output. Each model was
individually pruned using a novel combination of sparsity
and structured pruning.

The NN-based filter in ADCNN is integrated within
VVC as a switchable filter, meaning that the encoder can
select either conventional filters (DBLF, SAO, ALF) or the
learned filter to obtain a reconstructed rectangular block
within the currently coded frame. The filter choice is decided
according to the RD cost calculation. However, our approach
applies learned in-loop filters directly on each blocky video
frame, rather than through a switchable implementation.

A. Pruning Algorithm

The proposed pruning method is detailed in Algorithm 1
(Subsection III-A). For a pretrained neural network T
sparsity pruning (Subsection III-B) is applied to each
prunable layer. The validation set is passed through the
intermediary model, and its activation maps are then used to
identify redundant channels (Subsection III-C). A pruned
network P is obtained from T by iteratively analysing the
activation maps and removing channels from each layer that
have values lower than a set pruning threshold (Subsection
III-D). P is then re-trained for a defined number of
optimization epochs to retain performance.

a) b)

Fig. 1. a) General structure of the ADCNN model. b) Network structure
for a channel after separating the Y, U, V network into three UCLF
networks.

a) b)

Fig. 2. a) General structure of the residual blocks in each stage. b) An

example of the proposed structured pruning method applied to a residual
block.

Following the re-training step, the accuracy, and the
number of parameters of P are recorded and compared to
pre-set thresholds. The pruning algorithm stops if any of the
constraints are satisfied, once a constraint is satisfied P from
the previous iteration is returned as the final, pruned model.
Otherwise, T = P and the process repeats.

Algorithm 1.

PROPOSED PRUNING ALGORITHM

Input: Pretrained neural network T, number of parameters
num_par, list of prunable layers pl, training samples x,
validation samples v, sparsity_threshold st (Sec. III.B),
channel_threshold ct (Sec. III.C), number of optimization
epochs train_epochs (Sec. III.A), accuracy_threshold at and
pruning_threshold pt (Sec. III.D)

Output: Pruned neural network P

while True:

for layer in T:

 if layer in pl:

 model = apply_sparsity_pruning(layer, T, st)

 chan_to_remove = identify_redundant_channels(v, model, ct)

 P = apply_structured_pruning(model, chan_to_remove)

 P.train(x, train_epochs)

 if P.accuracy < at or P.num_par / T.num_par < 1 - pt:

P = T

 break

 else

 T = P

TABLE I NUMBER OF PRUNABLE CHANNELS AT EACH NETWORK STAGE

Stage
Block

type

No. of

blocks

Prunable channels per block

2DConv 1 2DConv 2 Dense 1 Dense 2

1
Non-res. 2 48 -- 8 --

Residual 1 48 32 8 32

2 Residual 5 96 64 16 64

3
Non-res. 2 48 -- 8 --

Residual 1 96 64 16 64

B. Sparsity Pruning

Sparsity pruning sets weight values within a layer to zero
according to a specified sparsity threshold. For the pretrained
UCLF network from Fig. 1b, it is applied on both residual
and non-residual blocks in all three stages. To retain network
performance sparsity was only applied to specific layers
within the model. Additionally, the first and last layer of the
network are not pruned. The total number of prunable
convolutional channels and dense units is presented in Table
I. The values listed in Table I indicate the initial numbers of
filters and dense units in a UCLF network, these numbers
will reduce as pruning progresses.

C. Insignificant Channel Identification

Sparsity pruning does not guarantee that all weights
associated with a channel will be zero. When applied to a
certain layer, magnitude-based weight pruning sparsifies the
entire layer across channels, rather than within each channel
individually. In convolutional layers, filters are considered as
channels. In dense layers, neurons are also considered as
channels.

 To identify which channels in a layer can be removed
from the UCLF network, a data-driven approach is adopted.
The validation set is used as an input to the network. Neuron
activation and filter activation maps are stored at each
prunable layer. The stored values are then averaged over the
entire validation set. If the average channel value is below
the channel threshold, then that channel is marked for
removal.

D. Structured Pruning

 Structured pruning removes channels that were identified
as insignificant for a specific UCLF network. For channels
within convolutional and dense layers, this means removing
all associated weight and bias information.

 An example of a pruned residual block from a UCLF
network is presented in Fig. 2b. As each stage of the network
consists of stacked generalised blocks from Fig. 2a. the
dimensionality at the input and the output must be retained.
In this example, the input is set to 64 channels. The first
convolutional layer, marked in blue, and the first dense layer,
marked in green, can be pruned without restrictions. The
second convolutional layer and the second dense layer need
to have an equal number of channels, as they are multiplied
together. Therefore, when a channel is removed from the
second convolution it must also be removed from the second
dense layer. The pruned channels are then added to the
corresponding channels from the input to the block. Finally,
these are concatenated to the rest of the input channels and
constitute the output of the residual block.

IV. RESULTS

In this section, a description of the dataset, training and

testing configuration for UCLF networks is presented,

followed by experiments that validate the proposed model

pruning approach.

A. Dataset, model training and testing configuration

UCLF networks for Y, U and V channels are trained on
the DIV2K dataset [28], which contains 800 high definition
high resolution images for training and 100 images for
validation purposes. Images are separately encoded with
VVC Test Model (VTM) 7.0 [29] under the All-Intra (AI)
configuration at 4 QPs levels, 22, 27, 32, 37. Common Test
Conditions (CTC) as defined by JVET [30] are modified to
disable the three in-loop filters within VVC, to obtain blocky
images as network inputs. Additionally, CU map information
was extracted for each encoded image. Image patches of size
48 × 48 are used for training the Y network, while 24 × 24
patches are used for the U and V networks.

The individual Y, U and V models are trained with the
Mean Absolute Error (MAE) loss function, Adam optimizer
and a learning rate set to 0.001. The trained, individual
models are then pruned according to Algorithm 1. Sparsity
pruning is configured to achieve 80 % sparsity for the
intermediary model. A channel value threshold of 0.001 is
used. The models are trained and tested on an NVIDIA
Quadro RTX 5000 GPU.

After the pruning process is finished, the learned in-loop

filters are tested on CTC video sequences, where each class

represents a set of sequences of same spatial resolution. All

sequences were processed in the same manner as the

training dataset. The obtained blocky videos are filtered by

the pruned networks and then compared to videos encoded

by the baseline VTM 7.0 anchor.

Fig. 3. Pruning of UCLF Y component network. Each pruning attempt

represents one pruning loop of Algorithm 1. Results are displayed as

average PSNR and total inference time for the validation dataset.

B. Network performance during pruning

The performance of a pre-pruned UCLF network during
the pruning process is reported in Fig. 3. Two metrics, PSNR
and inference time, are measured during each pruning loop.
The pre-trained network for the Y channel reports an average
PSNR of 36.77 dB on the validation dataset and requires 285
seconds to process the dataset on a GPU.

With each iteration, inference time decreases, while the
PSNR remains stable. Compared to the original pre-trained
network, the final pruned network produces a PSNR value
lower by 0.04 dB and a reduction of 15 % in processing time.

The coding performance of unpruned and pruned UCLF
networks for in-loop filtering is compared in Table II. A
significant reduction in the number of parameters for each
network is observed, with a slight decrease in BD-rate for the
Y channel. However, the pruned networks for the U and V
channels exhibit higher BD-rates and increase the overall
BD-PSNR more than the unpruned baselines.

It must be noted that the reduction in parameters only
provides a general measure of network complexity, whilst
the inference time shows the real benefits of pruning a
network with the proposed approach. The pruned network
for the V channel has nearly 87% less parameters than its
unpruned counterpart but displays 37% lower inference time.

On average, the pruned networks increase the BD-PSNR
by 0.05 dB more than unpruned ones, while processing the
video sequences 23 % faster. The results suggest that the
original models may be over-parameterized and contain
redundant information that can be removed through pruning.

V. CONCLUSIONS

An initial approach for reducing complexity of learned
in-loop filters has been presented. The approach combines
sparsity pruning and structured pruning to remove redundant
parts of a neural network without heavily impacting its
performance.

 Experimental results show that this method can reduce
the number of parameters of in-loop filtering networks by as
much as 87 % and improve inference time by up to 59 %.
Our results show this method has minimal impact on PSNR,
and, in some cases, PSNR performance can improve.

 The presented method has the potential to reduce the size
of neural networks used in video coding, making them
applicable for practical applications. Future work will focus
on improvements to redundant neuron identification, pruning
of multi-branch networks, and application of the method to
other neural networks used as video compression tools.
These improvements will allow for direct a comparison with
other similar methods.

TABLE II CODING PERFORMANCE OF PROPOSED APPROACH IN VTM 7.0 FOR THE AI CONFIGURATION, TESTED ON CTC SEQUENCES

Class

UCLF before pruning UCLF after pruning Time

Reduction
(50 frames)

BD-rate [%] BD-PSNR [dB] BD-rate [%] BD-PSNR [dB]

Y U V Y U V Y U V Y U V

B -3.53 -3.82 -2.58 0.13 0.07 0.06 -3.07 -4.75 -3.90 0.12 0.09 0.09 31%

C -4.68 -5.16 -2.37 0.29 0.19 0.21 -4.52 -5.91 -5.30 0.28 0.22 0.21 36%

D -6.57 -7.58 -8.68 0.47 0.30 0.35 -6.43 -7.93 -9.03 0.46 0.32 0.37 44%

E -5.13 -2.35 -2.12 0.25 0.08 0.06 -5.09 -3.89 -3.49 0.25 0.14 0.11 59%

Average -4.98 -4.73 -3.94 0.29 0.16 0.17 -4.78 -5.62 -5.43 0.28 0.19 0.20 42%

#Par Y: 879,681; U: 879,681; V: 879,681 Y: 667,265; U: 293,811; V: 116,972

Time [s] Y: 285; U: 120; V: 120 Y: 243; U: 84; V: 76

REFERENCES

[1] B. Bross, J. Chen and S. Liu, “Versatile video coding (VVC) draft

10,” Document JVET-S2001 Teleconference Meeting, 2020.

[2] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek, H.
Schwarz,D. Marpe, and T. Wiegand, “Neural network based intra
predictionfor video coding,” in Applications of Digital Image
Processing XLI,vol. 10752. International Society for Optics and
Photonics, 2018.

[3] L. Zhao, S. Wang, X. Zhang, S. Wang, S. Ma, and W. Gao,
“Enhanced CTU-Level Inter Prediction With Deep Frame Rate Up-
Conversion For High Efficiency Video Coding,” in 25th IEEE
International Conference on Image Processing (ICIP), 2018.

[4] M. Santamaria, S. Blasi, E. Izquierdo, M. Mrak, “Analytic
Simplification of Neural Network Based Intra-Prediction Modes For
Video Compression”, in IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), July 2020.

[5] L. Murn, S. Blasi, A. Smeaton, M. Mrak, “Improved CNN-based
Learning of Interpolation Filters for Low-Complexity Inter Prediction
in Video Coding”, IEEE Open Journal of Signal Processing, 2021.

[6] M. M. Alam, T. D. Nguyen, M. T. Hagan, and D. M. Chandler, “A
perceptual quantization strategy for HEVC based on a convolutional
neural network trained on natural images,” in Applications of Digital
Image Processing XXXVIII, vol. 9599. International Society for
Optics and Photonics, 2015.

[7] M. Wang, S. Wan, H. Gong and M. Ma, “Attention-Based Dual-Scale
CNN In-Loop Filter for Versatile Video Coding,” in IEEE Access,
vol. 7, 2019.

[8] S. Kim J. Chen, Y. Ye, “Algorithm description for versatile video
coding and test model 7 (VTM 7),” Document JVET-P2002, Geneva,
October 2019.

[9] M. Karczewicz et al., "VVC In-Loop Filters," in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 31, no. 10, pp.
3907-3925, Oct. 2021.

[10] Z. Pan, X. Yi, Y. Zhang, B. Jeon and S. Kwong, “Efficient In-Loop
Filtering Based on Enhanced Deep Convolutional Neural Networks
for HEVC,” in IEEE Transactions on Image Processing, vol. 29,
2020.

[11] D. Ma, F. Zhang and D. R. Bull, “MFRNet: A New CNN
Architecture for Post-Processing and In-loop Filtering,” in IEEE
Journal of Selected Topics in Signal Processing, vol. 15, no. 2, Feb.
2021.

[12] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition 2017.

[13] Olah, et al., “Feature Visualization,“ Distill, 2017.

[14] C. Dong, C.C. Loy, K. He, and X. Tang.,“Learning a deep
convolutional network for image super-resolution,” in European
Conference on Computer Vision, 2014.

[15] C. Dong, Y. Deng, C. C. Loy, and X. Tang, ‘‘Compression artifacts
reduction by a deep convolutional network,’’ in Proc. IEEE Int. Conf.
Comput.Vis. (ICCV), Santiago, Chile, Dec. 2015.

[16] W.S. Park, and M. Kim, ”CNN-based in-loop filtering for coding
efficiency improvement,” i IEEE 12th Image, Video, and
Multidimensional Signal Processing Workshop (IVMSP) 2016.

[17] G. Bjontegaard, “Calculation of average PSNR differences between
822 RD-curves,” VCEG-M33, 2001.

[18] J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and T. Huang,
‘‘Wide activation for efficient and accurate image super-resolution,’’
CoRR, vol. abs/1808.08718, Dec. 2018.

[19] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake
City, UT, USA, Jun. 2018.

[20] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in Neural Information
Processing Systems, 2016.

[21] S. Anwar, K. Hwang, and W. Sung. “Structured pruning of deep
convolutional neural networks,“ ACM Journal on Emerging
Technologies in Computing Systems (JETC), 13(3), 2017.

[22] H. Wang,Q Zhang, Y. Wang. and H. Hu. “Structured probabilistic
pruning for convolutional neural network acceleration,” arXiv
preprint arXiv:1709.06994, 2017.

[23] Z. Hou, and S.Y Kung, “Efficient image super resolution via channel
discriminative deep neural network pruning,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP)
2021.

[24] H. Hu, R. Peng, W.Y. Tai, and C.K. Tang, “Network trimming: A
data-driven neuron pruning approach towards efficient deep
architectures,” arXiv preprint arXiv:1607.03250, 2016.

[25] L. Li, Y. Xu, J. Zhu, “Filter Level Pruning Based on Similar Feature
Extraction for Convolutional Neural Networks,” IEICE Transactions
on Information and Systems, 2018

[26] L. Hao, K. Asim, D. Igor, S. Han, and P.G. Hans. “Pruning filters for
efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[27] H. Yi, Z. Xia, S. Jia, “Channel pruning for accelerating very deep
neural networks,” in International Conference on Computer Vision
(ICCV), volume 2, 2017.

[28] E. Agustsson and R. Timofte, ‘‘Ntire 2017 challenge on single
imagesuper-resolution: Dataset and study,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, vol. 3, Jul. 2017.

[29] S. Kim J. Chen, Y. Ye, “Algorithm description for versatile video
coding and test model 7 (VTM 7),” Document JVET-P2002, Geneva,
October 2019.

[30] J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET common test
conditions and software reference configurations,” Document JVET-
J1010, Ljubljana, Slovenia, Jul. 2018.

ACKNOWLEDGEMENTS

 This work was supported by the UK Engineering and

Physical Sciences Research Council (EPSRC) grant 2246465

for Queen Mary University of London, Multimedia and

Vision Group (MMV), and the British Broadcasting

Corporation (BBC).

