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Abstract— In video coding, in-loop filters are applied on 

reconstructed video frames to enhance their perceptual 

quality, before storing the frames for output. Conventional in-

loop filters are obtained by hand-crafted methods. Recently, 

learned filters based on convolutional neural networks that 

utilize attention mechanisms have been shown to improve upon 

traditional techniques. However, these solutions are typically 

significantly more computationally expensive, limiting their 

potential for practical applications. The proposed method uses 

a novel combination of sparsity and structured pruning for 

complexity reduction of learned in-loop filters. This is done 

through a three-step training process of magnitude-guided 

weight pruning, insignificant neuron identification and 

removal, and fine-tuning. Through initial tests we find that 

network parameters can be significantly reduced with a 

minimal impact on network performance.  

Keywords — neural networks, video coding, in-loop filtering, 

quality enhancement, pruning, sparsity 

I. INTRODUCTION  

Recent research efforts show that learned tools, such as 
deep Neural Networks (NNs), can be successfully applied to 
improve the performance of video compression algorithms. 
For example, the upcoming Versatile Video Coding (VVC) 
standard already includes a tool derived from learning-based 
techniques [1]. Furthermore, methods based on deep learning 
have been used as intra/inter-prediction [2-5], quantisation, 
entropy coding [6] and loop filtering tools [7].  

 When compressing a video at higher quantization rates, 
artifacts can occur due to poor frame reconstruction. In-loop 
filtering is a well-known video compression method applied 
at the end of the coding process that aims to reduce or 
completely remove artifacts. VVC implements three filters, 
namely the Deblocking Filter (DBLF), the Sample Adaptive 
Offset filter (SAO), and the Adaptive Loop Filter (ALF).  

 The loop filtering process can be expanded with new 
filters that apply deep learning techniques, as demonstrated 
with Attention-Based Dual-Scale CNN (ADCNN) [7]. 
ADCNN utilises Coding Unit (CU) maps as an attention 
mechanism that guides the neural network, to remove 
artifacts such as blocking.  

 ADCNN has exhibited improved compression 
performance over the baseline VVC. However, the encoder 
processing time is increased by 66% on a Central Processing 
Unit (CPU). The decoder processing time is increased by 
more than 130 times when processed by a Graphics 
Processing Unit (GPU), and by more than 450 times with a 
CPU. The substantial increase in coding running time makes 
this method unfeasible for practical solutions. 

This paper proposes to reduce the coding complexity of 
learning-based methods within video coding applications by 
developing an automated NN pruning methodology. Pruning 

identifies redundant parameters from trained NNs and 
removes them to reduce the NN size with minimal impact on 
network accuracy. The presented approach inspired by 
ADCNN, is an initial attempt to test the feasibility of pruning 
NN in-loop filters. This work focuses on pruning three 
single-branch networks at the decoder stage, each processing 
separate Y, U, V components.  

The rest of the paper is organised as follows. Section II 
introduces related work in the areas of deep learning, in-loop 
filtering and neural network pruning. Section III describes 
the proposed pruning methodology, while Section IV 
analyses the experimental results of the trained network 
applied within VVC. Section V presents conclusions. 

II. RELATED WORK 

A. In-loop Filtering  

In-loop filtering is an essential operation for lossy video 
coding standards, as compression removes information from 
raw video data to reduce its bitrate. Modern video coding 
standards such as High-Efficiency Video Coding (HEVC) 
[8] and VVC [1] divide regions of an input frame into 
Coding Tree Units (CTUs), which further separate regions 
into rectangular blocks or CUs. During the encoding step, 
each CU is predicted with different methods, such as 
inter/intra-prediction, merge mode or skip mode. The final 
choice is selected according to the approach that minimizes 
the Rate-Distortion (RD) cost in the presence of quantisation. 
The level of quantisation is defined by a Quantisation 
Parameter (QP), high QP values can cause artifacts within 
the reconstructed frame.  

Video coding artifacts are present in many forms. For 
example, blockiness can occur within frames on the borders 
of adjacent CUs. Additionally, ringing artifacts can appear in 
large CUs. VVC applies several filters to reduce artifacts. 
DBLF is used to apply deblocking and softens the borders 
between CUs, while SAO reduces ringing distortions [9]. A 
third filter, ALF/ALF-CC, is used to restore the objective 
quality, expressed in PSNR, lost by the application of the 
previous filters [9]. 

B. Deep Learning Approaches for In-loop Filtering 

When applied to video coding, deep learning methods for 
in-loop filtering often utilise residual models [7,10,11]. 
Residual models learn the difference, or the residual, 
between the output and the input of the network [12]. 
Learning the residual means that the network weights are 
sparser than if required to learn the entire frame 
reconstruction, and it is therefore an easier task to 
approximate. Additionally, by stacking multiple repeated 
residual layers, weights in each subsequent layer become 
more specialised [13], improving model performance.  



Challenging deep learning tasks such as image 
restoration, denoising and super-resolution share similar 
properties with loop filtering problems, as they also aim to 
restore and enhance frame quality. Therefore, Convolutional 
Neural Networks (CNNs) used for these tasks have also been 
successfully applied to in-loop filtering. The seminal Super-
Resolution Convolutional Neural Network (SRCNN) [14] 
extracts features from the input and maps them to high 
resolution patch representations to improve the resolution of 
JPEG encoded images. SRCNN was extended in size [15] 
and applied to picture compression artifacts, spatial temporal 
information further improved model performance in [2]. 

Inspired by the SRCNN structure, an In-loop Filtering 
CNN (IFCNN) was proposed in [16] and used as a 
replacement for the DBLF and SAO filters in HEVC, 
achieving -4.8 % Bjøntegaard-Delta rate (BD-rate) [17] 
savings under the All-Intra (AI) configuration. A residual 
network called Enhanced Deep Convolutional Neural 
Network (EDCNN) achieved a -6.45 % BD-rate reduction on 
average for all HEVC configurations [10]. A CNN 
architecture for post-processing and in-loop filtering called 
MFRNet was introduced in [11] and achieved up to -5.1 % 
coding gains when integrated within VVC. However, it 
increased the decoder running time more than 80 times. 
Combining wide activated models [18] and squeeze-
excitation models [19] resulted in an Attention-Based Dual-
Scale CNN (ADCNN) [7] which, when implemented in 
VVC, achieved -6.54%, -13.27% and -15.72% BD-rate 
savings over traditional filters for the Y, U and V channels, 
respectively. This model is attention based, with the attention 
input being the CU map extracted from the decoder, selected 
filtered blocks are signalled with flags in the bit stream.  

C. Neural network pruning 

Neural network pruning identifies redundant components 
within a trained neural network. Learned parameters are 
zeroed out [20] or removed from the model entirely [21]. 

 Sparsity pruning is applied on pre-trained networks and 
aims to reduce the number of active neuron connections. The 
network is sparsified by setting weight values in network 
layers to zero. When applied to large-scale deep NNs, 
sparsity pruning can remove up to 80 % of learned network 
connections with a minimal impact on network performance 
[20]. While sparsity pruning does not reduce model 
parameters, structured pruning physically removes neurons 
from neural networks [21]. Structured pruning is highly 
dependent on its application and the type of NN used.  

For visual data applications that utilise CNNs, structured 
pruning can remove entire trained convolutional channels 
from layers of the network [22,23], significantly reducing the 
trained network size. The approach in [22] structurally 
prunes image recognition networks ConvNet, AlexNet, 
VGG-16 and ResNet-50 by removing channels, achieving 
speed ups in computation up to 4 times. 

Several algorithms for identifying redundant neurons in 
structured NN pruning have been proposed. A data-driven 
approach in [24] uses validation data to calculate the 
Average Percentage of Zeros (APoZ) for a given layer. A 
high APoZ indicates many redundant neurons. Filter 
clustering identifies similar filter groups and retains one filter 
per group [25]. Filters can also be removed based on the L1 
norm of their weights [26] or their overall contribution to the 
output feature maps [27]. 

III. METHODOLOGY 

The ADCNN architecture, illustrated in Fig. 1a. provides 
significant improvements when compared to traditional 
filters. The basic structural blocks used in ADCNN are used 
for constructing the separate models of our approach. Spatial 
attention was removed from the blocks of ADCNN, as the 
proposed pruning method is only applicable on single-branch 
networks. 

 The resulting model was named Uni-Component Loop 
Filter (UCLF), shown in Fig. 1b. for the Y channel. Two 
models for the U and V channels also have the same 
architecture as the one for Y. The architectures are separated 
into three stages, each stage consists of generalised residual 
and non-residual blocks. The residual block structure is 
displayed in Fig. 2a. with two convolutional layers (2DConv) 
of 3-by-3 kernel sizes followed by two dense layers. Non-
residual blocks follow the same structure as residual ones, 
without the input being added to the output. Each model was 
individually pruned using a novel combination of sparsity 
and structured pruning.  

The NN-based filter in ADCNN is integrated within 
VVC as a switchable filter, meaning that the encoder can 
select either conventional filters (DBLF, SAO, ALF) or the 
learned filter to obtain a reconstructed rectangular block 
within the currently coded frame. The filter choice is decided 
according to the RD cost calculation. However, our approach 
applies learned in-loop filters directly on each blocky video 
frame, rather than through a switchable implementation. 

A. Pruning Algorithm 

The proposed pruning method is detailed in Algorithm 1 
(Subsection III-A). For a pretrained neural network T 
sparsity pruning (Subsection III-B) is applied to each 
prunable layer. The validation set is passed through the 
intermediary model, and its activation maps are then used to 
identify redundant channels (Subsection III-C). A pruned 
network P is obtained from T by iteratively analysing the 
activation maps and removing channels from each layer that 
have values lower than a set pruning threshold (Subsection 
III-D). P is then re-trained for a defined number of 
optimization epochs to retain performance. 

 

 

 

a) b) 

Fig. 1. a) General structure of the ADCNN model. b) Network structure 
for a channel after separating the Y, U, V network into three UCLF 
networks. 

 



 

 

 
 

a) b) 

Fig. 2.   a) General structure of the residual blocks in each stage.  b) An 

example of the proposed structured pruning method applied to a residual 
block. 

 

Following the re-training step, the accuracy, and the 
number of parameters of P are recorded and compared to 
pre-set thresholds. The pruning algorithm stops if any of the 
constraints are satisfied, once a constraint is satisfied P from 
the previous iteration is returned as the final, pruned model. 
Otherwise, T = P and the process repeats. 

Algorithm 1. 

PROPOSED PRUNING ALGORITHM 

Input: Pretrained neural network T, number of parameters 
num_par, list of prunable layers pl, training samples x, 
validation samples v, sparsity_threshold st (Sec. III.B), 
channel_threshold ct (Sec. III.C), number of optimization 
epochs train_epochs (Sec. III.A), accuracy_threshold at and 
pruning_threshold pt  (Sec. III.D) 

Output: Pruned neural network P 

while True: 

for layer in T: 

 if layer in pl: 

             model = apply_sparsity_pruning(layer, T, st) 

       chan_to_remove = identify_redundant_channels(v, model, ct) 

 P = apply_structured_pruning(model, chan_to_remove) 

 P.train(x, train_epochs) 

 if P.accuracy < at or P.num_par / T.num_par < 1 - pt: 

P = T 

    break 

  else 

     T = P 

 

 

 

TABLE I  NUMBER OF PRUNABLE CHANNELS AT EACH NETWORK STAGE 

Stage 
Block 

type 

No. of 

blocks 

Prunable channels per block 

2DConv 1 2DConv 2 Dense 1 Dense 2 

1 
Non-res. 2 48 -- 8 -- 

Residual 1  48 32 8 32 

2 Residual 5 96 64 16 64 

3 
Non-res. 2 48 -- 8 -- 

Residual 1 96 64 16 64 

B. Sparsity Pruning 

Sparsity pruning sets weight values within a layer to zero 
according to a specified sparsity threshold. For the pretrained 
UCLF network from Fig. 1b, it is applied on both residual 
and non-residual blocks in all three stages. To retain network 
performance sparsity was only applied to specific layers 
within the model. Additionally, the first and last layer of the 
network are not pruned. The total number of prunable 
convolutional channels and dense units is presented in Table 
I. The values listed in Table I indicate the initial numbers of 
filters and dense units in a UCLF network, these numbers 
will reduce as pruning progresses.  

C. Insignificant Channel Identification 

Sparsity pruning does not guarantee that all weights 
associated with a channel will be zero. When applied to a 
certain layer, magnitude-based weight pruning sparsifies the 
entire layer across channels, rather than within each channel 
individually. In convolutional layers, filters are considered as 
channels. In dense layers, neurons are also considered as 
channels. 

 To identify which channels in a layer can be removed 
from the UCLF network, a data-driven approach is adopted. 
The validation set is used as an input to the network. Neuron 
activation and filter activation maps are stored at each 
prunable layer. The stored values are then averaged over the 
entire validation set. If the average channel value is below 
the channel threshold, then that channel is marked for 
removal.  

D. Structured Pruning 

 Structured pruning removes channels that were identified 
as insignificant for a specific UCLF network. For channels 
within convolutional and dense layers, this means removing 
all associated weight and bias information. 

 An example of a pruned residual block from a UCLF 
network is presented in Fig. 2b. As each stage of the network 
consists of stacked generalised blocks from Fig. 2a. the 
dimensionality at the input and the output must be retained. 
In this example, the input is set to 64 channels. The first 
convolutional layer, marked in blue, and the first dense layer, 
marked in green, can be pruned without restrictions. The 
second convolutional layer and the second dense layer need 
to have an equal number of channels, as they are multiplied 
together. Therefore, when a channel is removed from the 
second convolution it must also be removed from the second 
dense layer. The pruned channels are then added to the 
corresponding channels from the input to the block. Finally, 
these are concatenated to the rest of the input channels and 
constitute the output of the residual block.  

 

 



IV. RESULTS 

In this section, a description of the dataset, training and 

testing configuration for UCLF networks is presented, 

followed by experiments that validate the proposed model 

pruning approach.  

A. Dataset, model training and testing configuration 

UCLF networks for Y, U and V channels are trained on 
the DIV2K dataset [28], which contains 800 high definition 
high resolution images for training and 100 images for 
validation purposes. Images are separately encoded with 
VVC Test Model (VTM) 7.0 [29] under the All-Intra (AI) 
configuration at 4 QPs levels, 22, 27, 32, 37. Common Test 
Conditions (CTC) as defined by JVET [30] are modified to 
disable the three in-loop filters within VVC, to obtain blocky 
images as network inputs. Additionally, CU map information 
was extracted for each encoded image. Image patches of size 
48 × 48 are used for training the Y network, while 24 × 24 
patches are used for the U and V networks. 

The individual Y, U and V models are trained with the 
Mean Absolute Error (MAE) loss function, Adam optimizer 
and a learning rate set to 0.001. The trained, individual 
models are then pruned according to Algorithm 1. Sparsity 
pruning is configured to achieve 80 % sparsity for the 
intermediary model. A channel value threshold of 0.001 is 
used. The models are trained and tested on an NVIDIA 
Quadro RTX 5000 GPU. 

After the pruning process is finished, the learned in-loop 

filters are tested on CTC video sequences, where each class 

represents a set of sequences of same spatial resolution. All 

sequences were processed in the same manner as the 

training dataset. The obtained blocky videos are filtered by 

the pruned networks and then compared to videos encoded 

by the baseline VTM 7.0 anchor.  

 

 
Fig. 3. Pruning of UCLF Y component network. Each pruning attempt 

represents one pruning loop of Algorithm 1. Results are displayed as 

average PSNR and total inference time for the validation dataset.  

B. Network performance during pruning 

The performance of a pre-pruned UCLF network during 
the pruning process is reported in Fig. 3. Two metrics, PSNR 
and inference time, are measured during each pruning loop. 
The pre-trained network for the Y channel reports an average 
PSNR of 36.77 dB on the validation dataset and requires 285 
seconds to process the dataset on a GPU.  

With each iteration, inference time decreases, while the 
PSNR remains stable. Compared to the original pre-trained 
network, the final pruned network produces a PSNR value 
lower by 0.04 dB and a reduction of 15 % in processing time. 

The coding performance of unpruned and pruned UCLF 
networks for in-loop filtering is compared in Table II. A 
significant reduction in the number of parameters for each 
network is observed, with a slight decrease in BD-rate for the 
Y channel. However, the pruned networks for the U and V 
channels exhibit higher BD-rates and increase the overall 
BD-PSNR more than the unpruned baselines. 

It must be noted that the reduction in parameters only 
provides a general measure of network complexity, whilst 
the inference time shows the real benefits of pruning a 
network with the proposed approach. The pruned network 
for the V channel has nearly 87% less parameters than its 
unpruned counterpart but displays 37% lower inference time. 

On average, the pruned networks increase the BD-PSNR 
by 0.05 dB more than unpruned ones, while processing the 
video sequences 23 % faster. The results suggest that the 
original models may be over-parameterized and contain 
redundant information that can be removed through pruning. 

V. CONCLUSIONS 

An initial approach for reducing complexity of learned 
in-loop filters has been presented. The approach combines 
sparsity pruning and structured pruning to remove redundant 
parts of a neural network without heavily impacting its 
performance.  

 Experimental results show that this method can reduce 
the number of parameters of in-loop filtering networks by as 
much as 87 % and improve inference time by up to 59 %. 
Our results show this method has minimal impact on PSNR, 
and, in some cases, PSNR performance can improve. 

 The presented method has the potential to reduce the size 
of neural networks used in video coding, making them 
applicable for practical applications. Future work will focus 
on improvements to redundant neuron identification, pruning 
of multi-branch networks, and application of the method to 
other neural networks used as video compression tools. 
These improvements will allow for direct a comparison with 
other similar methods.  

TABLE II  CODING PERFORMANCE OF PROPOSED APPROACH IN VTM 7.0 FOR THE AI CONFIGURATION, TESTED ON CTC SEQUENCES 

 

Class 

UCLF before pruning UCLF after pruning Time 

Reduction 
(50 frames) 

BD-rate [%] BD-PSNR [dB] BD-rate [%] BD-PSNR [dB] 

Y U V Y U V Y U V Y U V 

B -3.53 -3.82 -2.58 0.13 0.07 0.06 -3.07 -4.75 -3.90 0.12 0.09 0.09 31% 

C -4.68 -5.16 -2.37 0.29 0.19 0.21 -4.52 -5.91 -5.30 0.28 0.22 0.21 36% 

D -6.57 -7.58 -8.68 0.47 0.30 0.35 -6.43 -7.93 -9.03 0.46 0.32 0.37 44% 

E -5.13 -2.35 -2.12 0.25 0.08 0.06 -5.09 -3.89 -3.49 0.25 0.14 0.11 59% 
              

Average -4.98 -4.73 -3.94 0.29 0.16 0.17 -4.78 -5.62 -5.43 0.28 0.19 0.20 42% 
              

#Par Y: 879,681; U: 879,681; V: 879,681 Y: 667,265; U: 293,811; V: 116,972 
    

Time [s] Y: 285; U: 120; V: 120 Y: 243; U: 84; V: 76 
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