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Abstract—Graph analytics techniques based on spectral meth-
ods process extremely large sparse matrices with millions or even
billions of non-zero values. Behind these algorithms lies the Top-K
sparse eigenproblem, the computation of the largest eigenvalues
and their associated eigenvectors. In this work, we leverage
GPUs to scale the Top-K sparse eigenproblem to bigger matrices
than previously achieved while also providing state-of-the-art
execution times. We can transparently partition the computation
across multiple GPUs, process out-of-core matrices, and tune
precision and execution time using mixed-precision floating-point
arithmetic. Overall, we are 67× faster than the highly optimized
ARPACK library running on a 104-thread CPU and 1.9× than
a recent FPGA hardware design. We also determine how mixed-
precision floating-point arithmetic improves execution time by
50 % over double-precision, and is 12× more accurate than
single-precision floating-point arithmetic.

I. INTRODUCTION

Modern data science and numerical mathematics applica-
tions operate on larger and larger data, often with strict require-
ments of minimizing execution time and power consumption.
For many of these applications, hardware accelerators such as
Graphics Processing Units (GPUs) and Field Programmable
Gate Arrays (FPGAs) are a highly-effective solution, espe-
cially when mixed-precision and reduced-precision arithmetic
come into play [1]–[6]. As spectral methods become ubiqui-
tous in the large scale graph pipelines of Spectral Clustering
[7], Information Retrieval (IR) [8] and ranking [9], such tech-
niques require algorithms that can compute only a subset of the
most relevant eigenvalues (i.e. the largest in modulo) and their
associated eigenvectors while taking advantage of the sparsity
of real-world graphs. Graph analytics pipelines usually operate
on graphs with millions or even billions of edges, rendering
traditional methods computing all eigenvalues impractical, as
their space and time cost scales at least quadratically with the
number of vertices. As the size of real-world graphs exceeds
the device memory size of modern GPUs, an eigensolver must
be able to handle out-of-core matrices as well as be capable
of distributing the computation to multiple GPUs. Moreover,
they need to support different numerical data types for storage
and computation to meet storage and accuracy requirements.

In this work, we introduce a novel Top-K GPU eigensolver
for real-valued, sparse matrices capable of handling matrices
with billion of non-zero entries, of partitioning the compu-
tation across multiple GPUs and leveraging mixed-precision
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Fig. 1: High-level design of our Top-K sparse eigensolver,
divided into the Lanczos and Jacobi algorithms.

arithmetic to optimize accuracy and execution time. We com-
pare how our eigensolver against state-of-the-art CPU and
FPGA implementations and investigate how mixed-precision
enables intermediate operations with higher precision while
results are stored with space-efficient representations.

In summary, we present the following contributions:
• A multi-GPU, mixed precision, Top-K eigensolver that

can process out-of-core sparse matrices with billions of
non-zeros. To the best of our knowledge, this is the largest
amount reported in the literature (Section III).

• A performance evaluation of our GPU eigensolver against
state-of-the-art Top-K eigensolvers on multiple architec-
tures. We are on average 67× faster than a multi-core
CPU implementation and 1.9× faster than an FPGA
hardware design, with average reconstruction error below
10−5 (Section IV-B).

• A characterization of mixed-precision arithmetic in terms
of accuracy versus execution time. We prove how mixed-
precision is 50 % faster than double-precision floating-
point arithmetic, and 12× more accurate than single-
precision (Section IV-D).

II. RELATED WORK

Although solving Top-K sparse eigenproblems is compu-
tationally demanding and has strong practical applications,
little prior research optimizes them with hardware accelerators.
On GPUs, most Top-K eigensolvers are domain-specific, do
not support large-scale inputs and multiple devices, or are
outright not supported on modern GPUs architectures [10]–
[12]. The nvGRAPH library [13] by Nvidia uses internally
the Lanczos algorithm, whose implementation is, however,
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not user-accessible. Mixed precision arithmetic on numerical
algorithms on GPUs has been evaluated on multiple algorithms
from the QUDA library. However, the effectiveness of mixed
and reduced precision on the numerically unstable Lanczos
algorithm is still unknown [3], [14].

Custom hardware designs for Top-K sparse eigensolvers
have been recently investigated by Sgherzi et al. [6], who
prototyped their work on high-end FPGAs equipped with High
Bandwidth Memory (HBM). They investigates the role of
mixed-precision arithmetic for Top-K sparse eigensolvers, but
the proposed design does not scale to multiple devices or large
out-of-core matrices. Moreover, limitations of the FPGA’s
HBM controller force unnecessary data replication and allow
achieving only a fraction of the maximum HBM bandwidth. To
the best of our knowledge, no other work optimizes large Top-
K sparse eigencomputations using FPGAs or Domain Specific
Architectures (DSAs). There are numerous implementations of
large-scale Top-K sparse eigenproblem solver for CPUs [15]–
[17]. However, none is as well-known as ARPACK [18],
a multi-core Fortran library that implements the Implicitly
Restarted Arnoldi Method (IRAM), a variation of the Lanczos
algorithm with support for non-Hermitian matrices.

III. IMPLEMENTATION

Our sparse eigensolver employs a two-phase algorithm, as in
Figure 1. The first step is based on the Lanczos [19] algorithm,
which takes as input the original matrix M, the number of de-
sired eigencomponents K and a L2-normalized random vector
v1 ∈ Rn. The algorithm proceeds by incrementally building
a Kyrlov subspace (the Lanczos vectors V) of M, through
vector projections (Algorithm 1 line 9) and orthogonalizations
(lines 11–21). A tridiagonal matrix T stores the residuals of
the previous operations (lines 6, 10) and reduces the problem
from size n× n to one of size K ×K (K � n).

The second phase employs the Jacobi algorithm [20] to
solve the eigenproblem on the much smaller matrix T . The
Jacobi algorithm stores the eigenvalues of M in the main di-
agonal of T , and the eigenvectors of T in V. The eigenvectors
of M are given by VV.

A. Optimizing sparse eigensolvers for GPUs

We desire to render our GPU sparse eigensolver scalable
to real-world matrices with billions of non-zero values, often
encountered in graph analytics. To do so, we devise a work-
load partition scheme that distributes the computation across
multiple GPUs while minimizing unnecessary data movements
and synchronization events.

The Lanczos algorithm has two synchronization points (Al-
gorithm 1, lines 6 and 10), corresponding to the computation
of α and β (Figure 1 A B ). Another optional synchronization
point occurs if reorthogonalization of the Lanczos vectors is
needed (lines 15–18, Figure 1 C ). All other operations operate
linearly on the input arrays and can be computed across mul-
tiple GPUs independently. The input matrix is partitioned by
balancing the number of non-zero elements in each partition.
All vectors, except for vi, are partitioned according to the same

Algorithm 1 Top-K eigenvalues/vectors Lanczos algorithm

Require: Input Matrix M, partitioned in M1 . . .MG

Require: K, number of output eigenvectors
Require: L2-normalized input vectors v1 := {v11 , . . . , vG1 }
Require: Temporary vectors vtmp and next vectors vnxt

1: function LANCZOS(M,K, v1, vtmp, vnxt)
2: α1 ← 0; β1 ← 0 . Initialization
3: for i in 1,K do
4: . Normalize and compute new Lanczos vector
5: if i 6= 1 then
6: βi ←

√∑G
j=1 (v

j
nxt)

2 . βi ← ‖vnxt‖2
7: v

[1...G]
i ← ∀j∈[1...G](v

j
nxt/βi) . vi ← vnxt/βi

8: . Compute the next projection
9: v

[1...G]
t ← SpMV (M1 . . .MG, v

[1...G]
i )

10: αi ←
∑G

j=1 v
j
i · vjt

11: v
[1...G]
nxt ← v

[1...G]
tmp − αiv

[1...G]
i − βiv[1...G]

i−1
12: for j ∈ [1, i] do . Orthogonalization
13: if j%2 6= 0 then
14: o←∑G

k=1 vj,k · vt,k
15: v

[1...G]
t ← v

[1...G]
t − o · v[1...G]

j

16: else
17: o←∑G

k=1 vj,k · vn,k
18: v

[1...G]
n ← v

[1...G]
n − o · v[1...G]

j

19: if i == j then . Copy to temporary vector
20: v

[1...G]
t ← v

[1...G]
n

21: . Tridiagonal matrix T and Lanczos vectors V
22: return {T = [α1, . . . , αK ], [β1, . . . , βK−1]}
23: return V = [v1, . . . , vK ]

partition scheme as the input matrix. As the Sparse Matrix-
Vector Multiplication (SpMV) performs indirect accesses to
the vector vi, we replicate it to all GPU instead of partitioning
it. There is an additional synchronization at each iteration
when the previous Lanczos vector becomes the input of the
SpMV. We prevent this synchronization by having each GPU
copy, in a round-robin fashion, a single partition to a single
replica of vi (Figure 1 C ). When all GPUs have completed
a cycle, vi has been fully copied, and the computation can
proceed to a new iteration.

The orthogonality of the Lanczos vectors and the quality
of the final eigencomponents produced crucially depends on
the output of the scalar product (α, line 10) and the L2-
norm (β, line 6). For this reason, our eigensolver can perform
the intermediate operations of each kernel in double-precision
floating-point arithmetic to ensure maximum accuracy. How-
ever, vectors can still be stored in single-precision floating-
point arithmetic, to consume less device memory and better
use the available memory bandwidth. In our experiments,
other data types (half-precision FP16, BFLOAT16) resulted in
numerical instability, and have been omitted from Section IV.
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Fig. 2: Speedup (log-scale, higher is better) of our GPU Top-K sparse eigensolver versus the ARPACK multi-core CPU library,
and the FPGA implementation in Sgherzi et al. [6]. Our GPU implementations runs on a single GPU. The two largest matrices
(KRON and URAND) are not supported by the FPGA implementation.

TABLE I: Sparse matrices used in our evaluation, by increas-
ing number of non-zero entries (in millions). We also report
the memory footprint in GB of each matrix, stored as COO.

ID Name Rows (M) Non-zeros (M) Sparsity (%) Size (GB)

WB-TA wiki-Talk 2.39 5.02 8.79× 10−4 0.06GB
WB-GO web-Google 0.91 5.11 6.17× 10−4 0.07GB
WB-BE web-Berkstan 0.69 7.60 1.60× 10−3 0.10GB
FL Flickr 0.82 9.84 1.46× 10−3 0.13GB
IT italy osm 6.69 14.02 3.13× 10−5 0.18GB
PA patents 3.77 14.97 1.05× 10−4 0.19GB
VL3 venturiLevel3 4.02 16.10 9.96× 10−5 0.21GB
DE germany osm 11.54 24.73 1.86× 10−5 0.32GB
ASIA asia osm 11.95 25.42 1.78× 10−5 0.33GB
RC road central 14.08 33.87 1.71× 10−5 0.43GB
WK Wikipedia 3.56 45.00 3.55× 10−4 0.60GB
HT hugetrace-00020 16.00 47.80 1.87× 10−5 0.61GB
WB wb-edu 9.84 57.15 5.90× 10−5 0.73GB
KRON GAP-kron 134.21 4223.26 2.34× 10−5 50.67GB
URAND GAP-urand 134.21 4294.96 2.39× 10−5 51.54GB

B. Implementation details

We implemented our eigensolver using the GrCUDA
API [21] and GraalVM [22] to support several high-level
programming languages automatically, while we wrote the
core GPU computational kernels in CUDA. Since GrCUDA
internally leverages CUDA unified memory, our eigensolver
can scale to out-of-core computations on sparse matrices that
would not otherwise fit in the GPU memory. We also modified
the internal GrCUDA runtime to schedule GPU kernels across
multiple devices, using a round-robin device selection policy
for kernels operating on disjoint data. Through the partition
swapping presented in Section III-A, we minimize unnecessary
memory transfers between devices and out-of-core memory
pages, guaranteeing scalability in what would be an otherwise
memory and transfer-bound computation (Section IV-C). The
small tridiagonal matrices that the Lanczos algorithm outputs
(≈ 24 × 24) cannot saturate the stream processors of a
modern GPU [23]. Instead, we achieve better execution time
by performing this step on a CPU (Figure 1 D ).

IV. EXPERIMENTAL EVALUATION

We evaluate the quality of our sparse eigensolver in terms of
execution time and results’ quality, and provide a performance

characterization against state-of-the-art sparse eigensolvers
running on different hardware architectures. We provide an
in-depth evaluation over a single GPU, and validate the
scalability of our algorithm over multiple GPUs (up to 8).
Most importantly, we assess the impact of mixed-precision
arithmetic and prove how reduced precision results in faster
execution time with no meaningful detriment to accuracy.

A. Experimental Setup

We measure results for our Top-K sparse eigensolver using
up to 8 Nvidia Tesla V100s (16GB of HBM2 for each
GPU). As baselines, we employ the multi-threaded ARPACK
library [18], a Top-K sparse eigensolver that uses the IRAM
algorithm, running on two Intel Xeon Platinum 8167M (104
threads in total) and 755GB of DDR4 memory, with single-
precision floating point arithmetic. We also compare against
the recent FPGA implementation by Sgherzi et al. [6], running
on a Xilinx Alveo U280 accelerator card equipped with 8GB
of HBM2 memory. We repeat measurements 20 times, using
random initialization for the Lanczos vectors v1.

To provide a fair comparison, we use the same collection
of sparse matrices in Sgherzi et al. [6], enriched with two ex-
tremely large matrices (billions of non-zero entries) that do not
fit in the FPGA’s and GPU’s device memory, and allows us to
test the out-of-core performance of our GPU implementation.
All matrices come from the SuiteSparse collection [24] and
represent graph topologies, although the eigensolvers in our
analysis can be applied to other domains as well [25].

B. Execution Time Comparison

We first compare the speed of our GPU eigensolver, when
running on a single GPU, against the CPU and FPGA base-
lines, on matrices of increasing size (Figure 2). Results have
been aggregated over an increasing amount of eigenvectors K,
from 8 to 24, as the execution time scales linearly with K.
For the FPGA implementation, we use the values reported by
the authors. Results of the two largest matrices (KRON and
URAND) have been omitted for the FPGA hardware design
as it does not support out-of-core computations.
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Fig. 3: A Relative execution time for increasing number of
GPUs. Two outlier matrices (plotted separately) perform worse
with more GPUs due to the larger inter-GPU communication.
B Accuracy of our eigensolver, in terms of orthogonality of
the eigenvectors and L2 error, for increasing K.

CPU and GPU use single-precision floating point arithmetic,
while the FPGA hardware design uses 32-bit signed fixed point
arithmetic with one bit of integer part (S1.1.30) for Lanczos,
and half-precision floating point arithmetic for Jacobi.

Our GPU eigensolver is always faster than both the CPU
and FPGA baselines (on the RC matrix the difference is not
statistically significant). On average, the GPU eigensolver is
67× faster than the CPU implementation and 1.9× faster than
the FPGA hardware design. The FPGA hardware design is
still competitive in terms of Performance/Watt, as the FPGA
design consumes 38W [6], versus the 300W of the GPU [26].

As our partitioning minimizes inter-GPU data-transfer (Sec-
tion III-A), we are ≈ 180× faster than the CPU on very large
out-of-core matrices despite storing only a small fraction of
the input data on the GPU at any given time.

C. Multi-GPU Performance

Scaling the computation of the Top-K eigenvectors on
sparse matrices to multiple GPUs is far from trivial, as
explained in Section III-A. From Figure 3(a), we observe how
our partitioning scheme improves the execution time when
using multiple GPUs, with somewhat diminishing returns. On
average, two GPUs provide a 50 % speedup, while eight GPUs
are close to a 100 % speedup. Only on two very small matrices
we observe a loss of performance on systems with 4 or 8
GPUs. This phenomenon is explained by the heterogeneous
NVLink interconnection found in V100-based systems like
ours [27]. Some GPU pairs are not directly connected with
NVLink, and data transfer has to go through the CPU and
PCIe, which has ≈ 10× lower bandwidth than NVLink.

D. Impact of Reorthogonalization and Mixed-precision

To measure the quality of our eigensolver, we measure the
average angle that occurs between every pair of eigenvectors.
Eigenvectors are by definition pairwise orthogonal, i.e. their
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angle is π/2, and their dot product must be 0. Figure 3(b)
provides, for increasing K, the average orthogonality and the
L2 norm of Mv − λv, the reconstruction error computed
using the definition of eigenvalues. Both results are aggregated
for all matrices due to space limitations. We observe how
reorthogonalization improves the results’ quality, with ≈ 2
degrees of difference compared to the implementation without
reorthogonalization. Choosing whether reorthogonalization is
suitable or not depends on the application. Spectral methods
in machine learning often do not demand the same numerical
accuracy as engineering applications, and reorthogonalization
increases the algorithmic complexity by an O(nK2/2) factor.

Employing mixed-precision arithmetic in numerical algo-
rithms is usually a matter of trade-offs, with better precision
translating to higher execution time. We visualize this behavior
in Figure 4, showing for each matrix the L2 reconstruction
error and the relative execution time, and a linear regression
to capture the general trend. In all cases, increasing precision
reduces the error and increases the execution time. The float-
double-float (FDF) configuration (Section III-A) is 50 % faster
than a pure double-precision implementation (DDD). Its error
is only 40 % higher, and 12× lower than the floating-point im-
plementation (FFF), showing how mixed-precision arithmetic
is a great compromise in Top-K sparse eigensolvers.

V. CONCLUSION

As graph analytics and spectral methods deal with larger and
larger sparse matrices, it is critical to have high-performance
Top-K sparse eigensolvers to extract low-dimensional repre-
sentations of sparse datasets. We provide a novel GPU Top-
K sparse eigensolver that can scale to out-of-core matrices
with billion of non-zero entries, partition the computation over
multiple GPUs, and leverage mixed-precision floating-point
arithmetic. We are on average 67× faster than the multi-
core ARPACK CPU library implementation and 1.9× faster



than a state-of-the-art FPGA hardware design. As future work,
we will extend our implementation to fixed-point arithmetic
and validate if novel interconnection technologies such as
NVSwitch can improve even further multi-GPU scaling.
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