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Abstract—Implementing fast and accurate Support Vector
Machine (SVM) classifiers in embedded systems with limited
compute and memory capacity and in applications with real-time
constraints, such as continuous medical monitoring for anomaly
detection, can be challenging and calls for low cost, low power
and resource efficient hardware accelerators. In this paper, we
propose a flexible FPGA-based SVM accelerator highly optimized
through a dataflow architecture. Thanks to High Level Synthesis
(HLS) and the dataflow method, our design is scalable and can
be used for large data dimensions when there is limited on-
chip memory. The hardware parallelism is adjustable and can
be specified according to the available FPGA resources. The
performance of different SVM kernels are evaluated in hardware.
In addition, an efficient fixed-point implementation is proposed
to improve the speed. We compared our design with recent SVM
accelerators and achieved a minimum of 10× speed-up compared
to other HLS-based and 4.4× compared to HDL-based designs.

Index Terms—SVM, FPGA, HLS, Hardware acceleration.

I. INTRODUCTION

Support Vector Machine (SVM) is a supervised Machine
Learning (ML) model widely used in different classification
problems, such as image classification, medical diagnosis,
object detection, and bioinformatics [1]. For example, in
microwave imaging, SVM can detect a brain stroke from
the electromagnetic scattering data [2], [3]. Since it is chal-
lenging to implement SVM in real-time embedded systems,
several specialized hardware architectures have been recently
proposed. Among them, those based on Field Programmable
Gate Arrays (FPGAs) are preferable in embedded systems due
to their flexibility and lower power. In [4], a review of recent
FPGA accelerators for SVM is presented.

A parallel hardware architecture for SVM using a systolic
array of vector processing units to process multiple support
vectors (SVs) in parallel is proposed in [5] and extended to a
cascade SVM classifier for real-time object detection in [6].
The main limitation of these works is that all the coefficients
and SVs are stored in on-chip memory, which means that the
number of SVs is limited by the memory resources in FPGA.
In [7], another SVM architecture based on a Verilog RTL
description is proposed. It uses on-chip FIFOs to store all the
SVs and can process no more than 20 SVs in parallel, with no
parallelism on the SVs dimension or the number of features
Nf : as we will see, our design can support more features and a
higher clock frequency. The works in [8]–[11] also used RTL,
either created manually or with Xilinx System Generator.

High Level Synthesis (HLS) enables a more efficient design
space exploration than RTL manual design. In [12], an HLS

design for SVM acceleration in the application of melanoma
detection is proposed, which is extended for better perfor-
mance in [13], [14]. Due to the assumption of local storage of
SVM coefficients, this design is tested on small-scale problems
with 27 features and a maximum of 346 SVs. In [15] a linear
multi-class SVM is used for brain cancer detection in Hyper-
Spectral Images (HSI). Due to the large dimensions of HSI
datasets, the input vector could not be stored in local memory.
However, due to the linear kernel used in this work, the
main part of kernel computation is processed off-line and the
weighted summation of all SVs is stored as a single vector, in
a way that only one vector is used in on-line computations. In
[16], a methodology to extract parallelism from software code
is introduced for optimized annotation of C code with HLS
directives, and is tested on SVM. Although different levels of
hardware parallelism are explored in this work, the authors
considered local storage for the inputs and did not report the
time required to read and store all the inputs.

Previous SVM works usually ignored scalability, which
allows the same design to be used for larger data dimensions.
Usually, coefficients and SVs are stored in on-chip memory,
which is a method useful for small scale problems but cannot
be used for large data dimensions and/or low-cost FPGAs due
to the lack of local memory. Indeed, it is possible to do the
SVM computations while reading the required data from an
external memory, hence increasing the overall throughput. This
is the main idea on which our dataflow design is based.

Most of the previous designs only considered binary clas-
sification or simple kernel functions. Multi-class classification
is a more challenging problem requiring more computations,
specially if complex kernels are used. In this paper, we propose
a scalable hardware accelerator for multi-class SVM classifi-
cation in FPGA by using an efficient dataflow architecture
designed entirely in HLS. These are our contributions:

• A specialized dataflow hardware accelerator for SVM
algorithm in FPGAs that can scale to support different
data dimensions while guaranteeing a high throughput.

• Support for multi-class classification and various kernels.
• Adjustable parallelism by HLS-based configurations and

efficient implementation of fixed-point design.

II. SVM BACKGROUND

SVM algorithm for binary classification obtains a decision
boundary as a hyper-plane that maximizes the margin between
two classes as shown in Fig. 1. For linear classification, the



Fig. 1. SVM classification with linear kernel.

hyper-plane can be expressed as wTx+ b = 0, where w and b
are obtained during training, and x is a 1-D input vector with
Nf elements. The inputs that lie on the margin are termed
Support Vectors (SVs). A total number of NSV vectors can
be stored as a 2-D array of size NSV × Nf . To obtain w and
b, a dual problem is constructed by using Lagrange multipliers
(indicated as αi parameter for each input). After training, αi

are obtained and all the inputs for which αi 6= 0 are regarded
as support vectors (SVi). Finally, w and b can be obtained
from αi and SVi and the decision boundary can be written as

Decision =

NSV∑
i=1

αiK(x, SVi) + b, (1)

in which SVi is the ith support vector and K(·) is one of the
Kernel functions in Tab. I. For linear problems, the Kernel
is a dot product; for non-linear problems, the Kernel will
transform the input space into one where the classes are
linearly separable. Note that in (1) αi must be multiplied by
the labels of the support vectors (yi), which for clarity, we
considered is done internally (αi = αiyi).

TABLE I
KERNEL FUNCTIONS IN SVM.

Kernels: K(x, SV i)
Linear x · SVi

Radial Basis Funtion (RBF) exp(− ‖x−SVi‖
2)

2σ2

Polynomial (Poly) (c1(x · SVi) + c2)P

Sigmoid tanh(c1(x · SVi) + c2)

For binary classification, the sign of Decision is simply
used for the prediction. For multi-class, we used one-vs-one
(ovo) method, in which all pairs of classes are compared using
(1) and based on the majority vote, the final prediction is
computed. With Nc classes, the total number of comparisons
(i.e., the decision vector size) for ovo is Nd = Nc(Nc− 1)/2.

III. PROPOSED SVM ACCELERATOR

To increase the overall throughput and reduce the on-
chip storage, we propose the Dataflow hardware architecture
illustrated in Fig. 2. Instead of storing all the SVM input data
in on-chip memory, we read chunks of data from the external
memory, transfer them through the FIFO channels, and do

the subsequent computations while the next chunk is being
read. We can design such a hardware architecture in HLS by
defining a dataflow region between three functions in the main
module related to the processing and reading the SVM data.

As shown in Fig. 2, three functions for SVM computations
are Read, Kernel, and Decision. Read distributes the chunks
of input read data through the FIFO channels. Since the major
part of SVM computations is dedicated to the dot product
between the input features, we match the size of a block of
input features to a data chunk. Kernel reads the chunks from
the FIFOs, calculates the kernel function and sends the result
to the next FIFO channel. Decision receives the kernel output
from the FIFO as well as three other input coefficients, and
computes the final prediction, denoted as Vote in Fig. 2. We
use Vivado HLS since we target Xilinx FPGAs and with this
tool we can use a dataflow directive and hls::stream variables
for the FIFO channels to obtain the implementation of Fig. 2.

A. Read SVM inputs

The data are stored as 32-bit floating-point values in an
external DDR memory. Depending on the maximum DDR data
width (DWddr, in bits), DDR frequency (fddr), and working
clock frequency (fw), the maximum number of 32-bit data
that can be read from the memory in one clock cycle is N =
(DWddr/32) × ((2 × fddr)/fw). For large-scale problems,
storing SV in FPGA memory is the main limitation. In this
work, we consider SV s and the test vector (x) stored in off-
chip and on-chip memory, respectively. However, with enough
memory bandwidth, both of them can be stored in external
memory.

The Read function will transfer the input data to the Kernel
function through BF FIFO channels, as indicated in the left
part of Fig. 2, in such a way that the Kernel function can
process BF data in parallel. Ideally, we want N = BF
because it is not possible to write more than N values to the
FIFO channels in each clock cycle. However, by increasing
BF we speed up the Kernel function, although we slow down
the Read one. This is shown in Fig. 3, where by increasing BF
we increase the Initiation Interval (II)1 of the Read function,
but this is in part masked by the overlapping of Read and
Kernel functions due to the pipelining effect of the Dataflow
implementation, and is compensated by the higher throughput
of the Kernel function due to the greater parallelism. To
keep the pipeline balanced, BF and N , which are defined
as configurable variables in the HLS code, should be properly
related. For this, we use the SVM latency equation (T ) from
the maximum latency of Read, Kernel, and Decision

T ≈ NSV ·Nf ·max{IIR
BF

,
IIK
BF

,
IID

Nf · DF
}, (2)

where the approximation comes from considering only the II
of the various functions and from not considering the latency
of the iterations. Indeed, IIR, IIK , and IID are the II of Read,
Kernel, and Decision, respectively. In large-scale problems, the

1Minimum number of clock cycles before the next input data can be
received.



Fig. 2. Proposed SVM accelerator in HLS.

Fig. 3. Impact of the number of FIFO channels (BF ) with a total of 4×8 =
32 data, (a) BF = N , (b) BF = 2N , overall latency is reduced.

Decision term is small and the total latency is determined by
the maximum value between IIR/BF and IIK/BF . There-
fore, a balanced pipeline would require IIR = IIK and since
IIR = BF/N , we should have IIK = BF/N. If we have
IIK < BF/N we end up with a memory-bound performance,
otherwise the performance would be computation-bound. In
the ideal case, if II for all the functions is 1, we must select
N = BF to match the throughput. Note that there is an
iteration latency (L) to add to the latency of each function and
that Kernel has a higher L than Read. Therefore, in a balanced
dataflow, the latency between Read and Kernel is determined
by the Kernel latency. As we will see, for this reason it is
sometimes preferable not to have a perfectly balanced pipeline
and select, for example, BF = 2N : Read will be the dominant
part, but the overall latency will decrease.

B. Kernel computation

The hardware architecture for Kernel computation is shown
in the middle part of Fig. 2. Note that to compute the RBF
kernel, we need to subtract the inputs and compute its squared
norm to be used in the exponential function. For other kernels,
only the dot product between the inputs are computed. This is
shown in Fig. 2 by a control signal (RBF or others) for clarity.

The parallelism of the computation is matched to the num-
ber of FIFO channels, as we instantiate BF parallel elements
for the dot product, with BF multipliers (and subtractors for
the RBF kernel). This can be obtained by partial unrolling

Fig. 4. Manual unrolling for kernel computation.

directive in HLS with a factor of BF . Due to the accumulation
in the dot product, if we use one scalar variable to store the
accumulation (after + = operation in Fig. 2), HLS tool cannot
schedule the design with partial unrolling as we expect because
of the data dependency on the scalar variable. Therefore, we
use manual unrolling as shown in Fig. 4 (for clarity, only
linear kernel is shown) and define an array of size BF to
hold the result of each multiplication. By fully partitioning this
array and computing the addition of all its elements (shown
as adders), the dot product will be computed.

After the dot product, a non-linear function selected based
on the SVM kernel can be applied, if needed, otherwise for
the linear case the dot product is passed directly to the output.

C. Decision function

The Decision function, depicted in the right part of Fig. 2,
stores the kernel FIFO stream from the previous function in
a BRAM, computes the Decision based on (1), and stores
the decision vector in another BRAM (Dec). For multi-class
classification, the decision must be calculated for each pair
of classes. The range and number of support vectors in each
class are received from another input (range SV). Based on the
decision vector, the number of votes for each class is calculated
and the majority vote determines the final prediction (Vote).

Decision computation consists of two main loops for one
pair of classes. For the same reason described in Sec. III-B
for the accumulation, we manually unrolled these loops with
factor DF to increase the efficiency. DF is the third HLS
parameter to control the level of hardware parallelism.



D. Fixed-point implementation

To design a fixed-point SVM accelerator, we converted the
floating-point data received from the Read function to a fixed-
point value in the Kernel function. We explored the accuracy
loss in hardware by varying the bit widths of each variable.
Once the optimum fixed-point precision for all variables
are obtained, HLS synthesis tool estimates the performance.
To obtain the optimum precision, we divided the variables
into three main parts that are used in Inputs, Kernel, and
Decision computations. For the inputs, we selected < 10, 1 >
(< total, integer >) for x, SV , bias and < 21, 5 > for α. For
Kernel and Decision computations, we selected < 21, 11 >
and < 28, 10 >, respectively. For MNIST dataset, these values
result in the minimum accuracy loss in hardware.

IV. RESULTS

Using Sklearn and an SVM model with RBF kernel, we
first trained a classifier for the MNIST dataset. After training,
we obtained 16036 SVs with size 784 (NSV = 16036, Nf =
784). The test vector, support vectors, and other coefficients
are sent to the SVM accelerator for the classification. We
used Vivado HLS 2018.2 and the low-cost Zynq SoC of the
ZedBoard for the evaluation of the performance. In addition
to the MNIST case, we measured the hardware performance
for other data dimensions to compare with previous works.

To show the impact of HLS-controlled parameters we report
processing time and resource usage in Tab. II. Our accelerator
can be used in various FPGA platforms by tuning N to adapt
to the maximum memory bandwidth and by tuning BF to
optimize the processing time. For the MNIST dataset, DF
has no effect as the latency of Decision is negligible.

The first four experiments in Tab. II are with floating-
point computation. In this case we have IIK = 5 and a
computation-bound performance. Starting from the first ex-
periment (N=BF=4), we can see that by increasing BF first
to 8 and then to 16, the latency is reduced. Notice the increase
in the resource usage due to BF and the negligible accuracy
loss in fixed-point design compared to the floating-point one.

TABLE II
MNIST DATASET: PERFORMANCE AND RESOURCE USAGE.

Experiment 1 2 3 fix1 fix2
N 4 4 4 8 8

BF 4 8 16 8 16
BRAM (%) 15 16 19 12 15
DSP48 (%) 20 23 28 7 11

FF (%) 8 10 13 11 16
LUT (%) 24 28 35 40 62

Latency (ms) 166.93 91.57 58.69 18.12 15.72
Accuracy (%) 98.56 (float) 98.55 (fixed)

The last two experiments are with fixed-point computation.
In this case IIK=1 and it is possible to have a memory-
bound performance. Therefore, increasing N from 4 to 8, the
maximum allowed by the Zedboard platform, can be helpful.
When N = BF (experiment fix1), although the pipeline is
balanced, the Kernel iteration latency has an impact on the
overall performance. Therefore, by increasing BF (experiment
fix2), we obtain a further latency decrease.

TABLE III
COMPARISON OF DIFFERENT SVM KERNELS.

kernels RBF Linear Poly Sigmoid
Time (ms) 58.69 53.88 58.53 64.94

BRAM (%) 0 0 5 3
DSP48 (%) 23 9 24 31

FF (%) 6 3 6 9
LUT (%) 16 8 13 23

Tab. III compares the performance of different SVM kernels.
Sigmoid kernel has the highest resource usage and time, which
is related to its computational complexity. Tab. IV shows a
comparison of different HLS-based SVM accelerators in Zynq
FPGA. Our dataflow design improves by about 10× the pro-
cessing time with less BRAM usage and more LUTs. In Tab. V
we compared the number of features, SVs, and processing time
for our design with two other FPGA accelerators designed
manually in RTL. Due to the high scalability, our design
can support higher number of SVs and features, with higher
frequency and 4.4× speed-up by using more resources.

TABLE IV
COMPARISON OF THE PROPOSED ACCELERATOR WITH DIFFERENT SVS

AND SAME NUMBER OF FEATURES (Nf = 27) IN THE SAME FPGA
(MODEL1 AND MODEL2 USE DIFFERENT PRE-PROCESSING METHODS ON

TRAINING DATA).

[12] [13]
(model1)

[13]
(model2)

[14]
(model1)

[14]
(model2)

Proposed
(dataflow)

NSV 248 61 248 248 346 346
freq (MHz) 100 250 250 250 100 100
Time (µs) 83.66 11.46 39.3 33.5 136 13.15

Interval (µs) 83.67 11.46 39.3 33.5 136 8.15
BRAM (%) 11 34 34 12 11 2
DSP48 (%) 61 2 2 61 61 88

FF (%) 13 10 28 13 13 30
LUT (%) 94 14 33 24 24 90

TABLE V
PERFORMANCE COMPARISON WITH TWO MANUAL RTL DESIGNS.

[7] [11] This work
NSV 100 60 100
Nf 500 1024 1024

FPGA Virtex 5 Cyclone II Zynq 7000
freq (MHz) 50 30 100
Time (ms) 0.25 2 0.45
#BRAM - - 39
#DSP48 52 20 83

#FF 9646 - 19687
#LUT 38179 14064 25758

V. CONCLUSIONS

We presented a scalable dataflow hardware architecture
in FPGA by using HLS to accelerate SVM inference. The
hardware parallelism can be controlled by three HLS-based
configurations to adapt to small and large scale problems. In
addition, a fixed-point design is introduced to speed up the
computation. Experiments on different data dimensions and
support vectors show a minimum of 10× latency improve-
ment compared to similar HLS-based and 4.4× improvement
compared to RTL-based designs.
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