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Abstract—The unpredictability of seizures continues to distress
many people with drug-resistant epilepsy. On account of recent
technological advances, considerable efforts have been made
using different hardware technologies to realize smart devices for
the real-time detection and prediction of seizures. In this paper,
we investigate the feasibility of using Memristive Deep Learning
Systems (MDLSs) to perform real-time epileptic seizure predic-
tion on the edge. Using the MemTorch simulation framework and
the Children’s Hospital Boston (CHB)-Massachusetts Institute
of Technology (MIT) dataset we determine the performance of
various simulated MDLS configurations. An average sensitivity of
77.4% and a Area Under the Receiver Operating Characteristic
Curve (AUROC) of 0.85 are reported for the optimal configura-
tion that can process Electroencephalogram (EEG) spectrograms
with 7,680 samples in 1.408ms while consuming 0.0133W and
occupying an area of 0.1269mm2 in a 65nm Complementary
Metal–Oxide–Semiconductor (CMOS) process.

Index Terms—RRAM, Deep Learning, Seizure Prediction

I. INTRODUCTION

THE backbone of smart healthcare is the Internet of Medical
Things (IoMT), which is an amalgamation of medical

devices and applications that connect through the internet
to healthcare Information Technology (IT) [1] to overcome
the shortcomings of traditional healthcare. The IoMT has the
potential to give rise to many medical applications, including
mobile epileptic seizure prediction, which is the primary focus
of this paper.

IoMT edge devices can be used to perform computations
locally, reducing latency and alleviating privacy concerns when
sensitive medical data is processed. Moreover, they can be
used to realize closed-loop systems, which are highly desirable
for patient monitoring and treatments [2]. In Fig. 1, we
depict three different application scenarios of our proposed
seizure prediction system. To enable such a smart Deep
Learning (DL)-based system to operate in real-time at the
power-constrained edge, Resistive Random Access Memory
(RRAM)-based in-memory DL computing architectures [3]
could be used [2]. In this paper, we investigate the feasibility
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Fig. 1: Application scenarios of the proposed system, which
is able to facilitate a variety of treatment types.

of using MDLSs to perform real-time epileptic seizure pre-
diction at the edge to enable a mobile solution. Our specific
contributions are as follows:

1) We are the first to investigate an in-memory DL ap-
proach to epileptic seizure prediction;

2) We explore a variety of weight-representation schemes
while accounting for some device nonidealities, and
compare the performance of our approach to other DL
approaches;

3) We determine the power and area requirements for the
optimal configuration, and investigate its feasibility for
eventual hardware realization.

II. RELATED WORK

To the best of our knowledge, all existing hardware imple-
mentations tasked for epileptic seizure detection and predic-
tion have been realized using Field Programmable Gate Ar-
ray (FPGA), CMOS and Very-large-scale Integration (VLSI)
technologies. Most existing hardware implementations detect
epileptic seizures using traditional Machine Learning (ML) al-
gorithms such as Linear Least Squares (LLS) [7], Support Vec-
tor Machines (SVMs) [8], and k-nearest neighbors (kNN) [9].
We refer the reader to [10] for a comprehensive survey
of epileptic seizure detection and prediction systems. While
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Fig. 2: A simplified block diagram (a–e) of the proposed system and (f) a depiction of the methodology used to generate
synthetic preictal samples. Raw EEG signals (a) are measured using several electrodes, which are (b) sampled using Analog
to Digital Converters (ADCs). CMOS circuits [4], [5] are used to filter and generate (c) spectrograms for each window, t,
using the discrete Short Time Fourier Transform (STFT). A (d) MDLS is used to perform in-memory computation to predict
the state of future samples that are to occur in the Seizure Occurrence Period (SOP) (preictal or interictal) during the Seizure
Prediction Horizon (SPH). During training, (f) synthetic preictal samples are generated to balance the number of preictal and
interictal samples. Extra preictal samples are generated by sliding a 30 second window along the time axis at every step, S,
over preictal signals [6].

Artificial Neural Networks (ANNs) have previously been used
for epileptic seizure detection [11] and prediction [12] on
FPGA, no previous work has investigated the use of memris-
tors for the detection or prediction of epileptic seizures using
DL, which could drastically improve the performance on the
IoMT edge.

III. PRELIMINARIES

A. Seizure Forecasting Systems

There is emerging evidence [13] that the temporal dynamics
of brain activity of people with epilepsy can be classified
into 4 states: interictal (between seizures, or baseline), preictal
(prior to seizure), ictal (seizure), and post-ictal (after seizures).
Seizure forecasting or predictive systems aim to classify the
preictal brain state.

B. Memristive DL Systems

Memristive devices can be arranged within crossbar archi-
tectures to perform Vector Matrix Multiplications (VMMs)
in-memory, in Op1q [14], which are used extensively in for-
ward and backward propagations within Convolutional Neural
Networks (CNNs) to compute the output of fully connected
and unrolled convolutional layers. Scaled weight matrices can
either be represented using two crossbars per layer, gpos and
gneg, to represent positive and negative weights, respectively,
or using a singular crossbar per layer with current mirrors, so
that the effective conductance of each device is offset by a
fixed value, gm, that can be determined using (1) [15]

gm “ ´2{p ¯RON ` ¯ROFFq, (1)

where crossbar column currents can be multiplied by a layer-
specific scaling parameter, K, to determine layer outputs.
When a single device is used to represent each parameter,
constant currents to mirror can easily be realized using a diode-
connected NMOSFET by adjusting the NMOSFET channel

width so that it has a passive conductance gm. Given scala-
bility issues, large crossbars can be split into smaller ones,
referred to as either modular crossbar arrays, or crossbar
tiles [16] to compute the output of linear and convolutional
layers with a large number of weights.

IV. PROPOSED SYSTEM

A simplified block diagram of the proposed system is pro-
vided in Fig. 2. We confine the scope of this paper solely to the
memristive DL system component depicted in Fig. 2(d), and
only consider instances where learning is performed offline.

A. Network Architecture

The network architecture used is summarized in Table I,
where n is the number of electrodes that are used to sample
EEG signals, t is the window size in seconds, and p can be
determined using (2)

p “ tfs{ks “ 2t, (2)

where ks denotes the number of overlapped samples, which
for all cases in this paper is fixed to 128, i.e., half the sampling
frequency, fs. Batch normalization and the ReLU activation
function is applied to the output of all convolutional layers
and the first fully connected layer. The output of the last fully
connected layer is fed through a Softmax activation function.
In contrast to other architectures used in related works [6],
[17], [18], our architecture uses only linear, 2d-convolutional,
max pooling, and batch normalization layers.

B. Training and Validation Datasets

For training and validation of our MDLS, we used the
CHB-MIT [19] dataset, which consists of EEG recordings
from 22 pediatric subjects with intractable seizures. For our
preliminary study reported in this paper, 5 random patients
were chosen. We leave evaluation using all subjects from the
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Fig. 3: The average sensitivity and False Prediction Rate (FPR) across all 5 folds for simulated double column MDLS
configurations.

CHB-MIT and other datasets, such as the American Society
Seizure Prediction Challenge (ASSPC), to more exhaustive
future works.

C. Preprocessing Steps

Within the CHB-MIT dataset, there are instances where
multiple seizures occur in close proximity to each other. For
seizure prediction, we are interested in predicting leading
seizures. Consequently, seizures that occur ď T minutes after
a previous seizure are not considered, where T denotes the
SOP. All time-series EEG signals are translated into time-
frequency signals using STFTs with a window length of t
seconds (Fig. 2(e-f)). Similarly to [6], power line noise was
removed by excluding components in the frequency ranges of
57–63 Hz and 117–123 Hz. The DC component (at 0 Hz) and
components of frequencies above 114 Hz were also removed.

D. Training and Validation Methodologies

On account of the large class imbalance between preic-
tal and interictal samples, we use an overlapped sampling

TABLE I: Network architecture employed. For each con-
volutional and pooling layer, f is the number of filters, k
determines the filter size, and s denotes the stride length. For
each fully connected layer N denotes the number of output
neurons.

Input (nˆ pˆ 114)

Layer Output Shape

Convolutional, f “ 16, k “ p5, 5q, s “ p2, 2q p16ˆ rp´ 3s{2ˆ 55q
Max Pooling, k “ p2, 2q p16ˆ rp´ 3s{4ˆ 27q
Convolutional, f “ 32, k “ p3, 3q, s “ p1, 1q p32ˆ rp´ 11s{4ˆ 25q
Max Pooling, k “ p2, 2q p32ˆ rp´ 11s{8ˆ 12q
Convolutional, f “ 64, k “ p3, 3q, s “ p1, 1q p64ˆ rp´ 27s{8ˆ 10q
Max Pooling, k “ p2, 2q p64ˆ rp´ 27s{16ˆ 5q
Fully Connected, N “ 256 p256q
Fully Connected, N “ 2 p2q

technique, which was originally proposed in [6], to train the
adopted network architecture. This is depicted in Fig. 2(f).
Extra preictal samples are generated by sliding a t second
window along the time axis at every step, S, over preictal
samples, which is chosen so that there are a similar number
of samples per class (preictal or interictal). The Negative Log
Likelihood Loss (NLL) function was used in conjunction with
the DiffGrad optimization algorithm, which has been shown
to outperform other optimizers [20], to train the networks with
an initial learning rate of 1e´4 and batch size of 256 for 50
epochs, when performance stagnated. For a correct prediction,
a seizure onset must be after the SPH and within the SOP,
as depicted in Fig. 2. The metrics used to test the proposed
approach are the accuracy, sensitivity, AUROC, and the FPR,
as shown in Table II. For each subject, performance is reported
using k “ 5 stratified K-fold cross validation, where synthetic
samples are discarded during evaluation. All implementations
adopted the following parameters: T “ 30 minutes, t “ 30
seconds, and a SPH of 35 minutes.

V. PERFORMANCE EVALUATION

The MemTorch [15] simulation framework was used to sim-
ulate RRAM devices during inference using the VTEAM [21]
model. Performance metrics for our trained conventional and
equivalent MDLS are reported in Table II. When predicting
EEG seizures, it is common to have isolated false positives
during interictal periods [6]. In recent works, discrete-time
Kalman filters and least-k-prediction post-processing tech-
niques have been adopted, however, they introduce a signifi-
cant hardware overhead.

In Fig. 3, we report the sensitivity and FPR for all
simulated configurations adopting a double column weight-
representation scheme, as the performance of all configurations
adopting a single column weight-representation scheme is
insignificant. Consequently, we determine the optimal config-



TABLE II: Patient information and performance metrics across all folds for our trained conventional CNNs and their
equivalent MDLSs adopting a double-column parameter-representation scheme.

Patient Seizures Interictal Duration (h) S Accuracy (%) Sensitivity (%) AUROC FPR (/h)

1 7 17.0 7.122 94.36˘0.99 79.72˘0.01 0.97˘0.01 01.4˘0.2
2 3 22.9 1.684 94.36˘1.40 94.31˘0.01 0.97˘0.01 01.6˘0.4
5 5 13.0 5.060 74.16˘1.82 80.42˘0.01 0.85˘0.01 08.0˘0.5
19 3 24.9 1.687 96.33˘0.66 54.72˘0.00 0.50˘0.00 20.6˘0.0
23 5 3.0 7.244 94.43˘3.08 79.51˘0.02 0.96˘0.02 07.8˘4.4

uration to be a network adopting a double column weight-
representation scheme. We attribute the high FPR for all
trained networks and simulated configurations to the omission
of any data post-processing, which is out of the scope of this
paper. For all devices, ¯RON “ 100Ω and R̄OFF “ 2, 500Ω [22].
Two non-ideal device characteristics were modelled: device-to-
device variability, and a finite number of discrete conductance
states. Device-device variability was introduced stochastically
by sampling RON and ROFF for each device from a normal
distribution with ¯RON “ 100Ω and σ, and ¯ROFF “ 2, 500 and
2σ, as ¯ROFF " ¯RON [15], for σ = 0–500. As it has been demon-
strated that the spacing between states is not critical [23], we
simulated devices with between 2—10 uniformly distributed
conductance states.

From Fig. 3, it can be observed that for patients 1, 2, 5,
and 23, the sensitivity and FPR decreased when the number
of conductance states decreased and device-device variability
increased. Interestingly, while the number of finite conduc-
tance states did not have a large influence on the reported
sensitivity and FPR for these patients, device-device variability
did. The sensitivity has a relatively sudden transition period at
σ ą 300, when the distributions of RON and ROFF overlapped,
causing the sensitivity to abruptly decrease. Conversely, the
FPR was much more sensitive to device-device variability. It
is noted that, for patient 19, we report an average accuracy of
96.33% and sensitivity of 54.72%. While this result cannot be
clearly explained, it is not uncommon in literature, and other
DL works [6], [18] using the same dataset also report a high
accuracy and low sensitivity, near 50% for the same patient.

A. Comparison to Other DL Models

Since previous related works [6], [18] do not use a consis-
tent testing methodology, we can only roughly compare our
results to them using the sensitivity and FPR metrics from
patients 1, 2, 5, 19, and 23 from Table II. Ref. [6] and [18]
report total sensitivities of 81.2% and 87.8%, and FPRs of
0.16/hr and 0.14/hr, respectively. In [18] clinical considerations
were discarded and a zero SPH was used. Consequently, the

TABLE III: Power, area, and latency requirements of the
optimal configuration using 128ˆ128 crossbar tiles for TDM
and parallelized implementations (Imp.).

Imp. Power (W) Area (mm2) Latency (ms) Energy (mJ)

TDM 0.0133 0.1269 1.408 0.0187
Parallelized 1.7 8.5089 0.011 0.0187

reported performance is likely inflated. Nevertheless, as we
did not perform any data post-processing, compared to both
works, all of our networks have significantly larger FPRs. In
Table II, we report an average sensitivity of 77.74%, which
is lower than that reported in [6] and [18]. Our result is
still significant, because we use 2d-convolutional layers, max
pooling, and fully-connected layers, and perform minimal data
processing, while [6] used 3d-convolutional layers and [18]
performed hyper-parameter optimization to obtain the lowest
average validation loss over a 10 fold cross-validation.

B. Power, Area, and Delay Analysis

To determine the power and area requirements as well as
the latency, which dictates the inference time of the optimal
configuration, we map each layer of our deep network to mod-
ular 128ˆ128 crossbar tiles with no shared weights between
layers using parameters for 65nm technology from [24]. The
area and power of each ADC (8-bit) is, therefore, calculated to
be 3ˆ10´3mm2 and 2ˆ10´4W, and the area of each RRAM
cell is estimated to be 1.69ˆ10´7mm2. During inference, we
assume constant operation at V “ 0.3V per active cell, the
largest voltage used to encode inputs, and an average cell
resistance of pR̄OFF ` R̄ONq{2. All ADCs are assumed to
operate at 5 MHz, and the number of tiles used for each
network is assumed to be the exact number required to balance
the latency among layers. RRAM read latency is considered
negligible compared to ADC readout.

Table III shows the power, area, latency, and energy of
our optimal configuration for configurations where samples
are continuously fed to the network from a First-In First-Out
(FIFO) buffer. We compare requirements for implementations
for which each tile contains one ADC, and Time-Division
Multiplexing (TDM) is used to read out column currents
(denoted TDM), and for which each tile contains one ADC
per column to read out column currents in parallel (denoted
Parallelized). Given the large window length used, further du-
plication of crossbar tiles to improve throughput was deemed
unnecessary.

VI. CONCLUSION

We investigated the potential of memristors to contribute
to the design of a DL-based seizure prediction device. Our
findings demonstrate that MDLS holds great promise for
developing a compact epileptic seizure prediction architecture
capable of low-power and real-time mobile operation. Our
optimal configuration exhibits comparable performance to ex-
isting DL works in the literature while consuming significantly



less power than current Mobile Graphics Processor Units
(mGPUs) and edge processors [2]. In future, the longevity and
reliability of such a system should be properly investigated.
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