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Abstract—Several recent works have shown the advantages of
using phase-change memory (PCM) in developing brain-inspired
computing approaches. In particular, PCM cells have been
applied to the direct computation of matrix-vector multiplications
in the analog domain. However, the intrinsic nonlinearity of
these cells with respect to the applied voltage is detrimental.
In this paper we consider a PCM array as the encoder in a
Compressed Sensing (CS) acquisition system, and investigate the
effect of the non-linearity of the cells. We introduce a CS decoding
strategy that is able to compensate for PCM nonlinearities by
means of an iterative approach. At each step, the current signal
estimate is used to approximate the average behaviour of the
PCM cells used in the encoder. Monte Carlo simulations relying
on a PCM model extracted from an STMicrolectronics 90 nm
BCD chip validate the performance of the algorithm with various
degrees of nonlinearities, showing up to 35 dB increase in median
performance as compared to standard decoding procedures.

I. INTRODUCTION

Due to its successful integration in CMOS fabrication pro-
cesses, its high throughput and read/write endurance, phase-
change memory (PCM) can be considered as a valid technol-
ogy for next-generation non-volatile memories (NVMs) [1].
PCM relies on the reversible transition of a chalcogenide
material between its crystalline (or SET) and amorphous
(or RESET) state. The electrical resistivity observed in the
amorphous state decreases by several orders of magnitude in
the crystalline one. Minimum impact on process complexity
is guaranteed by the embedded PCM (ePCM) technology
which includes also high-power and high-voltage integrated
components [2], [3].

A widely investigated application of PCM technology is
Analog In-memory Computing (AIMC), which is an enabling
support for enhancing the next generation of application-
oriented hardware. In the field of AIMC, analog elements are
used to perform matrix operations simply exploiting Ohm’s
and Kirchhoff’s Laws. With reference to the ENCODER in
Fig. 1, given a cell with conductance g, a single multiplica-
tion is achieved by applying an input voltage v to the cell
and reading the output current i = gv. If the outputs of
several gj cells, each with its own applied voltage vj , are
combined, a sum of products is obtained. It is then possible
to interpret the whole memory as a conductance matrix G of
size m× n; applying a voltage vector to each row, a matrix-

Fig. 1. Architecture of a PCM-based system for CS applications with the
proposed decoder. The encoder implements the ideal, binary sensing matrix
A by PCM conductances. The decoder reconstructs the original signal by
iteratively computing the estimate of the real sensing matrix Ĝ.

vector multiplication is obtained [4]. All the computation is
carried out inside the analog memory chip, avoiding digital
data to be transferred between conventional memory chips and
processors. Regrettably, PCM cells present several drawbacks
when used as analog multipliers. One of these is the non-
linearity of their i(v) characteristic, which translates into a
dependence of g on the applied voltage v.

Compressed Sensing (CS) is an ideal candidate for AIMC.
CS is a signal acquisition technique capable of reconstructing
a signal from a number of scalars, called measurements, that is
smaller than in a traditional Nyquist-rate system. The encoding
step producing those measurements is indeed a matrix-vector
product and can be implemented by a PCM array. Signal
decoding, however, requires the exact a priori knowledge of
G, which is not possible if it is signal dependent.

In this work, we propose an iterative technique allowing
the recovery of the acquired signal even when measurements
are produced by strongly varying conductances. At its core,
the proposed method iteratively executes known decoding
algorithms. At each iteration, the input signal is estimated,
then a better representation of the signal-dependent conduc-
tance matrix is obtained and the updated matrix exploited
in the subsequent iteration until convergence. The technique
shows promising results, enabling the use of highly voltage-
dependent SET conductance states which would have unsatis-
factory performance with a standard decoder.

The adopted technology and its characterization are de-
scribed in Section II, while an overview of Compressed



Sensing theory is outlined in Section III. The proposed tech-
nique is defined in Section IV. Section V presents the results
obtained in system-level, Monte Carlo simulations. Finally, the
conclusion is drawn.

II. PCM TECHNOLOGY AND CHARACTERIZATION

We consider an ePCM test chip designed and manufactured
by STMicroelectronics [1] in a 90-nm BJT-CMOS-DMOS
(BCD) technology featuring a specifically optimized Ge-rich
Ge-Sb-Te (GST) alloy. The chip is intended for digital storage
in automotive applications and contains 8 independent 256-
kB macrocells, together with voltage and current regulators.
The ePCM elementary cell is based on an NMOS selector
[5] and occupies 0.19 µm2 of silicon area. A custom PCM
evaluation board (designed ad-hoc for testing purposes) has
been employed.

A total of 5120 cells have been programmed with SET-
pulses of different intensities, and immediately characterized
in the i/v domain. Typical behaviors have been obtained by
averaging all the i/v curves, associated to different physical
cells, falling within a ±5% of an arbitrarily selected reference
current iref , evaluated at a reference voltage vref . Fig. 2a
shows three such average behaviors, each corresponding to a
different reference current and normalized with respect to the
maximum value of the state #1 curve. The arbitrary reference
points have been identified so as to highlight significantly
different conductance behaviours. The saturation of current
profiles clearly visible at v > 0.8 is due to the reading circuit
transistors entering the saturation region. In the following, we
will consider the three curves depicted in the figure as the
nominal i(v) behavior of typical cells in three different pro-
gramming states, denoted as #1, #2 and #3. The corresponding
large-signal, normalized conductances defined as g = i/v
are shown in Fig. 2b in which non-constant trends reach a
maximum around v = 0.5

Although we expect conductances in state #1 to perform
better in terms of reconstruction quality, they lead to the least
power-efficient solution, having larger absolute conductance
values. Hence the motivation to devising a strategy enabling
the use of lower, more voltage-sensitive conductance states.

III. COMPRESSED SENSING

Compressed Sensing [6]–[8] enables simultaneous signal
acquisition and compression by performing a low-complexity
linear encoding phase which can be considered as a trivial
matrix-vector product. With respect to a standard compression
algorithm, complexity is moved to the decoder side, where a
minimization problem needs to be solved for signal recovery.
CS can be applied if the n-dimensional input signal x ∈ Rn
(i.e., a sequence of n consecutive samples xj , j = 1, . . . , n)
is sparse when represented in a suitable vector space. Math-
ematically, being D ∈ Rn×n the sparsity basis, and x = Dξ,
x is sparse if only a small fraction of the coefficients in ξ
are significantly non-null. The acquisition of x requires the
computation of m measurements y1, . . . , ym, with m � n,
each computed as: yk =

∑n
j=1 akjxj , (k = 1, . . . ,m) where
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Fig. 2. (a) Average, normalized i/v characteristics of PCM in three different
states. The curves have all been normalized with respect to the maximum
current in state #1, I0 (i = I/I0). The applied voltages have been normalized
as well with respect to the maximum applied voltage V0 (v = V/V0).
(b) Large-signal, normalized conductance g = i/v.

the akj’s are suitable weights. In matrix form, the previous
expression can be rewritten as:

y = Ax , (1)

where A = [akj ] is called the sensing or acquisition matrix.
The cost of such a simple acquisition phase is a complex

signal decoding, that is typically performed on a device with
high computational capabilities. Under assumptions that are
usually verified [6], [9], the recovered input signal x̂ can be
found by looking at the sparsest among all signals generating
the same measurement vector y. Formally, this corresponds to
the solution of the following minimization:

x̂ = D · argminξ |ξ|0
s.t. ADξ = y .

(2)

where | · |0 is the `0 pseudonorm, which counts the number of
nonzero elements in its argument, and that can be conveniently
replaced [9] by the easier-to-compute `1 standard norm.

The general theory of CS states that the solution of (2)
is the original input signal for Gaussian, i.i.d. weights akj .
Although, it has been shown that x can be retrieved without
significant performance degradation even by generating the
akj with a sub-gaussian distribution limited to a few discrete
levels only [10], allowing a reduction in complexity of the
encoder hardware implementation. We will exploit this and
consider a binary encoding, i.e., we set the sensing matrix
entries either to 0 or to 1 [11]–[13], thus minimizing hardware
complexity.

Note however that correct decoding requires the exact
knowledge of A, which is impossible in our analog imple-
mentation of the matrix-vector product because of the voltage
dependence of the PCM cells conductance that replaces (1)
with

y = A(x) · x .

Even assuming the exact knowledge of the voltage dependence
of a PCM cell, the decoder is unable to know the effective



sensing matrix A(x) since x is unknown. Some preliminary
studies on signal decoding after a non-linear sensing can be
found [14], [15], though they cannot be used in situations with
strong variations such as those of Fig. 2b. In the following,
we will describe a technique that copes with the signal depen-
dence of A, allowing a significant performance increase with
respect to the straightforward application of known decoding
algorithms.

In the following, as shown also in Fig. 1, we will refer
to A ∈ {0, 1}m×n as the ideal, binary sensing matrix, while
G = [gkj ] will denote its physical realization. The zeroes are
implemented through PCM cells in the RESET state (i.e., high-
impedance), for which it is reasonable to assume gkj = 0.
Conversely, for the non-zero values we use PCMs in the SET
state, such that gkj = g(xj), according to the conductance
curves in Fig. 2b.

IV. PROPOSED DECODING TECHNIQUE

In principle, our technique can use any of the known CS
decoding algorithms [16]–[18]. In the following, we will refer
to the inner algorithm as the minimizer, while we will refer
to the entire reconstruction procedure as the decoder. The
purpose of the minimizer is to solve the minimization problem
described in (2) by assuming a constant, known sensing
matrix.

The proposed decoding scheme is formally described in
Algorithm 1 and depicted in Fig. 1. Given the ideal sensing
matrix A, the observed measurements y, a reference scalar
value xref and a model describing the voltage dependence of
the conductance elements g(x) : R → R, the initial estimate
of the conductance matrix Ĝ|0 is evaluated as A · g(xref).
The matrix Ĝ|0 is used by the minimizer to compute x̂|1, the
initial signal estimate. The conductance matrix is then updated
by computing g((x̂|1)j) · akj for each of its elements, and the
new signal estimate x̂|2 is evaluated to be used in a further
iteration. If the signal estimates x̂|p converge, the conductance
matrices Ĝ|p converge, as well.

Algorithm 1: Iterative CS decoder for signal depen-
dent sensing matrices

Data: A, y, g(x), xref
Result: x̂
Ĝ← g(xref) ·A
repeat

x̂← minimizer(y, Ĝ ·D)

Ĝk,j ← g(x̂j)Ak,j ∀k = 1, . . . ,m; j = 1, . . . , n
Compute convergence metric

until convergence or timeout

Note that each iteration of the decoding algorithm requires
the solution of the minimization problem in (2), a costly
operation in itself. Hence, a possible stopping criterion would
have to balance the resources spent against the achievable
reconstruction quality.

V. NUMERICAL RESULTS

The validation of the proposed technique has been con-
ducted by performing system-level simulations with synthet-
ically generated signals. Given one of the three conductance
models depicted in Fig. 2b, each signal instance is encoded
by means of a PCM-based array whose cells in the SET
state (implementing a 1) are all described by the selected
model. From the corresponding measurements vector y, the
decoder then tries to recover the original signal, knowing the
conductance model and iteratively using it to estimate the
effective, signal-dependent conductances in the encoder.

The iterative reconstruction technique has been tested with
1000 signal instances, sparse in the Discrete Cosine Transform
basis, with n = 256, a sparsity level of 26 non-null coef-
ficients, and a high-pass spectrum profile [10, Section 2.3].
The sensing matrices are binary, of size 128× 256, with ideal
zeroes, and ones being implemented by one of the conductance
models in Fig. 2b. The minimization procedure being applied
is the Orthogonal Matching Pursuit (OMP) [16].

Before the encoding step is performed, white gaussian noise
is added to the signal to reach a predetermined value of Signal
to Noise ratio (SNR), denoted as ISNR. Up to some denoising
effects, which Compressed Sensing is known to possess [10],
this defines a target for correct recovery of the original
signal and makes the experimental setup more realistic. The
reconstruction quality obtained at iteration p is measured by
the Reconstruction Signal-to-Noise Ratio (RSNR), defined as:

RSNR = SNR(x, x̂|p) = 20 log
‖x‖2∥∥x− x̂|p∥∥2

Two sets of results are shown. The first, in Fig. 3a, ob-
serves the reconstruction quality as the number of iterations
is increased, the second, in Fig. 3b, studies the effect of
the dynamic range of the applied voltages, emphasizing the
performance gain between the first and the last iterations.

The results in Fig. 3(a) have been obtained for the dynamic
range [0, 0.8], thus avoiding the region where the current
saturates, which we expect to be problematic to work with.
The empirical Cumulative Distribution Function (CDF) of all
the RSNR datapoints being obtained at a fixed number of
iterations clearly show how the reconstruction quality grows
as more runs are performed, with a saturation of the obtainable
quality in a number of iterations that depends on the behavior
of the conductances.

For conductances of type #1, the initial quality has a median
of 33 dB and in less than 5 iterations saturates around a median
of 49 dB. Conductances of type #3, result in unacceptable
RSNR values, which do not improve significantly by increas-
ing the number of runs due to the higher voltage dependence.
Conductances of type #2, show the most interesting behavior,
starting with a median RSNR of 12 dB, they rise to 30 dB in
5 iterations and 48 dB in 20 runs. The performance increase
makes this programming state, whose performance at iteration
1 is insufficient for virtually all applications, worth consider-
ing, with the advantage of a reduction in energy consumption.
Indeed, the expected power consumption (accounting for the
probability distribution of the input signal samples) of the



Fig. 3. (a) Empirical CDFs of RSNR values for the three conductance models, with input signals in the [0:0.8] dynamic range at a selected number of
iterations for the decoding algorithm. (b) Empirical CDFs of RSNR values for the three conductance models, 30 iterations, at different dynamic ranges for
the input signals. Dotted curves represent the results at the first iteration. Dash-dotted vertical lines, both in (a) and (b), define the ISNR level, i.e. the target
reconstruction quality. (c) Mapping of RSNR values against ASNR, at a fixed dynamic range [0:0.8]. For each of the 1000 signal instances, 30 data points
are represented, one for each iteration of the decoding procedure. The horizontal line represents the ISNR value. The oblique line is the plane bisector.

PCM array decreases by 28% if conductances of type #2 are
chosen in place of type #1.

The effect of different input voltage dynamic ranges (DR)
depicted in Fig. 3(b) is studied at constant noise power, i.e.
the ISNR decreases at smaller dynamic ranges, as expressed
by:

ISNR |DR = ISNR |DRref
− 20 log

DRref

DR
.

Being the effective ISNR the target reconstruction quality,
maximizing it by making use of the largest possible dynamic
range is desirable. However the higher the allowed voltage
excursions, the higher the variation of the conductances, the
lower the chances that the iterative technique will be able
to recover the original signal. This trade-off suggests the
presence of an optimal dynamic range, as indeed shown in
the figure. The top two rows, corresponding to conductances
of type #1 and #2, confirm the expectation that the dynamic
range has to be maximized, only avoiding the region where
the access transistors saturate, resulting in a low differential
conductance. The results for the [0:1] dynamic range show
indeed a long tail towards RSNR values lower than those of
the [0:0.8] range, affecting around 25% of the tested signal
instances. Conversely, for conductances of type #3, the ISNR
value is reached only for the minimum dynamic range, [0:0.2].
Limiting the allowed dynamics to constrain the observed
variability is indeed the typical design choice in this context,
and under such a severe variation the proposed technique is
not able to extend the range further than that.

Up to this point, no convergence metric has been defined,
and the proposed decoding technique has been characterized
against a predefined number of iterations. Since we have
observed how the obtainable reconstruction quality saturates
in a number of iterations that depends heavily on the behavior
of the conductance, being lower for less variable ones, the

definition of an efficient halting criterion is highly desirable
to minimize the number of runs.

A good candidate for a convergence metric is∥∥x̂|p − x̂|p−1∥∥2, since this also implies convergence of
the effective sensing matrices Ĝ|p. It is convenient to
observe the SNR value computed from this difference, named
Algorithmic SNR (ASNR), defined as

ASNR = SNR(x̂|p − x̂|p−1) = 20 log

∥∥x̂|p∥∥2∥∥x̂|p − x̂|p−1∥∥2 ,
and depicted in Fig. 3c against the corresponding values of
RSNR, for all the instances used in Fig. 3a. Empirical evidence
supports that RSNR and ASNR are strongly linked (at least
until the ISNR is reached) though the computation of the latter
does not need the knowledge of the original signal x.

Observing that the clouds corresponding to different pro-
gramming states reach different maximum levels of ASNR,
defining convergence by setting a threshold on the observed
ASNR is not efficient, since the threshold itself would have
to be adapted to the conductance type. Moreover, it has been
empirically observed that several signal instances are not able
to achieve the threshold and run out of iterations nonetheless.
A promising approach yet to be explored is to monitor the
ASNR for the current signal instance until a local maximum
is reached.

VI. CONCLUSION

An iterative decoding procedure for Compressed Sensing
has been presented. It effectively copes with the variability
of signal-dependent sensing matrices implemented by Phase
Change Memory arrays and allows a substantial extension
of the dynamic voltage range. Numerical simulations prove
the validity of the technique, enabling the use of conductance
states with a stronger voltage dependence and leading to a
significant performance increase while reducing the overall
power consumption of the PCM array.
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