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Abstract—Spiking neural networks (SNNs) that enable low-
power design on edge devices have recently attracted significant
research. However, the temporal characteristic of SNNs causes
high latency, high bandwidth and high energy consumption
for the hardware. In this work, we propose a binary weight
spiking model with IF-based Batch Normalization for small time
steps and low hardware cost when direct training with input
encoding layer and spatio-temporal back propagation (STBP).
In addition, we propose a vectorwise hardware accelerator that
is reconfigurable for different models, inference time steps and
even supports the encoding layer to receive multi-bit input. The
required memory bandwidth is further reduced by two-layer
fusion mechanism. The implementation result shows competitive
accuracy on the MNIST and CIFAR-10 datasets with only 8 time
steps, and achieves power efficiency of 25.9 TOPS/W.

Index Terms—Spiking neural network, deep learning acceler-
ators

I. INTRODUCTION

Artificial neural network (ANN) becomes popular in re-
cent years due to its excellent performance, but it contains
a large amount of data transfer and complex calculations
that is not suitable for resource-constrained battery-powered
mobile devices. Therefore, spiking neural network (SNN), a
brain-inspired computing models, is currently developed as
an alternate to ANN since its binary spikes transmission is
relatively simple for hardware implementation. So far, [1]-
[4] have demonstrated their application specific designs enable
inference or learning with extremely low power consumption,
but they are limited to small neural network architectures or
simple datasets. Only the large-scale neuromorphic hardware
systems such as TrueNorth [5] and Loihi [6] can perform
the large-scale neural network and can reconfigure. However
these modern SNN architectures achieve lower throughput and
higher energy per neuron, compared to ANN accelerators. [/7]]
attribute this phenomenon to the temporal aspect in SNN that
process data across many time steps. This makes the inference
time extremely long and repeatedly accessing the same data
from memory will consume a lot of unnecessary energy. In
addition, a stateful spiking neuron needs to record membrane
potential every time step that will increase off-chip memory
transfer, which leads to more power consumption.

To address above issues, this paper proposes a reconfig-
urable vectorwise SNN hardware accelerator that needs small
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Fig. 1. IF neuron

time steps and low hardware cost and memory bandwidth
through model and hardware optimizations. For the SNN
model, this paper integrate the binary neural network (BNN)
training method into SNN to directly train a binary weight
spiking model, which minimizes the off-chip memory transfer
and on-chip storage. The first layer is designed to be an
encoding layer [_8]], which receives multi-bit positive inputs and
generate spikes for the next layer. This can greatly reduces the
time steps required for inference. Furthermore, the proposed
integrate and fire (IF)-based Batch Normalization (BN) reduce
BN overhead on hardware. For the hardware part, this design
can reconfigure to support different inference time steps and
models, and also supports the encoding layer to receive multi-
bit inputs as well as spiking layer processing with spike
inputs with a vectorwise input format. In addition, the memory
bandwidth is further reduced by tick batching [7] and layer
fusion mechanism. The result shows better performance and
implementation cost compared to other approaches.

II. BINARY WEIGHT SPIKING NEURAL NETWORK
A. Spiking Networks

This work adopts spatio-temporal back propagation
(STBP) [9] to directly train the network and replace Leaky
Integrate-and-Fire neuron to Integrate-and-Fire neuron (IF) to
reduce hardware cost. Fig. [I(a)] shows the behavior of IF
neurons, which includes membrane potential update (Eq. (1))
and spike firing condition (Eq. (2)).
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where V'![t] denotes the membrane potential at the time
step t, w' is the weights, o'~![t + 1] is the output spike
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Fig. 2. System architecture

from previous layer at the time step t+1, f(.) is the firing
function and Vi is the threshold. During model inference,
neurons receive asynchronous weighted input and accumulate
them into membrane potential. Whenever membrane potential
reaches the threshold, neurons fire an output spike and reset
membrane potential.

B. IF-based Batch Normalization

To further minimize off-chip memory transfer and on-
chip storage, we further combining the Binary Neural Net-
works training method into the above method to reduce
the model weights to (-1,+1). For binary neural network, batch
normalization is a widely mechanism to enable training
of the binary weight networks. However, BN suffers from
complex computation and high hardware cost. To solve this
problem, we propose an IF-based BN, which is inspired by
the bias-based BN [12]]. The IF-based BN integrates BN into
IF neuron computation by rearranging the membrane potential
integration and threshold in the firing condition from the
original formulation as Eq. (3) to Eq. (4).
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where 7, 8, i, 02 denote the BN parameters: gamma, beta,
running mean, running variance and x[t] denote convolution
output at time step t . As illustration in Eq. (4), the new
formulation just needs to subtract the convolution output with
a new bias (u— z B) and compare with a new threshold Vi
to generate the desired output spike, which reduces the extra
hardware BN overhead.

III. ARCHITECTURE AND DATA FLOW

A. Overview

Fig. 2] shows the proposed system architecture. This design
accesses weight and input from off-chip memory and stores
them into weight and spike SRAM buffers. For the spike
ping-pong buffer, one will be accessed at time-step t and the
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Fig. 3. PE array

other will be accessed at time-step t+1. The weight ping-pong
buffer stores different layer’s weight in each buffer. Each PE
block processes one channel of input spike at time step t and
each PE array computes one vector of them to generate the
convolutional partial sum. Total 32 PE blocks can process 32
channels of input. The output of PEs will be accumulated
by the accumulator to complete a convolution operation.
Then, the IF neurons accumulate membrane potential and fire
output spike accordingly. The result will go through the post
processing if needed. The result will be saved to temp SRAM
and then transferred to off-chip memory. Above process is
repeatedly for all time steps of a layer input spike before
moving to the next layer to prevent membrane potential from
being transferred off and back on chip. With this, the weight
data is also reused during the spike processing of all time
steps.

B. PE Blocks

PE block consists of three PE arrays, which is constructed
by 8x3 PEs as shown in Fig.[3] In the figure, eight input spikes
broadcast horizontally and three weights broadcast vertically.
They are multiplied using AND gate then summed up along
the diagonal direction. The outputs will be stored in ten
registers individually, which are partial sums of one filter
column for one input channel column.

Both spike (0,1) and weight (-1,+1) are binary value, mul-
tiplying them will get a set of possible multiplication result (-
1,0,1). We represent weight using only one sign bit, so weight
-1 is stored as 1 and weight +1 is stored as 0. As a result,
the multiplication result can be simply computed by a logic
equation o = {s&w, s}.

C. Accumulator

Fig. E| shows the accumulator, which is divided to a three-
stage pipeline for shorter critical path. Three vectorwise partial
sums of the same channel from three PE arrays is summed up
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(b) Data flow Scheduling

Fig. 5. (a) Data flow chart for example in Fig. |§| For the I/O part, the same
color blocks corresponds to the same SRAM. For the computation part, the
same color blocks will be summed up as partial sums. (b) Data flow scheduling
expressed by mathematical formulas.

first, and then the 32 output channels from 32 PE blocks is
summed up with a tree adder that is divided to two partial tree
adders.

If input channel number is larger than 32, they will be
further divided to groups with group size 32 and then each
group will be sent to PEs sequentially for processing. These
partial group results are then accumulated at the last stage
of the accumulator to generate the final convolution outputs.
Simultaneously, we will also store the boundary information
of a tile into the boundary SRAM and accumulate them with
output from the neighboring tile afterward.

D. Data flow of convolution

Fig. [5(a)] shows the data flow of a PE block process on
example as shown in Fig. [6] This case only assume 5x3 PE
arrays for clarity. In our data flow, one column vector of input
is broadcasted horizontally along the PE array row and one
column vector of filter weight is broadcasted vertically along
the PE array column. With this data flow, the products along
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Fig. 6. A convolution example with 5x5 inputs, 3x3 weights, and 7x3
outputs.
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Fig. 7. The mapping example of encoding layer

the diagonal direction will be summed up and then accumulate
with other PE arrays’ outputs in the same cycle to generate
convolutional results. The bottom boundary part of outputs
(e.g. OA6, OA7) will be stored in the boundary SRAM to be
accumulated with the top boundary part of outputs (e.g. OAI,
0OA?2) of the neighboring tile afterward. In this schedule, all
PEs are activated and contributed to the results, which achieves
full hardware utilization.It is worth noting that each PE block
only accesses one vectorwise input at a time that efficiently
reuse the data.

This vectorwise scheduling can be expressed by mathemat-
ical formulas as in Fig. that takes only three cycles to
complete the example. This data flow achieve high parallelism
and simple control while maintaining full hardware utilization.

E. Encoding layer

The first layer of our model is a encoding layer that
receives multi-bit inputs and generates spikes for the following
spiking layer. To support the encoding layer with the same
hardware without large overhead, we split the 8-bit inputs to
eight 1-bit input bitplanes, and assign each bitplane to one PE
block. Eight bitplanes will takes eight PE blocks. Thus, every
eight PEs block correspond to the same weight. With this,
we use the first stage accumulator that shifts the PE result
and sums all these bitplane results to achieve the multi-bits
convolution as shown in Fig. [7]

This mechanism is applicable when the inputs are positive,
thus the inputs are normalized to (0, 1) during training.



TABLE I
TWO NETWORK STRUCTURES ON TWO DIFFERENT DATASETS.

Datasets Network structure
MNIST 64Conv(encoding)-MP2-64Conv-MP2-128fc-10fc
128Conv(encoding)-128Conv-128Conv-MP2-192Conv-
CIFAR-10 | 192Conv-192Conv-192Conv-MP2-256Conv-256Conv-
256Conv-256Conv-MP2-256fc-10fc
100 MNIST 100 CFAR-10
% = 0 //lw 3

1 2 3 4 H 6 7 8 1 2 3 4 5 6 7 8

Time step Time step

Fig. 8. Accuracy comparison between ANN and SNN

F. IF Neuron

Fig. [I[(b)| shows the architecture of the IF neuron that re-
ceives the convolutional results and accumulate them with the
residue membrane potential stored in SRAM. The accumulated
potential is compared with the threshold, which will fire a
spike and reset the membrane potential in the corresponding
position once reaching the threshold.

For the encoding layer, the convolutional results will be
stored to the second membrane SRAM first and then accumu-
lated with the residue potential from the fist membrane SRAM
to continuously generate output of different time steps.

G. Layer fusion for lower memory bandwidth

Due to temporal input nature of SNN and limited on-chip
buffer size, a naive SNN implementation will execute the
model layer by layer that stores per layer output to external
memory and load it back for next layer processing. This will
need to save spikes of all time-steps to off-chip memory for
consecutive processing and results in high data access and
power consumption. To reduce this overhead, we adopt the
layer fusion [13] that executes two layers successively inside
the chip and then stores output to external. To support this, we
increase the weight SRAM large enough to store the weights
of two layers. The output spikes in temp SRAM won’t be
transferred to off-chip memory and will be directly sent to PE
blocks to process the next layer’s computation. The membrane
potential will be stored in the second membrane SRAM and
the output will replace the value in the spike SRAM that just
been processed, then transfer to off-chip memory. Thus, the
input and output transfer reduced by half.

IV. EXPERIMENTAL RESULTS
A. Network simulation result

Table. lll shows two network structures for MNIST and
CIFAR-10 datasets to evaluate accuracy and analyze hardware
performance. Fig. [§] shows the accuracy comparison between
full-precision ANN model and binary weight SNN model with
different time steps. Our SNN model can achieve similar

TABLE 11
COMPARISON WITH THE RESULTS ON CIFAR-10 OF OTHER APPROACHES.
Model Precision Time steps  Accuracy
Sengupta et al. [[14]  full-precision 2500 91.55%
Wu et al. [8] full-precision 12 90.53%
Rathi et al. [[15] full-precison 200 92.02%
RMP-SNN [16] full-precision 256 93.04%
Wang et al. [17] binary 100 90.19%
Ours binary 8 90.28%
TABLE III
PERFORMANCE SUMMARY AND COMPARISON WITH OTHER DESIGNS.
This work | SpinalFlow [7] BW-SNN [4] |
Technology 40nm 28nm 90nm |
Voltage (V) 0.9 - 0.6
Frequency (MHz) 500 200 10
Reconfigurable Yes Yes fixed 5-CONV
Precision (bits) binary 8 fixed binary
PE number 2304 128 8208
SRAM (KB) 230.3125 585 12.75
Peak Throught (GOPS) 2304 51.2 64.46
Area (KGE) (logic only) 114.98 - 225
20.038 0.286
Area eff. (GOPS/KGE) 120.038 - 10,644
Core power (mW) 88.968 162.4 0.625
259 0.315 103.14
Power eff. (TOPS/W) 2959 R 2103.14

TNormalized area efficiency that is scaled to 40nm
2Normalized power efficiency that is scaled to 40nm and 0.9V

accuracy as the ANN model in short time steps. Table.
compares existing state-of-the-art results with our model on
the CIFAR-10 dataset. Our model has competitive accuracy
but with significant time step reduction and binary weight,
which not only avoids the huge computational cost, but also
reduces the off-chip access amount.

B. Hardware analysis

Table. [III| shows the performance summary and comparison
with other SNN designs. This design is synthesized with
TSMC 40nm library using the Synopsys Design Compiler,
achieving peak 2304 GOPS at 500MHz and consumes 88.968
mW for CIFAR-10. The DRAM access amount is reduced
from 1450.172 KB to 938.172 KB with layer fusion, a total
reduction of 35.3%. Compared to the other reconfigurable
design [7], they have lower throughput and power efficiency
due to their element wise sparse processing. [4] is a dedicated
five layers SNN ASIC, and thus achieves lower power by
eliminating number of memory accesses. But that design
cannot be reconfigured for other models and have very low
logic area efficiency.

V. CONCLUSION

In this paper, we integrate the proposed IF-based Batch
Normalization into the binary weight spiking neural network
to reduce the hardware cost. Our model achieve 90.28%
accuracy on CIFAR-10 using only 8 time steps. In addition,
the proposed reconfigurable vectorwise accelerator can handle
the different models at will, and supports the multi-bit input
encoding layer and layer fusion mechanism according to the



configuration. Our design can operate at 25.9 TOPS/W under
peak efficiency with better power and area efficiency than the
previous reconfigurable design and higher flexibility than the
fixed network design.
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