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Abstract—We propose a dense tensor accelerator called Vec-
torMesh, a scalable, memory-efficient architecture that can sup-
port a wide variety of DNN and computer vision workloads.
Its building block is a tile execution unit (TEU), which includes
dozens of processing elements (PEs) and SRAM buffers connected
through a butterfly network. A mesh of FIFOs between the
TEUs facilitates data exchange between tiles and promote local
data to global visibility. Our design performs better according
to the roofline model for CNN, GEMM, and spatial matching
algorithms compared to state-of-the-art architectures. It can
reduce global buffer and DRAM fetches by 2-22 times and up
to 5 times, respectively.

Index Terms—Neural network hardware, vector processors,
parallel programming.

I. INTRODUCTION

The goal of designing a fast deep neural network (DNN)
accelerator involves packing as many processing elements (PEs)
as possible and run them without stalling with a smooth and
timely supply of data. While the density of PEs increases with
the advancement of technology, the available DRAM bandwidth
tends to grow slower than computation [1]. For effective use
of this precious DRAM bandwidth, some modern accelerators
exploit the sparsity in DNN to reduce DRAM bandwidth [2],
[3], [4]. On the other hand, dense accelerators employ on-chip
buffers that can occupy more than half of the chip area [5], [6].
Together, these resources define a performance roofline [7],
and an architecture can not perform at this limit if it fetches
the same data from DRAM multiple times and duplicate them
in the buffers.

For this purpose, modern architectures divide a workload
into individual small groups so that PE can fetch the same data
repeatedly from the on-chip buffers without wasting global
DRAM bandwidth. This technique is called tiling, which largely
determines the characteristics of each architecture. For example,
Google’s Tensor Processing Unit (TPU) [5], [8] utilizes a
global tiling buffer with mesh-connected PEs to create a
highly scalable architecture. However, this architecture requires
synchronized PE execution, resulting in bubbles when running
smaller tiles in larger TPUs. A more recent TPU instead adopts
a much smaller tile size [9] to alleviate this issue. Eyeriss [6],
[10] is another architecture with a smaller tile size, and each
PE has a dedicated local tiling buffer for computing elements
of convolution partial sum (PSum) without accessing the global
buffer. It employs a horizontal multicast network to deliver data
to multiple local buffers within the same cycle. Because each

local buffer is private to its PE, data needs to be duplicated
across several local buffers and the global buffer, wasting
precious on-chip storage.

In conclusion, small tiles are good for keeping the PEs busy
but bad for local buffer pressure due to data duplication. The
proposed VectorMesh architecture aims to balance this tradeoff
by allowing data exchange across small tiles without duplication
(Fig. 1). Its basic computing block is the Tile Execution
Unit (TEU), a small tile processor with synchronized PEs.
Neighboring TEUs are joined together with bidirectional FIFOs
to form a 2D mesh arrangement. VectorMesh supports classic
CNN layers [11], [12], [13] and variant CNN layers [14], [15],
as well as spatial matching for video inference acceleration [16],
[17]. A TEU can support a tiled version of layer workloads
through its two 32-bank local input buffers, 32 vectorized
PEs (PE group, PEG), and a PSum buffer. The interconnect
from the buffers to the PEG is a butterfly network (BFN),
and we adopt a systematical approach to guarantee BFNs can
provide full throughput for our target applications. As the
throughput of BFN is guaranteed, all TEUs can run at a similar
speed, and each FIFO only utilizes four entries of 32 words to
balance the skew. Our contributions include:
• A dense tensor accelerator that utilizes mesh FIFOs for

data exchange for DNN and computer vision workloads,
• A methodology for scheduling workloads onto the pro-

posed architecture, and
• An implementation in both SystemC and Verilog with

competitive performance using the roofline analysis.

II. THE VECTORMESH ARCHITECTURE

The block diagram of VectorMesh is static and incomplete
without a discussion of workload scheduling. For this, we
convert the workloads into tensors (Section II-A), divide these
tensors into tiles (Section II-B), share the data opportunistically
using the FIFOs, and create a methodology to provide full
buffer throughput to the PEs through BFNs (Section II-C).

A. Target Workloads Formulation

Matrix Multiplication (MM). Eq. (1) shows a MM operation
C = AB in a tensor form, which involves two matrices of size
O(n2) and requires O(n3) operations. Each element in the 2D
matrix performs a 1D dot-product, and each dot-product can
be carried out in parallel. In Eq. (1), they are represented as
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Fig. 1: The VectorMesh architecture. The architecture can execute the workloads such as DNN, CNN, and spatial matching.
Using classic butterfly networks for data routing results in a simple yet efficient design.

two parallel indices (i, j) in the left-hand side expression and
one temporal index (k) in the summation subscript.

C(i, j) = ∑
k

RA(i, j,k)RB(i, j,k),

where ∀(i, j,k) ∈ NDRange(M,N,K) ,{
RA(i, j,k) = A(i,k)

RB(i, j,k) = B(k, j)
.

(1)

Convolution Neural Network (CNN). A CNN layer produces
an output feature tensor C (Co×ow×oh) using a kernel tensor
k (Co×Ci×kw×kh) and an input feature tensor I (Ci× ih× iw).
Each output element requires a Ci×kw×kh convolution, which
can also be written in a similar form:

C(i, j,k) = ∑
l,m,n

RI(i, j,k, l,m,n)Rk(i, j,k, l,m,n),

where ∀(i, j,k, l,m,n) ∈ NDRange(Co,ow,oh,Ci,kw,kh) ,{
RI(i, j,k, l,m,n) = I(l, j+m,k+n)

Rk(i, j,k, l,m,n) = k(i, l,m,n)
.

(2)

Spatial Matching Algorithms. Special matching algo-
rithms [16], [17], [18] have huge potentials when combined
with modern CNNs. These algorithms require two input feature
maps, namely current and reference. For each pixel (block) in
the current feature map, we compute the dot-product between
the current pixel and its nearby pixels in the reference feature
map. For example, the correlation layer [16] computes the
spatial correlation between two tensors I (Ci×oh×ow), which
we can write as:

C(i, j,k, l) = ∑
m

RI1(i, j,k, l,m)RI2(i, j,k, l,m) ,

where ∀(i, j,k, l,m) ∈ NDRange(sw,sh,ow,oh,Ci) ,{
RI1(i, j,k, l,m) = I1(m, i, j)

RI2(i, j,k, l,m) = I2(m, i+ k, j+ l)
.

(3)

Spatial matching algorithms require different datapath designs
and therefore cannot be efficiently supported by CNN or MM
processors [19], [20].

B. Tiled Execution for Target Workloads

To make VectorMesh adaptive to these target workloads,
it must allow various permutations and combinations of the
parallel and temporal indices in any order. This section
illustrates a methodology to convert the mathematical forms
above into a feasible workload scheduling in VectorMesh.

A VectorMesh TEU has 16 KB input buffers and a 5 KB
PSum buffer available for tiling. To obtain a valid tiling scheme,
we must divide workloads into groups that fit into the buffers.
Take the MM workload (Eq. (1)) as an example. A natural
tiling is to divide the NDRange into rectangular groups of size
(ti, t j, tk):

C(i, j) = ∑
k

RA(i, j,k)RB(i, j,k),

where ∀(i, j,k) ∈ NDRange(ti, t j, tk) .
(4)

Based on tensor analysis methodologies [21], [22], this re-
sults in tit jtk MAC operations on tit j PSums and (ti+t j)tk input
buffers. We keep PSums with the same parallel indices (i, j)
static in a TEU, such that the PSum does not consumes external
bandwidth, and one MAC operation consumes (ti + t j)tk/(tit jtk)
bandwidth on average. This methodology also applies to other
target workloads, and we can manually choose a valid tile size
that minimizes the bandwidth for every target workloads.

This scheduling results in only one external memory write
for each PSum, which is the optimal bandwidth. On the other
hand, the input buffer size limits the available tile size. To
overcome the limitation, we add the FIFO to share the input
buffer across TEUs.

Consider executing this GEMM example on VectorMesh:[
P Q
R S

]
︸ ︷︷ ︸

C

=

[
E F
G H

]
︸ ︷︷ ︸

A

[
W X
Y Z

]
︸ ︷︷ ︸

B

. (5)

Fig. 2 shows a possible scheduling for sharing the input buffer.
We need four TEUs to compute the output (P,Q,R,S). In
Fig. 2a, the PSums P = EW and Q = EX would both request
E, which can be shared through the horizontal FIFOs under



this scheduling. To identify all shareable tensors, we first notice
that the upper two TEUs process tiles with different parallel
indices j. Since the partial derivative of the right-hand side
arguments of A against j is zero in Eq. (1) (i.e., ∂ (i,k)/∂ j = 0),
the upper two TEUs only need to read E once.
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E W X

G
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PEG
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(a) Tiles layout in phase 0.
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HY Z

(b) Tiles layout in phase 1.

Fig. 2: The data sharing mechanism ensure all input buffer
store unique data, maximizing the utilization of SRAMs.

C. Executing a Tile on a TEU

A TEU has 32 vectorized PEs and can consume 32 parallel
indices from a tile per cycle. Using the same MM representation,
we have:

C(i, j) = C(i, j)+RA(i, j,k)RB(i, j,k) ,

∀(i, j) ∈ NDRange(pi, p j) , pi p j = 32.
(6)

To perform this operation, PEs must read two vectors from
the input buffers through the BFN [23], [24]. However, if some
TEUs cannot access its vectors in one cycle, then stall occurs
and propagates to all TEUs. To prevent this from happening,
we adopt a strategy as follows. For a memory system consisting
of 2X banked SRAM (X = 5 in VectorMesh), Lin et al. [23]
shows that if the accessing address AN of the N-th PE can be
written as AN = A0 +∑

X
i=0 2X oibi, where bi is the i-th digits

of the binary notation of N, and oi’s are odd numbers, then a
BFN can always serve the data for this system in one cycle.
Applying the padding and shuffling techniques to the local
buffer data [23], [25], we ensure all our target workloads can
fulfill this condition.

III. EXPERIMENTS

A. Workloads Supported by VectorMesh

VectorMesh supports a broader range of workloads compared
with classic CNN accelerators like TPU or Eyeriss. In this
section, we first benchmark the performance for typical DNN
workloads across different architectures. Next, we show that
VectorMesh can achieve high performance for modern CNN
workloads and spatial matching workloads that do not execute
efficiently on other architectures. The following paragraphs
describe these two types of workloads.

Typical DNN Workloads. We select representative DNN
layers from AlexNet, TinyYOLO, Inception, and SRCNN [11],

[12], [13], [26]. (We abbreviate them to AL, TY, IN, and SR,
respectively.) As shown in Table I, these workloads cover both
square and non-square kernels with sizes (1,3 · · · ,11).

TABLE I: Classic CNN workloads for benchmarking.

Layer Stride Kernel Channel
s kw,kh Ci,Co

AL CONV1 4 11,11 3,48
AL CONV2 1 5,5 48,128
AL CONV3 1 3,3 128,192
AL CONV4 1 3,3 192,192
AL CONV5 1 3,3 192,128
TY CONV1 1 3,3 3,16
TY CONV2 1 3,3 16,32
TY CONV3 1 3,3 32,64

Layer Stride Kernel Channel
s kw,kh Ci,Co

TY CONV4 1 3,3 64,128
TY CONV5 1 3,3 128,256
TY CONV6 1 3,3 256,512
TY CONV8 1 1,1 1024,125
IN 1×7 1 1,7 64,64
IN 7×1 1 7,1 64,64
SR CONV1 1 9,9 3,64

Modern CNN Workloads and Spatial Matching Workloads.
We select the representative DNN layers from more recent
networks including the DeepLab [27], ESPCN [14], and Mo-
bileNet [28]. Also, we select spatial matching workloads [16],
[17] discussed in Section II-A.

B. Architectural Implementation

We develop a cycle-level simulator to evaluate the effec-
tiveness of the proposed VectorMesh architecture. We also
implementation efficient TPU and Eyeriss simulator by tiling
and prefetching. For example, the normalized performance of
AlexNet on our 128-PE Eyeriss only differs slightly (10%)
from the reference implementation [6].

The detailed simulation configuration is explained below:

• PE Numbers and Frequency. We simulate NPE = 128
and 512 PEs version for TPU, Eyeriss, and VectorMesh.
TPU and Eyeriss are shaped as 8×16, 16×32 PEs, and
VectorMesh is shaped as 2× 2 and 4× 4 TEUs. The
simulation also assumes a working frequency of 200 MHz.

• Bandwidth and Buffer Sizes. We adopt a DDR simu-
lator [29] to more accurately evaluate the DRAM and
global buffer subsystem. We adopts fixed 6.4GB/s DRAM
bandwidth (two DDR4-1600 x16 devices) and 25.6 GB/s
global buffer bandwidth. For every PE in TPU, Eyeriss,
and VectorMesh, we allocate 0,0.3,0.6 KB local buffers
and 1.0NPE ,0.5NPE ,2 KB global buffers, respectively. We
choose these numbers to match the PE-to-memory ratio
from existing publications [5], [6]. Also, the required size
of global buffer of VectorMesh does not need to grow
with NPE accordingly.

For the circuit-level comparison, we implement VectorMesh
with Verilog. As a result of the architecture’s simplicity, our
codes are relatively lightweight at 9.6k lines, using 1.1M gates
per TEU. Based on our synthesizing results and the statistics
from Eyeriss and TPU, we also estimate the area of different
architecture given the buffer configuration above, as shown in
Table II.



TABLE II: Area estimation of the architectures.

Eyeriss TPU VectorMesh

MAC 0.08 0.08 0.08
Global buffer 0.19 0.38 0.00
Local buffer 0.48 0.00 0.67
Controllers 0.25 0.00 0.25
BFN+FIFO 0.00 0.00 0.04
Area factor (A) 1.00 0.46 1.04
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Fig. 3: Architectural comparisons using the roofline anal-
ysis against the workloads in Table I.

C. Architectural Simulation

Based on the simulator and the hardware implementation,
we discuss how different architectures can fully utilize their
computation resources efficiency from three aspects:

Roofline Analysis. The roofline analysis provides an upper-
bound under the same bandwidth and PE resources for different
workloads. Given an infinite size and infinite bandwidth on-
chip buffer, the performance upper-bound of a workload is the
minimum between (1) the PE processing rate over the total
MAC operations and (2) the DRAM bandwidth over total input
and output data sizes. In Fig. 3, we denote the roofline as the
black line. As can be seen, VectorMesh performs closer to the
roofline than others when given the same resources because it
is more bandwidth efficient, as discussed in the next paragraph.

Memory Access. Lower memory access indicates higher
utilization and lower power. We define the normalized access
as the number of bytes accessed from memory per 1,000 MAC
operations. We calculate this for both global buffers (GLB)
and the DRAM. As shown in Table III, in terms of global
buffer bandwidth, TPU generates 18-22x larger bandwidth
than VectorMesh due to the lack of local buffer; VectorMesh
consumes 2-4x less bandwidth than Eyeriss since it does not
duplicate data in local buffers. As a result, even with 64-256x
smaller global buffers than TPU and Eyeriss, our DRAM
bandwidth result is still competitive, with −14-+44% and
2-5x bandwidth reduction compared with Eyeriss and TPU,
respectively.

Area Efficiency. Since different architectures require different
hardware resources per PEs, for a fair comparison, it is crucial
to take area efficiency into account as it reflects how much
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Fig. 4: Roofline analysis for workloads supported exclu-
sively by VectorMesh. The performance results of Vec-
torMesh can reach the roofline for both memory-bounded and
computation-bounded workloads.

performance is available per chip area. We define this metric
by dividing its average performance P on all workloads by
an area factor A based on the estimation in Table II. As
shown in Table III, while Eyeriss and VectorMesh provide
better raw performance, only VectorMesh provides higher area
efficiency that TPU since Eyeriss suffers from data duplication
across its local buffers. Also, a 128-PE TPU provides a higher
area efficiency than a 128-PE VectorMesh because when the
number of PEs is small, both architectures utilize small tiles,
which match the workload. The routing simplicity of TPU thus
produces a marginally better efficiency.

TABLE III: The overall comparison of DNN architectures.

128 PE 512 PE
TPU Eyeriss Vector- TPU Eyeriss Vector-

Mesh Mesh

Normalized GLB access 935 160 42 534 55 29
Normalized DRAM access 239 85 45 71 28 32
Area-efficiency (P/AN) 22.55 12.48 20.49 15.91 11.12 17.31

Performance (P, GOPS) 10 12 20 27 41 68
Area factor (A) 0.46 1.00 1.04 0.46 1.00 1.04
Area multiplier (N) 1 1 1 4 4 4

D. Workloads Adaptiveness of VectorMesh

In Fig. 4, the roofline analysis also shows that VectorMesh
can smoothly process layers with highly computation-bounded
in recent networks like ESPCN [14] and DeepLab [27]. For
layers in MobileNet [28], while the performance results are
relatively low, we have already reached the roofline. This figure
also demonstrates the spatial matching workloads at reasonably
optimal performance.

IV. CONCLUSION

In this paper, we proposed the VectorMesh architecture,
discussed a workload scheduling process, and demonstrated its
ability to execute various DNN and vision workloads closer to
the performance roofline than other state-of-the-art architectures.
We provided practical implementations of the architecture and
demonstrate its ability to reduce global buffer and DRAM
fetches by 2-22 times and up to 5 times, respectively.
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