
ar
X

iv
:2

10
2.

11
22

1v
1

 [
ee

ss
.S

P]
 2

2
Fe

b
20

21
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Mixed-Precision Quantization and Parallel
Implementation of Multispectral Riemannian
Classification for Brain–Machine Interfaces

Xiaying Wang∗, Tibor Schneider∗, Michael Hersche∗, Lukas Cavigelli†, Luca Benini∗‡

∗ETH Zürich, D-ITET, Switzerland ‡University of Bologna, DEI, Italy †Huawei Technologies, Zurich RC, Switzerland

Abstract—With Motor-Imagery (MI) Brain–Machine Inter-
faces (BMIs) we may control machines by merely thinking
of performing a motor action. Practical use cases require a
wearable solution where the classification of the brain signals
is done locally near the sensor using machine learning models
embedded on energy-efficient microcontroller units (MCUs), for
assured privacy, user comfort, and long-term usage. In this
work, we provide practical insights on the accuracy-cost trade-
off for embedded BMI solutions. Our proposed Multispectral
Riemannian Classifier reaches 75.1% accuracy on 4-class MI
task. We further scale down the model by quantizing it to
mixed-precision representations with a minimal accuracy loss
of 1%, which is still 3.2% more accurate than the state-of-the-
art embedded convolutional neural network. We implement the
model on a low-power MCU with parallel processing units taking
only 33.39 ms and consuming 1.304 mJ per classification.

Index Terms—brain–machine interface, edge computing, par-
allel computing, machine learning, deep learning, motor imagery.

I. INTRODUCTION

Motor-Imagery (MI) Brain–Machine Interfaces (BMIs) use
Electroencephalography (EEG) signals recorded from the
brain to decode a movement imagined by the subject. The
decoded information can be used to control an external device,
such as a drone [1] or a wheelchair [2], [3], or for stroke
rehabilitation [4]. It is especially useful for individuals with
physical disabilities to regain independence [4], [5]. However,
the high variability across subjects and among different record-
ing sessions poses big challenges to an accurate MI-BMI.
Moreover, recording and labelling EEG data is expensive, time
consuming, and prone to errors, resulting in scarce amounts of
data available for training complex models with large numbers
of parameters. In fact, many studies using Convolutional
Neural Networks (CNNs) acknowledge the fact that overfitting
is the biggest issue for these types of models [6], [7], [8].

On the other hand, successful methods have been proposed
to extract discriminative, domain-specific features from EEG
signals. The well-known Common Spatial Patterns (CSP)
learns spatial filters that discern between different MI tasks [9].
An improved algorithm, called Filter-Bank CSP, that accounts
for multiple frequency bands achieved better accuracy [10].
More recent studies have proposed Riemannian methods to
extract more comprehensive features also in absence of labeled
data [11]. The unsupervised feature calibration enables online
adaptation of the classifier to combat the large inter-session
variance in MI-BMIs [12]. So far, these methods are believed
to be the most promising feature extractors for several kinds
of BMI paradigms [13], [14], [15].

Traditional BMI systems adopt offline, remote processing
of the sensor data, raising concerns over data privacy, latency,

Corresponding emails: {xiaywang, herschmi}@iis.ee.ethz.ch

high energy consumption, and battery lifetime. A promising
solution is to bring the processing near the sensor, i.e. on the
body of the user, using low-power low-cost microcontroller
units (MCUs), allowing the data to be processed locally [16].
However, these devices suffer from limited on-board resources
in terms of memory and computational capabilities. Hence,
researching compact yet accurate algorithms [7], [17] and
designing low-power processors with high capabilities [18] has
become an emerging trend. Most of the MI-BMI models, par-
ticularly CNNs, are too demanding for low-power MCUs [19].
TPCT [20] reached the state-of-the-art (SoA) accuracy of
88.87% on the BCI Competition IV-2a dataset [21]. The model
consists of around 7.78 M parameters. Other similar CNNs
reach 81.1% with 240 k parameters [22] or 75.8% with 155 k
parameters [23]. A notable exception is EEGNET [17] with
only few thousands parameters, i.e. three orders of magnitude
less demanding, but still achieving around 70% accuracy on
4-class MI classification. By virtue of its compactness, it
has been successfully quantized with Q-EEGNET [24] and
implemented on a low-power System-on-Chip (SoC) based on
RISC-V called Mr. Wolf [18]. It has proven to be three orders
of magnitude more energy efficient than an implementation
on commercially available MCUs based on ARM Cortex-M
architecture [25], making it the SoA embedded CNN in
terms of energy efficiency, compact model size yet accurate
performance. Another effort for embedded BMI has been made
by Belwafi et al. [26] implementing a CSP-based classifier on
a FPGA device. The multispectral and multiscale Riemannian
classifiers proposed in [27], [28] outperform both EEGNET

and CSP-based models by around 5% and 2% higher accuracy,
respectively. However, their proposed models are still very
challenging for embedded deployment on low-power resource-
constrained MCUs due to large memory footprint and high
computational complexity.

For the first time in literature, we propose an embedded MI-
BMI based on a Riemannian classifier [27]. The main contri-
butions of this paper are: (a) We tailor the model for better em-
bedded deployment by reducing its size and complexity, i.e.,
the number of frequency bands and temporal windows, while
at the same time keeping comparable classification accuracy
by introducing regularization (75.1% ours vs. 75.5% [27]).
(b) We further quantize the Multispectral Riemannian Clas-
sifier (MRC) from full precision (32-bit float) to a mixture
of precisions with 8-, 16-, 32-bit fixed- and floating-point
representations, to maximize efficiency on low-power MCUs
by enabling the use of fixed-point SIMD instructions while
maintaining a minimal accuracy loss. The quantization yields
1% accuracy drop which is still 3.2% more accurate than the
embedded CNN-based EEGNET (74.1% ours vs. 70.9% [24]).

http://arxiv.org/abs/2102.11221v1

(c) We efficiently implement the mixed-precision model on
Mr. Wolf by exploiting the underlying hardware architecture,
i.e., custom Instruction Set Architecture (ISA) extensions and
concurrent execution on multiple cores and measure the per-
formance on-board. Experimental measurements show that the
proposed model takes only 33.30 ms and consumes 1.304 mJ
per inference. (d) Our work provides a practical accuracy-
cost trade-off between MRC, a discriminative feature-based
approach, and EEGNET as a CNN-based approach, supported
by an actual implementation and measurement results. Being
the first embedded implementation of Riemannian covariance
kernels and the most accurate embedded MI-BMI, it opens
the path for other BMI paradigms deploying Riemmanian
methods, e.g., steady-state visual evoked potential [15] and
P300 [29]. Finally, we release open-source code1.

II. DESIGN AND QUANTIZATION

MRC [27] consists of a non-linear feature extraction ap-
plying the Riemannian covariance method [30] on multiple
frequency bands and temporal windows, followed by a linear
Support Vector Machine (SVM), depicted in Fig. 1. First,
the input data is filtered using f different Infinite Impulse
Response (IIR) bandpass filters. Then, the covariance matrix
is estimated and regularized with the parameter ρ. The next
block, called Whitening, multiplies from the left and right with

a reference matrix C
−1/2
ref,k , that is computed for each frequency

band k independently during training. Afterwards, the matrix
logarithm is computed with the help of Eigendecomposition
(EVD). Then, the function vect(Lk) vectorizes the symmetric
matrix Lk by concatenating the diagonal values and the upper
right non-diagonal elements. To preserve the norm, the off-
diagonal elements are scaled with

√
2. Finally, the SVM

classifier predicts the MI class.
We quantize the feature extraction to a mixture of 8-, 16-,

and full precision 32-bit fixed- and floating-point representa-
tions and the SVM to 8-bit fixed-point, summarized in Fig. 2.
The decision on the precision depends on the trade-off between
energy efficiency and accuracy preservation. With 8- or 16-
bit fixed-point numbers, it is possible to exploit the Single
Instruction, Multiple Data (SIMD) instructions. However, not
all the parts of the MRC can be quantized due to numerical
instability and significant accuracy loss.

1) IIR Bandpass Filters: The input data X ∈ R
Nch×Ns

with dimensions number of EEG channels Nch and number of
time samples Ns, is quantized to 8 bits. Each channel is filtered
with f IIR bandpass filters. The filters can become unstable,
especially with quantization. The internal accumulators can
diverge, even if the output remains bounded. We implement
the Direct-Form I defined in [31], since it does not experience
numerical overflow in the internal signals, because all internal
registers store either the input or the output of the filter [31].
A typical approach for quantizing an IIR filter is to express
them as a cascade of Second-Order Sections (SOSs), each
of which can be quantized with different dynamic ranges,
thus minimizing the effect of quantizing the filter coefficients
on the impulse response. With 8-bit fixed-point quantization,
the impact is significant, while with 12 bits these effects are
minimal. Therefore, we choose 12 bits for the filter coefficients
to prevent overflows that would occur with 16 bits. We re-scale

1https://github.com/pulp-platform/multispectral-riemannian

the intermediate results in between the SOSs to remain in the
same dynamic range and accumulate them with 16-bit registers
in order to use SIMD operations for the following iteration.
All dynamic ranges for all sections are chosen independently
and forced to be a power of two to implement simple bit-shifts
instead of expensive divisions.

2) Covariance Matrix and Whitening: Recall, that the co-
variance matrix C ∈ R

n×n, in our case n = Nch, including
regularization, is computed as

C = XXT + ρI (1)
and Whitening is defined as

W = C
−1/2
ref CC

−1/2
ref , (2)

with C
−1/2
ref being the reference matrix, computed by aver-

aging the covariance matrices of all the training trials. For
quantization, we define nc and nref to be the number of

bits to represent C and C
−1/2
ref , respectively. Since we can

exploit either 4- or 2-way SIMD operations, we test both
nc = nref = 8 and 16. However, the former yields a significant
accuracy drop, while the latter causes overflows. Hence, we
reduce nref, until training completes without overflow, resulting
in nref = 11. Our experiments have shown that using nc = 16
and nref = 11 yields similar accuracy to the full-precision ver-
sion. Moreover, we force the scaling factor for the covariance
matrix computation to be a power of two to exploit bit-shifts,
while the dynamic range for the Whitening depends on the

quantization of C and C
−1/2
ref . Finally, for the intermediate

and final results of Eq. 2, we keep the full dynamic range
with 32 bits since the input to the matrix logarithm is very
sensitive to quantization errors, as explained next.

3) Matrix Logarithm: The matrix logarithm of a square,
positive definite matrix A ∈ R

n×n is defined in terms of its
EVD, as

logm(A) = Q−1logm(D)Q, (3)

where A = Q−1DQ, and the logarithm of a diagonal matrix
D is computed by applying the logarithm to its diagonal
elements. The whitened covariance matrix W in MRC is dense
and symmetric, allowing us to optimize the EVD. We first
compute the tridiagonal decomposition to obtain a tridiagonal
matrix T similar to the original one, i.e. the Eigenvalues are
preserved. Then the EVD can be computed on T requiring
less computational effort. The final transformation is

W = QT
t TQt = QT

t Q
T
dDQdQt, (4)

where Qt is the orthogonal matrix for the tridiagonal trans-
formation and Qd the one for the EVD. QdQt is an orthog-
onal matrix containing the Eigenvectors of W. To compute
the tridiagonal matrix, we use the Householder transforma-
tion [32]. The complexity of the transformation can be reduced
by rearranging the operations and exploiting the sparsity of
the vectors [32]. For computing the diagonal matrix D from
the tridiagonal symmetric matrix T, we use the QR algorithm
with implicit Wilkinson Shift [33]. The matrix logarithm only
exists if the matrix is positive definite, meaning that all the
Eigenvalues are positive. In full-precision MRC, the input
of the matrix logarithm is always positive definite, while
with quantization the Eigenvalues change and in some cases
even become negative, making it impossible to compute real
logarithm. We address this issue by (a) making use of the
entire 32-bit dynamic range for the inputs, and (b) clipping all
Eigenvalues λk to max{λk, λmin} by introducing a threshold

X

IIR b1

...

IIR bf

X1X
T
1
+ Iρ

...

XfX
T
f + Iρ

C
−1/2
ref,1 CC

−1/2
ref,1

...

C
−1/2
ref,f CfC

−1/2
ref,f

logm(W1)

...

logm(Wf)

vect(L1)

...

vect(Lf)

Filter
Covariance

Matrix Whitening
Matrix

Logarithm

S
V

M

4
cl

as
se

s

X1

Xf

C1

Cf

W1

Wf

L1

Lf

Fig. 1: Multispectral Riemannian Classifier with n = 18 frequency bands and one time window.

X̃ IIRQ12,Q16 CovmatQ16 WhiteningQ11 Dequantize logmF32 Requantize vectQ8 SVMQ8

Q8 Q8 Q16 Q32 F32 F32 Q8 Q8 Q32

Fig. 2: Quantized MRC of a single frequency band, showing the representation of each intermediate signal.

λmin = 10−3 to ensure all Eigenvalues remain above zero.
Its value is chosen based on the smallest Eigenvalue occur-
ring while training the full precision MRC. Moreover, both
Householder transformation and QR algorithm are computed
with 32-bit floating-point values. Finally, we convert the results
back to 8-bit fixed-point format using the dynamic range
learned during training.

4) Support Vector Machine (SVM): The final classifier in
MRC is a SVM, which we train on the quantized features.
The weights and biases are then quantized with bit-width
nw = 8 and nb = 32, respectively, by determining the dynamic
ranges after training. We do not rescale the output of the SVM
because the prediction is made based on the relative largest
output value. Hence, the weight vector can use the entire range
available with 8 bit, reducing the quantization error.

III. IMPLEMENTATION

We implement the mixed-precision MRC on Mr. Wolf [18]
which has a SoC domain and a compute cluster with 8 paral-
lel RISC-V-based processors called RI5CY, or CV32E40P,
implementing RV32IMFC ISA with custom XPULPV2 exten-
sions for Digital Signal Processing (DSP), e.g., SIMD instruc-
tions, hardware loops, post-incremental load and store [34].
The cluster cores have two shared Floating Point Units (FPUs)
and 64 kB of shared L1 memory via the Tightly Coupled Data
Memory (TCDM) interconnect. More memory can be accessed
via a Direct Memory Access (DMA) unit from the shared L2
memory (448 kB) present in the SoC domain.

Our MRC implementation is divided into three main blocks
framed with blue, red, and green lines in Fig. 1, respectively:
(a) computation of the frequency bands until Whitening: each
frequency band, highlighted with blue rectangle, is computed
using 8 cores as described in the following paragraphs; (b)
computation of the matrix logarithm and vectorization: every
core computes one matrix logarithm followed by the vectoriza-
tion concurrently with the other cores, i.e. 8 matrix logarithms,
colored with red rectangle, are computed at the same time; (c)
SVM computed with a single core, colored in green.

1) IIR Filter: As described in Section II-1, we set the bit-
width of the coefficients to na = nb = 12, and the bit-width
of the internal registers to ni = 16. Each SOS contains three
Multiply Accumulates (MACs) for the forward accumulation
and two MACs for the backward accumulation. This enables
the usage of SIMD instructions with bit-width 16. We compute
the filtered output of different EEG channels on separate cores
of the cluster to utilize the concurrent capabilities of Mr. Wolf.

2) Covariance Matrix: The computation of the covariance
matrix is a matrix-matrix multiplication (MMM), as shown in

Eq. (1), which results in a symmetric matrix. Therefore, we
only compute the upper right triangle and copy the remaining
elements. Since Xk is the filtered input data of band k, packed
to 8 bits, the implementation makes use of SIMD instructions
to improve the performance significantly. The computation is
implemented concurrently by splitting the upper right part of
the output matrix among all processing units.

3) Whitening: Whitening consists of two MMMs, as de-
scribed in Eq. (2). Based on the quantization scheme described
in Section II-2, the first multiplication is computed in 16 bit,
and the second in 32 bit. For the first multiplication, we use 2-
way SIMD instructions. We use the concurrent implementation
found in the DSP library [35] for PULP, where each core
computes a part of the matrix.

4) Matrix Logarithm: For computing the EVD, we imple-
ment both the basic version of Householder transformation and
the improved version [32] for speedup analyses. The computa-
tion of the rotation matrix required for the Givens rotation [36]
of each QR step is done exclusively with multiplications,
divisions, and additions, without using expensive trigonometric
functions [37]. For parallel implementation, every core is
assigned with a frequency band and computes the Householder
transformation and QR algorithm.

5) Support Vector Machine (SVM): The matrix-vector prod-
uct of the SVM is computed using 8-bit SIMD instructions. We
implement it on a single core, since it accounts for a negligible
portion of the computation of the entire model.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We apply our methods on the BCI Competition IV-2a
dataset [21] with 22 EEG channels and 4 MI classes from 9
different subjects. There are 288 trials for each of the training
and testing sets. Each trial lasts 6 s and is sampled at 250 Hz.

Table I reports the classification accuracy of our proposed
models compared to related work with different MRC con-
figurations and EEGNET. MRC can be scaled to use more
or fewer frequency bands and temporal windows. Hersche
et al. [27] have shown that f = 43 frequency bands and a
single temporal window t = 1 can already achieve comparable
accuracy (74.8% on average) to the full MRC (75.5%) while
requiring 3× fewer features. In this work, we use only one
temporal window t = 1 of 3.5 s and further scale down
the number of frequency bands. Our results show that with
2.4× less frequency bands, i.e. f = 18, of bandwidth 2 Hz
between 4 and 40 Hz, our full precision model achieves
slightly higher accuracy by introducing the regularization with
the hyperparameter ρ = 1. Comparing to EEGNET, which
is known to be a compact CNN for BMI applications [17],

our full precision MRC is 3.8% more accurate. Regarding
the quantization, EEGNET can be quantized down to 8-bit
precision for the entire network with Q-EEGNET [24] without
significant loss in accuracy (0.4%). However, our proposed
mixed-precision MRC is still 3.2% more accurate. The min-
imal loss in accuracy of 1% from full to mixed-precision
can be attributed mainly to the quantization at the input of
the matrix logarithm. Regarding the memory footprint, Q-
EEGNET requires 68.15 kB, while our MRC implementation
uses approximately 84 kB, i.e. 2·22·876 for 8-bit input and
output of IIR filters, 18·(22+1)·22/2 for Wk in 32-bits and

reused for Lk, 18·(22+1)·22/2 for the model parameters C
−1/2
ref,k

in 16 bits, and 4554·4 for SVM weights in 8 bits.

Table II shows the computation time and the performance
impact of the optimizations and Fig. 3 depicts the measured
power trace. The first 18 peaks are measured when the
frequency bands are calculated using 8 cores, framed with
blue dashed line. The IIR filter implementation achieves 3.77
MACs per cycle with 7.26× parallel speedup. Here, each
output sample requires 10 MACs, 3 shuffle operations, and
4 bit-shifts, resulting in a theoretical maximum of 5 MACs
per cycle. The covariance matrix computation reaches 8.14
MACs per cycle with concurrent execution yielding a speedup
of 7.10× using 8 cores. The parallel speedup of the Whitening
is 4.98× due to the parallelization overhead that is more visible
with smaller matrix sizes (here 22×22). However, it is not
the bottleneck part of the MRC. The improvements of the
Householder transformation have a significant impact on the
performance yielding a speedup of 3.6× on the computation of
the matrix logarithm compared to the baseline, while the paral-
lel speedup is 5.67× compared to the single core computation
and 20.64× compared to the baseline. 18 matrix logarithms are
computed, distributed to the 8 cores on a first-come first-served
schedule, i.e. twice 8 matrix logarithms are computed on 8
cores, then the remaining 2 on two cores, as reflected on the
power trace, framed with red dashdotted line. This workload
unbalance contributes negatively to the parallel speedup. How-
ever, the performance would not increase significantly with a
more balanced distribution since the ideal speedup would be
6× with six parallel cores. Moreover, the maximal number of
Floating Point Operations (FLOPs) per cycle is 2, of which
we reach 1.69, limited by the iteratively computed divisions
and square root operations. Finally, the SVM accounts for
a minimal part of the execution with 0.15 ms, highlighted
with green frame in Fig. 3. For comparison, the embedded

TABLE I: Classification accuracy (%) on 4-class MI.

Q-EEGNET MRC

Ref. [24] [24] [27]∤ [27]♮ Ours⋄ Ours⋄

Precision full 8-bit full full full mixed
t / f / ρ 3 / 43 / 0 1 / 43 / 0 1 / 18 / 1 1 / 18 / 1

Subj. 1 81.0 81.0 90.0 91.8 91.8 90.7
Subj. 2 57.6 53.1 55.5 51.6 53.7 51.2
Subj. 3 87.9 91.2 81.3 83.5 83.5 81.0
Subj. 4 61.6 58.1 71.9 73.3 73.7 74.1
Subj. 5 70.6 68.4 69.6 63.4 68.8 63.0
Subj. 6 53.4 50.1 56.7 58.6 56.7 56.3
Subj. 7 75.7 75.2 85.6 86.7 84.1 58.9
Subj. 8 77.4 81.2 83.8 81.6 81.5 82.7
Subj. 9 76.7 79.7 84.9 82.6 82.2 81.8

Avg. Acc. 71.3 70.9 75.5 74.8 75.1 74.1
Std. 11.5 14.3 12.8 13.9 12.2 13.2

0 5 10 15 20 25 30 35

0

20

40

60 Householder

EVD

Q−1DQ

vect

Whiten.

Filters
Cov.Matr.

8 cores 8 cores 8 cores 2 cores

Time [ms]

P
o
w

er
[m

W
]

Fig. 3: End-to-end power measurement. The colors match the

compute blocks in Fig. 1 explained in Sec. III.

BMI in [26] consumes 0.7 W and takes around 0.4 s, more
than an order of magnitude more in terms of both, power
consumption and execution time—or two orders of magnitude
worse in terms of energy efficiency. We also compare to the Q-
EEGNET implementation in [24] that is publicly available. We
run both Q-EEGNET and MRC on Mr. Wolf at 100 MHz and
1.1 V. The former takes 13.64 ms consuming 0.678 mJ while
the runtime of MRC lays within the same order of magnitude
with 33.39 ms and consumes 1.304 mJ. It is up to the user to
decide on the trade-off between accuracy and cost depending
on the application scenario.

V. CONCLUSION

This paper presents an improved MRC with reduced
model size while keeping comparable accuracy (75.1% vs.
75.5% [27]), allowing accurate low-power embeeded BMI. We
further scale down the model by quantizing and proposing a
mixed-precision implementation yielding a minimal accuracy
loss of 1%, which is still 3.2% more accurate than the
SoA embedded CNN for BMI named Q-EEGNET [24]. We
propose a parallel implementation on a low-power MCU called
Mr. Wolf, which takes only 33.39 ms and consumes 1.304 mJ.
The higher accuracy compared to Q-EEGNET comes at the
cost of a 2.4× longer execution time and a 1.9× higher energy
consumption. However, it is still two orders of magnitude
more energy efficient than other embedded solutions [26]. We
provide an insight on accuracy-cost trade-off for embedded
BMI models with actual implementation and measurements.

TABLE II: Computation time for MRC on Mr. Wolf with a

frequency of 100 MHz at 1.1 V.

baseline
improved

EVD
concurrent

parallel
speedup

ops/c∤

Filter 66.67 ms 66.67 ms 9.18 ms 7.26 3.77
Cov. matrix 34.80 ms 34.80 ms 4.90 ms 7.10 8.14
Whitening 24.29 ms 24.29 ms 4.88 ms 4.98 0.79
Matrix logm. 309.76 ms 85.18 ms 15.01 ms 5.67 1.69
SVM 0.15 ms 0.15 ms 0.15 ms - 1.25

Total 439.48 ms 206.93 ms 33.39 ms

MACs/cycle♮ 0.62 0.62 4.11
FLOPs/cycle⋄ 0.08 0.30 1.69
insn/cycle 0.907 0.837 0.788

♮ Number of fixed-point MACs over number of cycles w/o matrix logarithms.
⋄ Number of FLOPs over number of cycles during matrix logarithms.
∤ MACs or FLOPs per cycle for the concurrent implementation except SVM.

REFERENCES

[1] K. Koizumi, K. Ueda et al., “Development of a cognitive brain-machine
interface based on a visual imagery method,” in 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2018, pp. 1062–1065.

[2] Y. Yu, Z. Zhou et al., “Self-Paced Operation of a Wheelchair Based
on a Hybrid Brain-Computer Interface Combining Motor Imagery
and P300 Potential,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 12, pp. 2516–2526, 12 2017.

[3] M. Xiong, R. Hotter et al., “A low-cost, semi-autonomous wheelchair
controlled by motor imagery and jaw muscle activation,” in 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC).
IEEE, 2019, pp. 2180–2185.

[4] A. A. Frolov, O. Mokienko et al., “Post-stroke Rehabilitation
Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-
Controlled Hand Exoskeleton: A Randomized Controlled Multicenter
Trial.” Frontiers in neuroscience, vol. 11, p. 400, 2017.

[5] N. Kobayashi and M. Nakagawa, “BCI-based control of electric
wheelchair using fractal characteristics of EEG,” IEEJ Tran. on Electri-
cal and Electronic Engineering, vol. 13, no. 12, pp. 1795–1803, 2018.

[6] J. León, J. J. Escobar et al., “Deep learning for eeg-based motor
imagery classification: Accuracy-cost trade-off,” PLOS ONE, vol. 15,
no. 6, pp. 1–30, 06 2020.

[7] H. Wu, Y. Niu et al., “A parallel multiscale filter bank convolutional
neural networks for motor imagery eeg classification,” Frontiers in
Neuroscience, vol. 13, p. 1275, 2019.

[8] R. T. Schirrmeister, J. T. Springenberg et al., “Deep learning with
convolutional neural networks for EEG decoding and visualization,”
Human Brain Mapping, vol. 38, no. 11, pp. 5391–5420, 2017.

[9] F. Lotte and Cuntai Guan, “Regularizing Common Spatial Patterns to
Improve BCI Designs: Unified Theory and New Algorithms,” IEEE
Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 355–362,
2 2011.

[10] Kai Keng Ang, Zhang Yang Chin et al., “Filter Bank Common
Spatial Pattern (FBCSP) in Brain-Computer Interface,” in 2008
IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence). IEEE, 2008, pp. 2390–2397.

[11] C. H. Nguyen and P. Artemiadis, “Eeg feature descriptors
and discriminant analysis under riemannian manifold perspective,”
Neurocomputing, vol. 275, pp. 1871 – 1883, 2018.

[12] S. Kumar, F. Yger et al., “Towards adaptive classification using rieman-
nian geometry approaches in brain-computer interfaces,” in 2019 7th
International Winter Conference on Brain-Computer Interface (BCI),
2019, pp. 1–6.

[13] M. Congedo, A. Barachant et al., “Riemannian geometry for eeg-based
brain-computer interfaces; a primer and a review,” Brain-Computer
Interfaces, vol. 4, pp. 1–20, 03 2017.

[14] F. Yger, M. Berar et al., “Riemannian Approaches in Brain-Computer
Interfaces: A Review,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 10, pp. 1753–1762, 10 2017.

[15] S. Chevallier, E. Kalunga et al., “Review of riemannian distances and
divergences, applied to ssvep-based bci,” Neuroinformatics, 06 2020.

[16] X. Wang, M. Magno et al., “FANN-on-MCU: An Open-Source Toolkit
for Energy-Efficient Neural Network Inference at the Edge of the
Internet of Things,” IEEE Internet of Things Journal, 2020.

[17] V. J. Lawhern, A. J. Solon et al., “EEGNet: a compact convolutional
neural network for EEG-based brain–computer interfaces,” Journal of
Neural Engineering, vol. 15, no. 5, p. 056013, 2018.

[18] A. Pullini, D. Rossi et al., “Mr.Wolf: An Energy-Precision Scalable
Parallel Ultra Low Power SoC for IoT Edge Processing,” IEEE Journal
of Solid-State Circuits, vol. 54, no. 7, pp. 1970–1981, 2019.

[19] T. Ingolfsson, M. Hersche et al., “Eeg-tcnet: An accurate temporal
convolutional network for embedded motor-imagery brain-machine
interfaces,” arXiv:2006.00622, 05 2020.

[20] M.-A. Li, J.-F. Han et al., “A Novel MI-EEG Imaging With the Location
Information of Electrodes,” IEEE Access, vol. 8, pp. 3197–3211, 2020.

[21] C. Brunner, R. Leeb et al., “BCI competition 2008 - Graz data set A,”
http://bnci-horizon-2020.eu/database/data-sets.

[22] Y. Zhao, S. Yao et al., “On the improvement of classifying EEG
recordings using neural networks,” in Proc. IEEE Big Data, Dec. 2017,
pp. 1709–1711.

[23] H. Wu, Y. Niu et al., “A Parallel Multiscale Filter Bank Convolutional
Neural Networks for Motor Imagery EEG Classification,” Frontiers in
Neuroscience, vol. 13, Nov. 2019.

[24] T. Schneider, X. Wang et al., “Q-EEGNet: an Energy-Efficient 8-bit
Quantized Parallel EEGNet Implementation for Edge Motor-Imagery
Brain–Machine Interfaces,” arXiv:2004.11690v1, Apr. 2020.

[25] X. Wang, M. Hersche et al., “An accurate eegnet-based motor-imagery
brain–computer interface for low-power edge computing,” in 2020 IEEE
International Symposium on Medical Measurements and Applications
(MeMeA), 2020, pp. 1–6.

[26] K. Belwafi, O. Romain et al., “An embedded implementation based on
adaptive filter bank for brain–computer interface systems,” Journal of
Neuroscience Methods, 2018.

[27] M. Hersche, T. Rellstab et al., “Fast and Accurate Multiclass Inference
for MI-BCIs Using Large Multiscale Temporal and Spectral Features,”
in 2018 26th European Signal Processing Conference (EUSIPCO).
IEEE, 9 2018, pp. 1690–1694.

[28] P. Yang, J. Wang et al., “Mlp with riemannian covariance for motor
imagery based eeg analysis,” IEEE Access, vol. 8, pp. 139 974–139 982,
2020.

[29] P. L. C. Rodrigues, C. Jutten et al., “Riemannian procrustes analysis:
Transfer learning for brain–computer interfaces,” IEEE Transactions on
Biomedical Engineering, vol. 66, no. 8, pp. 2390–2401, 2019.

[30] F. Yger, M. Berar et al., “Riemannian approaches in brain-computer
interfaces: a review,” IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, vol. 25, no. 10, pp. 1753–1762, 2016.

[31] J. O. Smith, Introduction to Digital Filters with Audio Applications.
http://ccrma.stanford.edu/ jos/filters/, 2020, online book.

[32] R. Burden and J. Faires, Numerical analysis. Cengage Learning, 2004.
[33] J. H. Wilkinson, The algebraic eigenvalue problem. Oxford Clarendon,

1965, vol. 662.
[34] M. Gautschi, P. D. Schiavone et al., “Near-threshold RISC-V core with

DSP extensions for scalable IoT endpoint devices,” IEEE Transactions
on VLSI Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[35] X. Wang, “DSP library for PULP,” https://github.com/pulp-
platform/pulp-dsp, 2019.

[36] W. Givens, “Numerical computation of the characteristic values of a real
symmetric matrix,” Oak Ridge National Lab., Tech. Rep., 1954.

[37] D. Bindel, J. Demmel et al., “On computing givens rotations reliably
and efficiently,” ACM Transactions on Mathematical Software (TOMS),
vol. 28, no. 2, pp. 206–238, 2002.

