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Abstract—We propose a method to address audio-visual target
speaker enhancement in multi-talker environments using event-
driven cameras. State of the art audio-visual speech separation
methods shows that crucial information is the movement of
the facial landmarks related to speech production. However,
all approaches proposed so far work offline, using frame-based
video input, making it difficult to process an audio-visual signal
with low latency, for online applications. In order to overcome
this limitation, we propose the use of event-driven cameras and
exploit compression, high temporal resolution and low latency,
for low cost and low latency motion feature extraction, going
towards online embedded audio-visual speech processing. We use
the event-driven optical flow estimation of the facial landmarks
as input to a stacked Bidirectional LSTM trained to predict
an Ideal Amplitude Mask that is then used to filter the noisy
audio, to obtain the audio signal of the target speaker. The
presented approach performs almost on par with the frame-
based approach, with very low latency and computational cost.

Index Terms:speech separation, event-driven camera, optical-
flow, LSTM, deep learning

I. INTRODUCTION

The ability to disentangle and correctly recognise the speech
of a single speaker among other speakers (the well known
cocktail party effect [1]]) is paramount for effective speech
interaction in unconstrained environments. As such, it is an
extremely useful feature for any artificial device that relies
on speech interaction such as robots and mobile devices. To
this aim, it is crucial to devise efficient speaker enhancement
techniques that rely on small datasets and low power sensing
and computation. Humans solve this problem using com-
plementary and redundant strategies such as physical sound
source separation (thanks to stereo sound acquisition [2]) and
using cues from lips motion [3]].

Artificial systems use single-channel audio signals as input
to Long-Short Memory Networks (LSTM) [4]-[7]] or dilated
convolutional layers [8]] for speaker-independent enhancement.
However, the number of speakers has to be known in advance,
as well as the correspondence between the target speaker
and the output clean speech. An alternative is to give as
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input to the model speaker dependent target features [9], [10],
using an LSTM-based speaker encoder to produce speaker-
discriminative embeddings. However, this solution needs a
reference utterance of the speaker and an additional trainable
Deep Neural Network (DNN), making the speech separation
performance conditioned on the performance of the speaker
encoder network, and computationally heavy.

Inspired on the findings that viewing the target speaker’s
face improves the listener ability to track the speech [3],
methods that combine visual cues and speech processing
achieved remarkably good results. They were based on resid-
ual networks (ResNet [11]]) pre-trained on a word-level lip-
reading task [12]], [[13]], or based on a pre-trained face recog-
nition model, in combination with 15 dilated convolutional
layers [14]. Such architectures, however, are computation-
ally heavy and require heterogeneous and large audio-visual
datasets for training. An approach that allows to use smaller
datasets (such as the GRID dataset [15]) is to rely on pre-
trained models, with the use of images and corresponding
optical flow as inputs to a pre-trained dual tower ResNet
extracting visual features [[16].

If video features are extracted without using trainable meth-
ods, the neural networks are smaller and can be trained with
smaller datasets without overfitting. Following this idea, [[17]
used face landmark movements as input visual features to a
bidirectional LSTM that achieved good speaker-independent
results on the GRID dataset. In this work, the use of landmark
motion features rather than positional features turned out to be
a key factor. Inspired by this finding, we propose to substitute
the visual pipeline implemented with traditional frame-based
sensors, face tracking and extraction of motion landmarks,
with an equivalent pipeline, based on the use of a novel type of
vision sensors — the event-driven cameras (EDC) — from which
the extraction of motion is available at lower computational
cost and latency. EDCs asynchronously measure the brightness
change for each pixel, featuring a temporal resolution as
high as 1 us, extremely low latency and data compression
(as only active pixels communicate data). With such an
input, the audio-visual system can use the same temporal
discretization of the auditory pipeline (10 ms), rather than
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Fig. 1. Audio-Visual Speech Separation pipeline.

the one of the visual pipeline (30 fps is the standard frame-
rate of traditional sensors). Event-driven vision sensors have
been widely used with good results for object tracking [18]],
[19], detection [20] and segmentation [21]], and for gesture
recognition [22[]. Recently, they have been applied in the
context of speech processing: vision-only speech recognition
(i.e., lip-reading) on GRID exploited EDCs as input to a Deep
Neural Network architecture [23]); lip movements detected by
an EDC were used to detect speech activity and enable an
auditory-based voice activity detection [24], for embedded
applications that require low computational cost. This work
presents an audio-visual target speaker enhancement system
on multi-talker environment using event-driven vision sensors
that compute motion at lower latency and computational cost.
Following [17], we propose a non trainable method to extract
visual features combined with deep learning techniques. We
use the GRID corpus in order to compare this approach with
frame-based methods. To the best of our knowledge, this is
the first work that presents an audio-visual target speaker
enhancement system that uses event-driven cameras.

II. METHODS

This work is based on [|17] where audio and visual mo-
tion features were used as inputs of LSTM-based models to
generate time-frequency masks. These masks are then applied
to generate the clean spectrogram of the target speaker. Our
contribution stands in the use of EDC for the acquisition
of the visual signal and for the computation of the motion
features of speech-production facial landmarks, based on the
estimation of the normal optical flow from the events. Fig. [I]
shows the block diagram of the whole system we propose for
audio-visual target speaker enhancement: the computed visual
motion features relative to the target speaker are concatenated
with audio features to train a Recurrent Neural Network
(RNN) that estimates a time-frequency mask that, multiplied
by the noisy spectrogram, separates the clean speech produced
by the target speaker.

A. Event-driven motion features extraction

EDCs output asynchronous events whenever a pixel detects
changes in log intensity larger than a threshold. Each event
has an associated timestamp, ¢, pixel position, < z,y >, and

polarity (log intensity increase or decrease), p [25]. The events
are emitted with high temporal resolution and low latency,
only when there is relative motion between the camera and
the scene, increasing for fast moving objects and decreasing
for less active scenarios, such as that of a target speaker talking
in front of the camera. Fig. [2] shows the typical output in such
scenario, where only the motion of the person and his/her
mouth and eyes generate events, leading to a low amount of
information to process and the possibility to have an always
on front end visual acquisition and processing for audio-visual
tasks. The different data structure and content from EDC
require algorithms for the estimation of the optical flow, that
can rely on the precise time of each event and the continuous
observation of the events produced by contrast edges moving
from one pixel to its neighbours. Even though the state of
the art for EDC optical flow estimation is based on the use
of deep learning [26], as the motion of lips and other facial
landmarks are mostly perpendicular to the edge, we resorted
to a temporally and computationally efficient algorithm for the
estimation of the normal optical flow [27].

III. EXPERIMENTAL SETUP
A. Dataset

We focussed our analysis on a challenging and common
scenario, where the quantity of available data and resources
are limited, using the GRID dataset [[15]. The dataset consists
of 3 seconds long audio and video recordings of 34 speakers
pronouncing 1000 sentences in front of a frame-based camera
and microphone. The camera records data at 25 frames per
second, while the microphone data is recorded at 50kHz.
We used a subset of the GRID corpus, consisting of 200
sentences from 33 speakers (one was discarded because the
videos were not available). To test speech enhancement of
a target speaker, the audio signals of two different speakers
were mixed so that for each speaker there are 600 mixed-audio
sample recordings. From the total amount of samples, samples
from 25 speakers were for training, from 4 speakers for
validation and from the last 4 speakers for testing the model.
The videos were upscaled to 60 frames per second using video
processing software to have more temporal information and
avoid artefacts in the generation of events. The event-based



Fig. 2. Snapshot of a person talking in front of an EDC camera

data stream was generated by pointing the ATIS event-driven
camera [25]] (240 x 304 pixels with 8mm lens) towards a high
definition LED monitor while the upscaled videos were played.
Due to the low quality of the original videos (360 x 288
pixels resolution) and in order to preserve the details in lip
movements, we cropped the mouth area over 100 x 50 pixels
from the event stream.

B. Model training

1) Audio pre- and post-processing: Following the state
of the art in speech separation and enhancement, the audio
original waveforms were pre-processed through Short Time
Fourier Transform (STFT) applied over the over the audio
waveforms resampled at 16kHz. STFT was applied using Fast
Fourier Transform (FFT) size of 512, Hann window of length
25 ms, and hop length of 10 ms. The spectrogram |z|P of
each input audio sample was obtained performing power-law
compression of the STFT magnitude with p = 0.3. Finally,
the data was normalized per-speaker with 0 mean and 1
standard deviation. To reconstruct the clean audio, on the
post-processing stage, the inverse STFT to the estimated clean
spectrogram was applied using the phase of the noisy input
signal.

2) Video pre-processing: First, we compute the optical
flow with the method explained in [27]. To align the visual
and audio features, we generated frames from the optical
flow stream every 10 ms. Over each frame. However, due to
the nature of event-driven cameras, the number pixels that
generate optical flow in each frame is different and therefore,
the number of video features in each frame is different. To
avoid this problem, we generate regions of same size across
the 100 x 50 pixels.

For each region, we compute the mean of the  component
and y component of optical flow and the event-rate, the number
of events on each location at each frame. For example, with
regions of 10 x 10 pixels we have a total of 50 regions and
if we compute the event-rate and the mean of the xz and y
components, we have 150 video features. Fig. [3] shows an

Optical Flow (x)

-0.00 1.85 0.00 2.96 0.00 0.00 0.00 0.00 4.79 0.00
3.64 0.00 -2.08 0.00 3.61 g3k 0.00 0.00 4.92 0.00
0.00 0.00 0.00 0.00 3.80 0.00 0.00 3.88 0.00 0.00
2.09 0.00 [ 7//9< 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -2.73 0.00 0.00 0.00 0.00

' Optical Flow (y)

-0.00 -1.49 0.00 4.31 0.00 0.00 0.00 0.00 4.32 0.00
0.96 0.00 -4.62 0.00 4.10 -3.58 0.00 0.00 -3.02 0.00
0.00 0.00 0.00 0.00 1.93 0.00 0.00 -1.37 0.00 0.00
-1.51 0.00 pk@iE] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0,000.00 0.00 0.00 0.00

[

=15 -10 -5 0 5 10 15

Fig. 3. Optical flow representation when using regions of 10 x 10 pixels

example of the  component and y component of the optical
flow for a specific frame.

3) Recurrent Neural Network: The RNN model consists of
5 stacked Bidirectional Long Short-Term Memory (BiLSTM)
layers, with 250 neurons in each layer. The inputs of the model
are the audio and visual features concatenated. The output of
the network are an Ideal Amplitude Mask (IAM) and the loss
function J,,,,:

pe[f] = ey

T d
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Where p:[f] is 1AM, s:[f] is the target clean spectrogram,
y¢[f] is the noisy spectrogram and p[f] is the estimated IAM
at each frequency bin f € [1,...,d].

We train the model using the Adam optimizer and 20% of
dropout to avoid overfitting. Each model is trained up to 500
epochs and early stopping is applied on the validation set to
stop the training process.

IV. RESULTS

To measure the performance of each model, we use the
well known source-to-distortion ratio (SDR) and PESQ [28§],
to quantify the separation of the target speech from the
concurrent speech and the quality of cleaned speech (i.e. the
speech enhancement measure), respectively.

Table [l shows the results from three different models. To
train the first model we used 150 video features as input
(concatenated with the audio features). These 150 features
correspond to the z and y components of the optical-flow
and the event-rate (the number of events) for each of the
50 regions (10 x 10 pixels each region). The results are
quite good, with higher than 7.0 SDR and on pare with the
frame-based approach on PESQ performance. This shows that,



SDR PESQ
Noisy signal 021 194
Frame-based approach [17] 737 2.65
Event-based approach (150 features) 7.03  2.65
Event-based approach (400 features) 6.58  2.59
Event-based approach (LSTM) 379 222

TABLET
GRID DATASET RESULTS.

although the original GRID dataset is frame-based, the event-
based approach shows similar performance as the frame-based
approach, despite the low quality and noisy events of the
dataset used, that was not recorded live with the subjects,
but obtained by recording a movie played back on a high
resolution monitor.

In the next experiment we decrease the size of each region
to 5 x 5 pixels in order to have more localized video features.
However, the number of input features increases enormously.
That is why we only used z and y components of the optical-
flow not including the event rate like in the previous case(400
visual input features in total). Although the results are good
(6.58 SDR and 2.59 PESQ), they are not close to those
achieved with 150 input features. Besides, the training and
inference time increases using 400 visual input features.

One of the drawbacks of BiLSTMs used in the previous
experiments is that they need to pass all the features forward
and backward before giving a prediction. That means that
BiLSTM has higher latency than unidirectional RNN architec-
tures. That is why we carried out one final experiment using
LSTM instead of BiLSTM. However, the results show that
the performance of deep LSTM is far from that yielded by
the models with BiLSTM.

Finally, we compare the computation time of both ap-
proaches. Computing the face landmarks movements on
frame-based approach for each video file (each video is 3
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Fig. 4. Computation time of optical-flow to extract visual features (Intel®
Core™ i7-7500U CPU @ 2.70GHz x 4)

seconds long) the mean computation time using DIib [29] is
2.980 seconds with 0.825 standard deviation (SD). On the
other hand, for a event-based approach the mean is 1.126
seconds with 0.212 SD. The computation time of the event-
based approach is almost three times less than the frame-based
approach. The computation time of the event-based approach
is divided as follows: 0.679 seconds computing the optical-
flow and 0.447 seconds mapping optical-flow to the regions. In
Figure ] the computation time of the optical-flow for different
frame sizes is shown e.g. for a frame size of 10 ms we
accumulate events every 10 ms to generate a frame and we
compute the optical for the events in each frame. It can be
seen that for all the cases the computation time of the optical-
flow is lower than the frame size and there is enough time for
mapping the optical-flow to the regions i.e. it is possible to
extract the visual features before the next frame arrives without
leaks. The hardware used to measure the computation time is
and Intel® Core™ i7-7500U CPU @ 2.70GHz x 4.

V. CONCLUSIONS AND FUTURE WORK

This work presents a RNN for target speaker audio extrac-
tion on multi-talker environment using event-driven camera for
visual motion feature estimation. The system is trained on the
GRID dataset. We show that, although this approach does not
outperform the frame based approach in terms of quality of
speech enhancement, the performance is almost on pair to the
frame-based approach. We believe that improvements on the
quality will be obtained when using data recorded directly with
the EDC, as it will improve the spatial resolution and signal
to noise ratio of the dataset. At pair quality, the event-driven
approach offers advantages in terms of computational cost and
latency, that are critical for online, embedded applications. The
proposed method required the pre-processing of the frame-
based dataset, using upscaling to 60 fps, for recording the
event-driven dataset. However, this operation is only required
once and won’t be required in an online system where the
visual signal is directly recorded by means of an EDC.
The same linear interpolation operation needs to be always
performed on the frame-based implementation to align video
with audio features. The computation of the visual features
depends on the scene, but is as low as 4ms, leading to a
very low latency system implementation. To further reduce
the latency of the output clean speech, we substituted the
BiLSTM, that requires the passing of all the features forward
and backward, with an LSTM, however, the quality of the
processed speech signal is far from being comparable to that
of BiLSTM. Further work needs to address this problem.

To the best of our knowledge, this is the first work that uses
event-driven cameras to address the target speaker extraction
task. We showed that the method used to compute the optical
flow to extract visual features is more efficient than the
frame-based method used in [[17] and is better suited for
embedded applications. Finally, this work shows that the x
and y components of the optical flow from the lip region can
be useful video features for target speaker audio extraction.
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