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Modeling preference time in triathlons means predicting the intermediate times of particu-

lar sports disciplines by a given overall finish time in a specific triathlon course for the athlete

with the known personal best result. This is a hard task for athletes and sport trainers due

to a lot of different factors that need to be taken into account, e.g., athlete’s abilities, health,

mental preparations and even their current sports form. So far, this process was calculated

manually without any specific software tools or using the artificial intelligence. This paper

presents the new solution for modeling preference time in middle distance triathlons based on

particle swarm optimization algorithm and archive of existing sports results. Initial results

are presented, which suggest the usefulness of proposed approach, while remarks for future

improvements and use are also emphasized.
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I. INTRODUCTION

Middle distance triathlon (also called: Half-IRONMAN or IRONMAN 70.3) seems to be one of

the most pleasant triathlon distance. Typically, it helps athletes as a preparation for full distance

IRONMAN7. Its overall distance is half shorther than IRONMAN and consists of 1.9 km of

swimming, 90 km of cycling and 21.1 km of running. Usually, training for this race is not as hard

as training for the Full-IRONMAN. Nowadays, a lot of people are involved in these races, because

different groups of athletes can compete on the same course at the same time, although the achieved

results are managed separately for professional and amateur groups of athletes as well as according

to their gender. Furthermore, the results of amateur athletes are also classified into different age

groups. Every year, the number of amateur athletes is increasing in these competitions5.

In the past years, training for middle distance triathlons has progressed significantly. On the

one hand, various equipments have arisen for improving the sports training, while a lot of new

IT technologies have also been applied to this sport. At the moment, almost every athlete is

preparing for these races by using sports watches or smart phones for tracking the sports activities.

Producers of these wearable mobile devices1 (e.g. Garmin) offer the applications for monitoring

the performed sports activities on the Internet that have became more and more advanced every

year. Sports trainers developed some technologies capable to compare the results of their trainees

with the opponent’s results. Almost all results of sport competitions are now available online.

Therefore, an expert can see from these results, how their trainees are prepared on the race, while

analysis of some detailed results can also enable them to see pace on particular segment of race.

By the same token, the profile of a race course is also a very interesting information for the sports

trainers.

Traditionally, triathlons are organized consecutively each year in the same place. Mostly race

courses are not changed drastically, but stays more or less the same. Sometimes only slight changes

are needed on the course due to a bad route, repairing etc. As a matter of fact, sports trainers and

athletes gain a lot of information about race course features from the earlier years. In line with

this, sports trainers are even capable of modeling (or planning) a particular finish time for their

athletes in specific course. Obviously, they can predict this time very precisely only when their

trainee adhere their instructions. This modeling has been done manually in the past. In fact, we

did not know any special automatic tool for modeling the preference time in triathlon until recently.

Hence, this paper proposes a novel solution based on Particle Swarm Optimization6 (PSO) that is

capable to explore the data from earlier editions of the particular triathlon competition.
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In the next sections, we present the modeling the preference time in triathlons (section II).

Section III provides readers the background information with emphasis on the nature-inspired

population-based algorithms. In line with this, the PSO algorithm is taken into a deeper look.

The PSO algorithm for modeling preference time in middle distance triathlons is discussed in

Section IV, while experiments and results are presented in Section V. The paper is concluded with

Section VI that summarizes the performed work and outlines the future research.

II. PREFERENCE TIME IN TRIATHLONS

Modeling the preference time in triathlons becomes an important task for athletes and their

sports trainers. Using the modeling, the sports trainers can predict the finish time on a specific

race course for their athletes. Mostly, the modeling is performed some weeks or months before the

competitions, because the athletes need to be familiar with the strategy of the racing on a specific

course as proposed by their sports trainer. Modeling of preference time in triathlon is much harder

than in single sport disciplines such as running half-marathon or cycling time-trial.

In fact, triathlon is a multi-sport discipline that consists of three sports (i.e., swimming, cycling,

running), while there are also two transitions. In the first transition, athletes prepare themselves

for cycling after swimming, while in the second transition, they finish with cycling and prepare

themselves for running. Usually, the transition areas are located at the same place, while sometimes

they are located on the different places.

A very important aspect of modeling preference time is not only psycho-physiological prepara-

tion of the athlete on a race, but also studying the strategy of racing according to course character-

istics. Especially, cycling course has a huge influence on athlete’s finish time. Roughly speaking,

most of the cycling courses consists of uphills and downhills. Typically, some athletes are good in

uphill, while others in downhills. Additionally, wind plays also a very important role in planning

the proper strategy for overcoming the cycling course. As a result, differences in cycling can have

the higher influence on the finish results than in other two sports. However, these differences are

much more recognized by amateur that by the professional athletes.

There is one unwritten rule suggesting that all sports disciplines should be finished in a linear

correlation of achieved times between different athletes. This means that the ratio between the

times achieved by swimming and cycling are correlated with the times achieved by cycling and

running within the same categories of athletes. A motivation behind this is that the racing course

should be overcame with the similar relative speed per sports discipline regarding the other mem-
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bers of the same group. Consequently, the rank of the specific athlete remains constantly during

the race within the same group of competitors. In this way, the athletes must achieve the good

results in all three disciplines. Obviously, these assumptions hold perfectly for the short-distance

triathlons, where drafting is permitted. As a result, athlete’s final result depends strongly on an

outcome of the first discipline (i.e., swimming).

Normally, the linear correlation r between two variables x and y is calculated using the Pearson’s

correlation coefficient that is expressed, as follows:

r =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2 ·
√∑n

i=1 (yi − ȳ)2
, (1)

where r ∈ [−1, 1] and r = 1 denotes the overall positive linear correlation, r = −1 is the overall

negative linear correlation and r = 0 determines that no correlation exists between the observed

variables.

Table I presents results of top 5 professional male athletes on IRONMAN 70.3 Taiwan 2015.

From the first sight, we can see that the achieved results of swimming and cycling are linearly

TABLE I. IRONMAN 70.3 Taiwan 2015 - TOP 5 PRO - Male

Athlete SWIM [min] BIKE [min] RUN [min]

Guy Crawford 24.00 102.63 81.40

Christian Kramer 24.02 102.52 83.30

Fredrik Croneborg 24.95 107.38 80.83

Cameron Brown 25.73 110.47 82.77

Paul Ambrose 24.87 107.33 88.57

correlated, because ranks of the competitors after swimming remain the same also after the cycling.

On the other hand, the results of cycling and running are not too linear correlated.

This finding is proven also by calculating the Pearson’s correlation coefficient for SWIM-BIKE

rSWIM−BIKE = 0.9938 (Fig. 1) and for BIKE-RUN only rBIKE−RUN = 0.1804 (Fig. 2).

As can be seen from Figs. 1-2, achieved times for SWIM-BIKE correlate perfectly, while the

times for BIKE-RUN expose the low correlation. The main reason for this behavior is caused by the

Fredric Croneborg that achieved the best results in running. However, this achievement ensured

him the third place in the general classification, while in contrary, the fifth classified competitor

Paul Ambrose lost his third position after two disciplines due to the worse running.

In summary, the main idea behind the modeling preference time in middle distance triathlons

that was extracted from the already mentioned example can be formulated as follows: predicting
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FIG. 1. IRONMAN 70.3 Taiwan 2015-TOP 5 PRO-Male - SWIM-BIKE

FIG. 2. IRONMAN 70.3 Taiwan 2015-TOP 5 PRO-Male - BIKE-RUN

the intermediate times of different sports disciplines for competitors in middle distance triathlons

should be based on the premise of keeping their achieved ranking in the corresponding group

constantly during the whole competition. This can be implemented by using the mathematical

definition of correlation.

III. BACKGROUND INFORMATION

In this section, the background information needed for understanding the subjects that follow

are discussed. Indeed, the following subjects are dealt with:

• nature-inspired algorithms

• the particle swarm optimization

In the remainder of this section, the mentioned subjects are presented in details.
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A. Nature-inspired optimization algorithms

Nature-inspired optimization algorithms are a kind of algorithms that are based on behaviour

of natural or biological systems for solving NP-hard optimization problems. In a nutshell, they are

divided into two categories4,8:

• Evolutionary Algorithms (EAs),

• Swarm Intelligence (SI) based algorithms.

The former mimics a Darwinian struggle for survival, where the fitter individuals have more chances

to survive in the thoughtless circumstances prevailing in the environment. On the other hand, the

latter, so-called SI-based algorithms, are inspired by social living insects and animals, where each

individual represents only a simple creature able to perform simple actions. However, they are

capable to perform complex tasks, when working together.

The particle swarm optimization belongs to a family of SI-based algorithms and is based on the

social behavior of birds. In the study, this algorithm was applied for modeling preference time in

middle distance triathlons.

B. Particle swarm optimization

Particle swarm optimization (PSO)6,9 belongs to a family of stochastic population-based algo-

rithms with a population consisting of real-valued vectors (also particles) x
(t)
i = (x

(t)
i,1, . . . , x

(t)
i,D)T

for i = 1, . . . ,Np and j = 1, . . . , D, where Np denotes the population size and D is a dimension

of the problem. Thus, the algorithm explores new solutions by moving the particles throughout

a search space in direction of the current best solution. Indeed, two populations of particles are

managed by the algorithm, i.e., beside the population of particles x
(t)
i also the population of local

best solutions p
(t)
i . Additionally, the best solution in the population g(t) is maintained in each

generation2. The new particle position is generated as presented in Eq. (2).

v
(t+1)
i = v

(t)
i + C1U(0, 1)(p

(t)
i − x

(t)
i ) + C2U(0, 1)(g(t) − x

(t)
i ),

x
(t+1)
i = x

(t)
i + v

(t+1)
i ,

(2)

where U(0, 1) denotes a random value drawn from the uniform distribution in interval [0, 1], and

C1 and C2 are learning factors. The pseudo-code of the original PSO algorithm is illustrated in

Algorithm 1.
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Algorithm 1 Pseudocode of the basic particle swarm optimization algorithm

Input: PSO population of particles xi = (xi1, . . . , xiD)T for i = 1 . . . Np, MAX FE.

Output: The best solution xbest and its corresponding value fmin = min(f(x)).

1: init particles;

2: eval = 0;

3: while termination condition not met do

4: for i = 1 to Np do

5: fi = evaluate the new solution(xi);

6: eval = eval + 1;

7: if fi ≤ pBesti then

8: pi = xi; pBesti = fi; // save the local best solution

9: end if

10: if fi ≤ fmin then

11: xbest = xi; fmin = fi; // save the global best solution

12: end if

13: xi = generate new solution(xi);

14: end for

15: end while

The PSO algorithm has also been used for generation of eating plans for athletes2.

IV. PSO FOR MODELING PREFERENCE TIME

The basic PSO algorithm can not be used directly for modeling preference time in triathlons.

In order to fit it to this problem, the basic PSO needs to be modified. There are three important

modifications for implementation, as follows:

• representation of individuals,

• initialization of solutions, and

• fitness function definition.

Individuals in the PSO algorithm for modeling preference time in triathlons are represented

as a real-valued vectors xi with dimension of D = 5 denoting the predicted times intermediate

of the specific disciplines for an observed athlete. Thus, each particle consists of five elements

representing times of swimming, transition 1, cycling, transition 2 and running, respectively.
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TABLE II. Constraint’s handling

Disciplines Constraints

Swim tSWIM ∈ [25.0, 50.0]

Transition T1 tT1 ∈ [2.0, 5.0]

Cycling tBIKE ∈ [140.0, 180.0]

Transition T2 tT2 ∈ [2.0, 5.0]

Running tRUN ∈ [85.0, 120.0]

Initialization of the particle elements is performed randomly. However, each element must

satisfy the following boundary constraints as presented in Table II. These constraints refer to a

regular amateur athletes and can capture the slightly higher intervals by the professionals. In

common, these settings must be tailored regarding the observed athlete. Additionally, constraints

must not be violated also by moving the particles through the search space according to Eq. (2).

Fitness function that evaluates the quality of solutions is expressed as follows. At first, the

overall time of the triathlon is calculated according to the following equation:

h(xi) =
D∑
j=1

xi,j , (3)

where the elements of the particles are simple summed. Then, the maximum improvement time is

expressed as follows:

g(xi) =

Kmax − h(xi), Kmax < h(xi),

MAX TIME, otherwise,
(4)

where Kmax denotes for the 5 % of improved personal best finish time achieved by the observed

athlete. The motivation behind the function g(xi) is to search for solutions that are the best fitted

to the maximum improvement time Kmax. Thus, solutions with the overall finish time better than

the Kmax are ignored by assigning it the constant time MAX TIME denoting the worst overall

finish time.

Finally, the fitness function f(xi) is defined as follows:

f(xi) =

 h(xi), r1 < r2,

MAX TIME, otherwise,
(5)

where r1 and r2 denote the Pearson correlation coefficients of an archive of the results for the

professional/age group of athletes Ar (n) and Ar (n+1) expressed as:

r1 = rSWIM−BIKE(Ar (n)) + rBIKE−RUN(Ar (n)), (6)
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TABLE III. Parameter setting for the PSO algorithm

Parameter Value

NP 50

maxFes 10000

D 5

C1, C2 2.0

current best max 300.0

and r2 the

r2 = rSWIM−BIKE(Ar (n+1)) + rBIKE−RUN(Ar (n+1)). (7)

Variable Ar (n) in Eq. (6) denotes an archive of the best results as achieved by the best n-competitors

in an observed professional/age group in some competition. On the other hand, variable Ar (n+1)

in Eq. (7) determines the archive Ar (n), to which the predicted results xi are added.

The idea behind the calculation of the fitness function is searching for a solution that is the

most fitted to correlation of the result archive. In line with this, the observed athletes would keep

their predicted intermediate results with the results achieved by the group of athletes, belonging

to the specific professional/age group.

V. EXPERIMENTS

The purpose of experiments was to validate the PSO algorithm for modeling preference time. In

line with this, experiments were conducted on two different archives of the existing results, where

the predicted intermediate achievements must correlate with the results achieved by the athletes

in the corresponding professional/age groups.

The PSO algorithm for modeling preference time was implemented in Python programming

language. The task of the algorithm was to predict the intermediate results for a specific athlete

such that overall final time of 300 min (or 5 hours) is achieved for someone, which has the personal

best result around 3 min above the predicted time (tbest > 300 min) and would like to achieve the

new personal best finish time slightly under 5 hours (tnew best ≤ 300 min). Parameter setting of the

PSO as presented in Table III were used during the experimental work. Thus, the 5 independent

runs were conducted in order to evaluate the results of the stochastic SI-based algorithm.

In this study, result archives have been employed that were achieved in the previous IRONMAN

competitions worlwide. Precisely, the results of athletes tracked during IRONMAN 70.3 races in
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2015 from ironman.com websites were used that are publicly available as datasets3. In these

datasets, data are saved in CSV and JSON file formats and can be used in the proposed PSO

algorithm without any special preprocessing except all times represented as character strings must

be converted to minutes (floating-point values). Indeed, these data consist of:

• the name of an athlete,

• the nation,

• the category,

• the finish place,

• split times of swimming, biking and running,

• split times of both transitions, and

• the overall time.

Although the mentioned datasets include the different sets of results, here, we were focused es-

pecially on two IRONMAN competitions, i.e., IRONMAN 70.3 Taupo 2015 and Wiesbaden 2015.

Indeed, the results of the first 30 competitors in age group 25-29 years represent a basis, from

which the archives Ar (n) and Ar (n+1) were built.

A. Results

The results of predicted intermediate times for the observed 26 year old man athlete were based

on archives of results achieved on two different middle distance triathlon courses, i.e., IRONMAN

70.3 Wiesbaden 2015 and Taupo 2015. Each archive consists of 30 best results from the age group

25-29 years. Interestingly, the calculated Pearson’s correlation coefficient for the first competition

was r
(Wiesbaden)
1 = 0.7256, while for the second r

(Taupo)
1 = 0.2051.

The results of experiments are depicted in Tables IV and V, where columns represent the pre-

dicted intermediate times for three sports disciplines as well as two transition areas. Furthermore,

the predicted overall finish time column is added to both tables. Thus, the first five rows illus-

trate the results for each independent runs, while the last two rows denote the mean and standard

deviation of the results in aforementioned rows, respectively.

Mostly, the difference between the Pearson’s correlation coefficients are reflected in the corre-

sponding standard deviation values depicted in the tables. This means that predicted intermediate



11

TABLE IV. Predicted intermediate times based on results achieved in IRONMAN 70.3 Wiesbaden

Run Swimming T1 Cycling T2 Running Total

1 32:45.65 3:25.88 2:45:11.42 4:35.33 1:34:01.53 4:59:59.82

2 34:11.84 2:00.00 2:49:04.71 4:41.07 1:30:02.36 4:59:59.99

3 35:47.80 3:13.38 2:50:35.38 3:22.77 1:27:00.64 4:59:59.99

4 31:23.28 2:14.76 2:44:14.28 3:46.04 1:38:21.47 4:59:59.86

5 35:07.18 3:10.33 2:48:43.17 2:36.88 1:30:22.41 5:00:00.00

Mean 33:51.15 2:48.87 2:47:33.79 3:48.42 1:31:57.68 4:59:59.93

Stdev 1:47.20 0:38.67 2:42.88 0:51.84 4:21.36 0:00.08

TABLE V. Predicted intermediate times based on results achieved in IRONMAN 70.3 Taupo

Run Swimming T1 Cycling T2 Running Total

1 41:02.92 2:41.81 2:47:35.78 3:39.45 1:25:00.00 4:59:59.98

2 33:59.64 4:02.92 2:37:53.48 2:46.39 1:41:17.54 4:59:59.99

3 38:11.37 2:00.00 2:43:28.88 5:00.00 1:31:19.73 4:59:59.98

4 37:59.19 3:31.27 2:43:33.20 2:40.58 1:32:15.73 4:59:59.99

5 39:37.81 3:04.22 2:43:11.92 4:35.71 1:29:30.30 4:59:59.98

Mean 38:10.19 3:04.04 2:43:08.65 3:44.43 1:31:52.66 4:59:59.99

Stdev 2:38.43 0:46.91 3:27.19 1:02.86 5:57.51 0:00.00

times in different runs of the PSO algorithm distinguish lesser in Table IV than in Table V, because

the Pearson’s coefficient underlying the results in the first table is much higher than the same co-

efficient underlying the results in the second table. For instance, predicted values for IRONMAN

70.3 Wiesbaden are for swimming within 31-35 minutes (4 minutes), cycling within 2:44-2:50 hours

(6 minutes) and running within 1:27-1:38 hours (11 minutes). In contrary, the values for the

IRONMAN 70.3 Taupo are more dispersed, because these are situated for swimming within 33-41

minutes (8 minutes), for cycling within 2:37-2:47 hours (10 minutes) and running within 1:25-1:41

hour (16 minutes).

In general, the Pearson’s correlation coefficient has a big influence on modeling the preference

time in triathlons. Analysis of the coefficient is especially interesting for the professional athlete’s

groups, where these values are much higher. Consequently, the prediction of the overall finish time

in middle triathlons is much easier in these groups, because the right champions must be excellent

in all disciplines.
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B. Lessons learned

Before the experiments were finished, we did not have any expectations only a feeling about how

positive effects should have an usage of the PSO algorithm with Pearson’s correlation coefficient

applied to the real data. However, experiments revealed an interesting story. They confirmed, on

one hand that it is possible to model the preference time in middle triathlons, while on the other

hand that this prediction can be very reliable. From the results of experiments, we can infer that

the more than the data are correlated, the more reliable prediction can be expected. For instance,

the first 30 competitors in age group 25-29 years at IRONMAN 70.3 Wiesbaden 2015 have their

times much more correlated between disciplines than the first 30 competitors at IRONMAN 70.3

Taupo 2015. Hence, predicted results for the race in Wiesbaden is much more reliable than the

second one. Additionally, the observed athlete can also select, which of the offered preference times

will be his target time on the same race course.

However, the reliability of the preference times can additionally be improved, when the personal

best time of the observed athletes will be taken into account. In line with this, the first 15 results

better than their personal best and the first 15 results worse than their personal best can be selected

from the archive in place to take the best 30 results.

VI. CONCLUSION

In this paper, we have proposed a new solution for modeling preference time in middle distance

triathlon using the PSO algorithm. In line with this, we have systematically outlined a problem

and proposed a theoretical model to solve it. The theoretical model was later validated by some

experiments, where real data from IRONMAN 70.3 competitions were taken into consideration.

There is also a bunch of possibilities for future extension of the proposed solution. On the other

hand, the influence of data size should be studied, whilst the design of other fitness functions would

also be interesting.
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Wojciech Potocki, and Grzegorz Raczak. Intensive exercise and its effect on the heart: Is more always

better? Cardiology Journal, 24(2):111–116, 2017.

6 J Kennedy and R Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE

International Conference on, volume 4, pages 1942–1948. IEEE, 1995.

7 Beat Knechtle, Pantelis T Nikolaidis, Thomas Rosemann, and Christoph A Rüst. Der ironman-triathlon.
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