
Dynamic Routing and Wavelength Assignment Using First

Policy Iteration

Esa Hyytiä and Jorma Virtamo

Helsinki University of Technology
Laboratory of Telecommunications Technology

P.O.Box 3000, FIN-02150 HUT, Finland
E-mail: {esa.hyytia, jorma.virtamo}@hut.fi

December 10, 1999

Abstract

With standard assumptions the routing and wavelength assignment problem (RWA)
can be viewed as a Markov Decision Process (MDP). The problem, however, defies an
exact solution because of the huge size of the state space. Only heuristic algorithms
have been presented up till now. In this paper we propose an approach where, starting
from a given heuristic algorithm, one obtains a better algorithm by the first policy
iteration. In order to estimate the relative costs of states, we make a simulation on
the fly studying, at each decision epoch, the consequences of all the alternatives ac-
tions. Being computationally intensive, this method can be used in real time only for
systems with slow dynamics. Off-line it can be used to assess how close the heuristic
algorithms come to the optimal policy. Numerical examples are given about the policy
improvement.

1 Introduction

The wavelength division multiplexing (WDM) is a promising technology for future all-
optical networks. In WDM several optical signals using different wavelengths share same
fibre. The capacity of such fibre links can be very huge, even terabits per second. The
routing in network nodes is based on wavelengths of incoming signals [6][8][10].

Generally, the routing and wavelength assignment (RWA) problem in WDM networks
consists of choosing a route and a wavelength for each connection so that no two connection
using same wavelength share same fibre [1][2]. For example a simple form of RWA problem
is a static traffic case with single fibre links. If the nodes are incapable to do a wavelength
translations, an assumption made throughout this work, the problem can be mapped to a
node coloring problem once routing is fixed (see e.g. [1]).

When the traffic is not static, lightpath requests arrive randomly following some traffic
pattern. Connection requests between a given source destination pair constitute a traffic
class, which we index by k, k ∈ K, where K is the set of all source destination pairs.
The RWA algorithm configures the lightpaths in the network unless there is no enough
resources available and the request is blocked (see e.g. [3][5][7]).

1

The possible schemes considered under dynamical traffic can be divided in two cases. If
it is possible to reconfigure the whole network when blocking would occur the blocking
probability can be considerable reduced. Such an operation, however, interrupts all (or at
least many) active lightpaths and requires a lot of coordination between all the nodes. In
large networks the reconfiguration seems quite impossible. In any case the reconfiguration
algorithm should try to minize the number of reconfigured lightpaths [4].

The other case is when active lightpaths may not be reconfigured. In this case it is
important which route and wavelength are assigned to incoming connection requests in
order to minimize the future congestion in the network.

Several heuristic algorithms have been proposed and studied (see e.g. [3][5][7]). In this
paper we study this problem in the setting of Markov Decision Processes (MDP) and
propose a new approach, where we try to improve any given heuristic algorithm by the
first policy iteration [9][11]. The policy iteration, indeed, is known to lead to a new policy
with better performance. In order to avoid dealing with huge size of the state space in
calculating the relative state costs needed in the policy improvement step, we suggest to
estimate these costs on the fly by simulations for the limited set of states that are relevant
at any given decision epoch, i.e. when the route and wavelength assignment for an arriving
call has to be made.

The rest of the paper is organized as follows. In section 2 we briefly review Markov Decision
Processes and policy iteration in general, and the first policy iteration, in particular. In
section 3, we consider the relative costs of states and how they are used in the policy
iteration, and in the following section 4 we study how theses state costs can be estimated
by simulations. Different heuristic RWA algorithms are presented in section 5. These
are used as a starting point for policy iteration, and, in section 6 some numerical results
obtained by simulations are presented. Finally, section 7 contains conclusions.

2 Policy Iteration

Routing and wavelength allocation constitute a typical decision making problem. When
certain events occur, one has to decide on some action. In the RWA problem, in particular,
upon arrival of a request for new connection one has to decide whether or not to accept
the request, and if accepted which resources to allocate for it, i.e. which of available routes
and wavelengths are used for that connection.

In general, one is interested in the optimal policy which maximizes or minimizes the
expectation (infinite time horizon) of a given objective function. Here we assume that the
objective is defined in terms of minimizing some cost function. The cost may represent
e.g. the loss of revenue due to blocked calls, where different revenue may be associated to
each type of call.

When the arrival process of type k calls is a Poisson process with intensity λk, the holding
times of those calls are distributed exponentially with mean 1/µk and the expected revenue
per carried call is wk, then the system constitues a Markov Process and the problem of
determining the optimal policy belongs to the class of Markov Decision Processes (MDP)
described e.g. in [9] and [11].

Three main approaches for solving the optimal policy in the MDP setting are the policy

2

iteration, value iteration and linear programming approach. In this paper, we concentrate
on the iteration in the policy space, where, as the name says, one tries to find the optimal
policy by starting from some policy and iteratively improving it. This policy iteration is
known to converge rather quickly to the optimal policy. Even the first iteration yields a
new policy which is rather close to the optimal one. In practice, it is seldom possible to go
beyond the first iteration. Also in this work, we will restrict ourselves to the first policy
iteration.

At each decision epoch, i.e. arrival of a new request, there is a finite set of possible actions:
either reject the call or accept it and assign a feasible combination of route and wavelength
(RW) to it. A feasible RW combination is such that along the route from the source to
destination the wavelength is not being used on any of the links. If no feasible RW
combination exists, the call is unconditionally rejected.

A policy defines for each possible state of the system and for each class k of an arriving
call which of the possible actions is taken. Many heuristic policies have been proposed in
the literature such as the first-fit wavelength and most-used wavelength policies combined
with shortest path routing or near shortest path routing. Some of them work reasonably
well. Common to all heuristic policies is that they are simple. The choice of the action
to be taken at each decision epoch can usually be described in simple terms and does not
require much computation. We take one of the heuristic politics as a starting point and
call it the standard policy. The policy resulting from the first policy iteration we refer to
as the iteration policy.

By doing the first policy iteration we have two goals in mind. 1) Finding a better RWA
algorithm which, being computationally intensive, may or may not be calculable in real
time, depending on the time scale of the dynamics of the system. 2) Even in the case the
algorithm is not calculable in real time, estimating how far the performance of a heuristic
algorithm is from the optimal one.

Briefly, as explained in more detail below, our idea in the policy iteration is the following:
at each decision epoch we make a decision analysis of all the alternative actions. For each of
the possible actions, i.e. decision alternatives, we estimate the future costs by simulation.
Thus, assuming that a given action is taken we let the system proceed from the state where
it is after that action and use the standard policy to make all the subsequent decisions.
The iteration policy is the policy which is obtained when at each decision epoch the action
is chosen for which the estimated cost is the minimum. It can be shown that the iteration
policy is always better or at least as good a policy as the standard policy, and as said it
often comes rather close to the optimal policy.

3 Relative costs of states

In the MDP theory, the first policy iteration consists of the following steps: With the
standard policy one solves the Howard equations (see, e.g. [9][11]) to give the so called
relative costs of the states, Ci, which for each possible state i of the system describe the
difference in the expected cumulative cost from time 0 to infinity, given that the system
starts from state i rather than from the equilibrium. Then, given that the current state of
the system is j and a class-k call is offered, one calculates the cost Cj +wk for the action
that the call is rejected, and the cost Ci, i ∈ A(j, k), for the case the call is accepted, where
A(j, k) is the set of states reachable from state j by assigning call-k a feasible RW pair.

3

By choosing always the action which minimizes the cost, one gets the iteration policy, i.e.
the policy resulting from the first policy iteration.

Though the Howard equations are just a set of linear equations for relative costs Ci and the
average cost rate c of the standard policy (see below), their solution cannot be obtained
because of the prohibitive size of the state space for any realistic system. However, at
any decision epoch the relative costs Ci are needed only for the current state j and a
small set of states A(j, k) reachable from the current state. We propose to estimate these
values on the fly by means of simulations. To this end, it is useful to consider the physical
interpretation of the relative costs Ci.

Given that the system starts from state i at time 0 and standard policy is applied for all
decisions, the cumulative costs are accrued at the expected rate ct(i) at time t,

ct(i) =
∑

λkwkP{It ∈ Bk|I0 = i}, (1)

i.e. the expected rate of lost revenue, where P{It ∈ Bk} is the probability that at time
t the state of the system It is a blocking state for class-k calls. When It ∈ Bk class-k
calls arriving at time t are blocked by the standard policy because either no feasible RW
pair exists or the policy otherwise deems the blocking to be advantageous in the long
run. The expected cost rate ct(i) depends on the initial state i. However, no matter what
the initial state is, as t tends to infinity, the expected cost rate tends to a constant c,
which is specific to the standard policy, and corresponds to (1) with steady state blocking
probabilities P{It ∈ Bk}.

tc (i)

c

t

t

t
c (i)

1

2

c (i)

Figure 1: Expected costs with different initial choices as a function of time.

The behavior of the function ct(i) is depicted in Figure 1 for two different initial values i1
and i2. The relative costs Ci is defined as the integral

Ci =
∫ ∞

0
(ct(i)− c) dt,

i.e. the area between the curve ct(i) and the line at level c. So we are interested in the
transient behaviour of ct(i); after the transient no contribution comes to integral. The
length of the transient is of the order 1/µ, where 1/µ is the average holding time of a
connection. After that the system essentially forgets the information about the initial
state. So we can restrict ourselves to an appropriately chosen finite interval (0, T). The
actual choice of T is a tradeoff between different considerations as will be discussed later.

One easily sees that in the policy improvement step only the differences of the values Ci
between different states are important. Therefore, we can neglect the c in the integral, as

4

it is common to all states, and end up for thus redefined Ci,

Ci ≈ Ci(T) =
∫ T

0
ct(i) dt, (2)

which is simply the expected cumulative cost in interval (0, T) starting from initial state
i.

4 Estimation of the state costs by simulation

In practice, it is not feasible to calculate the cost rate function ct(i) analytically even
for the simplest policies. Therefore, we estimate the state costs Ci by simulations. In
each simulation the system is initially set in state i and then the evolution of the system
is followed for the period of length T , making all the RWA decisions according to the
standard policy.

4.1 Statistics collection: blocking time vs. blocking events

In collecting the statistics one has two alternatives. Either one records the time intervals
when the system is in a blocking state of class-k calls, for all k ∈ K. If the cumulative time
within interval (0, T) when the system is in the blocking state of class-k calls is denoted
by τk(i), then the integral is simply

Ĉi =
∑

λkwkτk(i). (3)

Alternatively, one records the number νk(i) of blocked calls of type k in interval (0, T).
Then we have

Ĉi =
∑

wkνk(i). (4)

In these equations we have written explicitly τk(i) and νk(i) in order to emphasize that
the system starts from the state i. Both (3) and (4) give an unbiased estimate for Ci.
In either case, the simulation has to be repeated a number of times in order to get an
estimator with small enough confidence interval.

To this, denote the estimates of future costs obtained in the jth simulation run by Ĉ
(j)
i ,

using (3) or (4) as the case may be. Then our final estimator for Ci is

Ĉi =
1
N

N∑
j=1

Ĉ
(j)
i , (5)

where N is the number of simulation runs. In fact, for the policy improvement the inter-
esting quantity is the difference

Ei1,i2 = Ci2 − Ci1 ,

for which we have the obvious estimate

Êi1,i2 = Ĉi2 − Ĉi1 . (6)

5

From the samples Ĉ(j)
i1

and Ĉ
(j)
i2

, j = 1, . . . ,N , we can also derive an estimate for the
variance σ̂2

i1,i2
of the estimator Êi1,i2

σ̂2
i1,i2 =

N
∑

j(Ĉ
(j)
i2
− Ĉ(j)

i1
)2 −

(∑
j Ĉ

(j)
i2
− Ĉ(j)

i1

)2

N2(N − 1)
.

The choice between the alternative statistics collection methods is based on technical con-
siderations. Though estimator (3) (blocking time) has a lower variance per one simulation
run, it requires much more bookkeeping and the variance obtained with a given amount
of computational effort may be lower for estimator (4) (blocking events).

In practice, when the blocking time is collected, we will have a binary state vector b with
the kth component equal to one if the network is in the blocking state for class-k calls, and
otherwise zero. Every time an arrival or departure occurs, the state vector b multiplied by
the time elapsed since the last event is added to the vector τ , which contains the cumulative
time spent in blocking state for each class k. Correspondingly, the components of b are
updated, i.e. when a new connection is accepted, we have to check whether any of the
previously non-blocked connection classes, turn blocked. Likewise, after a departure some
previously blocked connection classes may turn to be non-blocked. This updating means
that each accepted connection causes K checks on the average, where K is number of
possible connections (node pairs), i.e. the number of elements in the set K. This extra
effort leads to longer running times.

4.2 Policy iteration with uncertain state costs

In order to deal with uncertainty of the estimators Ĉi, we do not blindly accept the action
with the smallest estimated cost, but give a special status for the decision which would
be chosen by the standard policy. Let us give this policy the index 0. Based on the
simulations we form estimates Ê0,i for each possible action i. Then, as the decision we
choose the action which minimizes the quantity

Ê0,i + α · σ̂0,i, (7)

where α is an adjustable parameter. Note that for i = 0 this quantity is equal to 0. Thus,
in order for another action i to replace action 0 of the standard policy, we must have
Ê0,i < −α · σ̂0,i, i.e. we require a minimum level of confidence for the hypothesis Ci < C0.
An appropriate value for α has to be determined experimentally.

The important parameters of the simulation now are the length of the simulation period
T and the number of simulation runs N used for the estimation of each Ci. In practice,
we are interested in the smallest possible values of T and N in order to minimize the
simulation time. However, making T and N too small increases the simulation noise,
i.e. error in the estimates for Ci, occasionally leading to decisions that differ from that
of the true iteration policy, consequently deteriorating the performance of the resulting
algorithm.

6

4.3 Time complexity of iteration approach

Clearly the simulation of the future at each decision epoch makes this algorithm very time
consuming. Assume, that a single decision of the standard policy takes a constant time
u. Let N be the number of the simulations that are run for each alternative action, A
average number of alternative actions per decision (possible RW pairs), λ the total arrival
rate to the network (uniform load), and T the length of one simulation run. Then, the
running time of each decision is on the average

ui = A ·N · (λT)u = λANT · u,

so the running time is λANT times longer than with the underlying algorithm. Neither
λ nor A are parameters of the algorithm. Hence, the tradeoff between the goodness of
solution and the running time is defined by choosing the value for product N · T .

For example, to get decent results with a simple 11 node network (fig. 2) with moderate
load (µ = 1 and λk = 0.4 for all k), about 100 samples were required each 1/µ time units
long. So the increase in running time was order of 103 − 104. It is essential that the
decisions of the underlying standard policy can be determined quickly.

5 Heuristic Algorithms

Several quick heuristic algorithms have been proposed in the literature. Here we briefly
present some of them and study how iteration approach works with them. The first set
of algorithms assumes that a fixed set of possible routes for each connection is given in
advance. Some papers refer to this as alternate routing. In practice this set usually consists
shortest or nearly shortest path of routes. Each algorithm accepts the first feasible RW
pair found (first-fit).

• basic algorithm goes through all the routes in a fixed order and for each route tries
all the wavelengths in a fixed order.

• porder algorithm is similar to basic-algorithm but it goes through all the wavelengths
in a fixed order and for each wavelength tries all the routes in a fixed order.

• pcolor algorithm works like porder but wavelengths are gone through in order of the
usage instead of a fixed order, so that the most used wavelength is tried first.

• lpcolor algorithm also tries to pack colors, but the primary target is to minimize the
number of used links. So the algorithm first tries the most used wavelength with all
the shortest routes, then the next often used wavelength and so on. If no wavelength
works, the set of routes is expanded to include routes having one link more and
wavelengths are tried again in the same order.

• ll or least loaded algorithm (see [3] is similar to pcolor but here the chosen RW pair
is the one which leaves most capacity free after the assignment, i.e. the minimal
number of free wavelengths over the links used is maximized.

Another set of heuristic algorithms, adaptive unconstrained routing (AUR) algorithms,
are described in [5]. These use dynamic routing instead of fixed set of routes, and are thus
a little bit slower.

7

Kuopio

Vaasa

Tampere

Oulu

Lappeenranta

Jyväskylä

Turku

Espoo
Helsinki

Joensuu

Vantaa

Turku

VantaaEspoo

Vaasa

Joensuu

Kuopio

Oulu

Jyväskylä

Tampere

Helsinki

Lappeenranta

Figure 2: Hypothetical WDM-network residing in Finland.

• aurpack is similar to pcolor, but without the limitations of a fixed set of routes.

• aurexhaustive finds a route with each wavelength (if possible) and chooses the short-
est among them, i.e. it is identical to lpcolor except that the set of possible routes is
not limited.

Thus AUR-algorithms will search for a free route dynamically based on the current state
of the network. So there is no need to store possible routes (which without any limitations
can form a very large set) in advance.

Also other heuristics are given in [5] like random (tries wavelengths in random order) or
spread (tries least used wavelength first), but they were reported to work worse than the
ones described above, and are not further discussed here.

6 Simulation results

Next we will present some numerical results from simulations. All tests were run for the
small network shown in figure 2. The network was assumed to have 8 wavelengths available
on each link. All the links contained one fibre. The offered load was uniform among all
traffic classes (node pairs) and each rejected call represents an equal cost, wk = 1 for
all k ∈ K. These assumptions simplify formulas (3) and (4). Note that the assumption
wk = 1 for all k means that the the objective is to minimize the long term blocking rate,
i.e. the blocking probability.

It should also be noted that the results for the iteration policy were obtained by two levels

8

algorithm time Small Set of Routes Larger Set of Routes
block running time call time running time call time

time index blocking blocking time index blocking blocking
basic no 1.5 1 5.225 - 1.6 1 4.035 -
basic yes 29 20 5.225 5.214 36 20 4.035 4.040
pcolor no 2.1 1.5 3.741 - 2.9 1.8 3.406 -
pcolor yes 56 30 3.741 3.760 106 70 3.406 3.381
lpcolor no 2.0 1.5 3.743 - 2.3 1.4 2.867 -
lpcolor yes 54 30 3.743 3.715 67 40 2.867 2.920
aurpack no 7.9 6 3.676 - 8.0 6 3.676 -
aurpack yes 380 300 3.676 3.670 380 300 3.676 3.670

Table 1: Different heuristic algorithms compared.

of nested simulations. In order to assess the performance of the policy, an outer simulation
is run, where connections arrive and leave the network and blocking times or events are
recorded. Upon each arrival, a number of inner simulations are launched from the current
state in order to make a comparison between different decision alternatives. Based on
this comparison one alternative is chosen and used in the outer simulation, which then
continues until upon the next arrival the decision analysis by the inner simulations is again
started.

6.1 Heuristic algorithms

In table 1 running times and average results are given for the heuristic algorithms. The
offered load per traffic class was a = 0.4. For non-aur algorithms two sets of routing
parameters were used. For the smaller set of routes we had ldelta=1 and rmax=4, i.e.
the routing parameters allowed routes with one more link than there are on the shortest
path while still limiting the number of routes per traffic class pair to 4 at maximum. The
other set of routing parameters used was ldelta=2 and rmax=16. The shown results are
averages over 100000 arrivals. A warm-up period of 5/µ was skipped before starting to
record samples.

The column ‘time block’ (yes/no) indicates whether (3) or (4) was used for the cost
estimation. The bookkeeping of the blocking time clearly raises the running time a lot.
Thus it is unlikely that the benefit of smaller variance of cost estimates would outweight
the longer running time.

6.2 Routing algorithm parameters

All non-aur algorithms assume that a predefined set of possible routes per traffic class is
given. This raises the question, which set of routes is optimal? Clearly too small a set of
routes limits how well any algorithm can perform. But, as can be seen from figure 3, also
too large a set of routes can be a problem for some algorithms. Here, the set of routes is
specified with two parameters ldelta and rmax. Parameter ldelta defines how many links
longer routes than the shortest one are included in set of routes. The second parameter
rmax limits the total number of routes, i.e. only the rmax first routes are included in
set. For example, with ldelta=0 and rmax=10 only the shortest routes are included, and
if there are more than 10 shortest routes for some node pair only the first 10 found are
included.

9

0 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5

∆ l

P
(B

)
/ %

Suomi, effect of route length: a=0.4 W=8

Figure 3: Effect of ldelta parameter on the results. At ∆l = 3 the algorithms from worst
to best are basic, aurpack, pcolor and lpcolor.

Third possible parameter to reduce the running time could be maxtest, which would be
used to limit the number of alternative actions tested against the standard policy. This
would be effective only when the load of the network is low and there are plenty of RW
pairs available. In these tests such limit was not used.

6.3 Effect of simulation noise

Let T be the length of the transient period after which the cost rate ct(i) is probably
very near to the long time average c of the standard policy. Simulating past T thus gives
no new information, but actually only increases the noise resulting from the stochastic
nature of the simulation. This can be seen from figure 4 where results clearly get worse
as the simulation period T grows (diagrams from left to right) while keeping the number
of simulation runs the same.

The figure presents blocking probability obtained with the first policy iteration in the
network with a moderate load of a = 0.4 for each traffic class. On the x-axis of each
diagram is the number of simulation runs N , i.e. samples of future costs of a given initial
decision. The upper and lower rows in the figure represent results which were obtained
using estimators (4) and (3) in the estimation of the state costs, respectively. The same
realizations were used in both cases. The conclusion is that the longer the simulation
period is, the smaller is the ‘signal to noise ratio’ and the more simulation runs are needed
to ‘recover the signal’. We cannot, however, make the simulation period T arbitrarily
small, since if the whole transient period is not covered ´the signal becomes distorted’.

6.4 Iteration algorithm

The simulations were run for the same test network as was used before, i.e. the small
network of figure 2. The network was assumed to have 8 wavelengths in each link and the
offered load was uniform among all node pairs. Good running parameters for the inner
simulations for this system were estimated from figure 4. Based on this we chose the
simulation period T = 1/µ and N = 50 . . . 200 simulation runs for each alternative action.

Simulations were run with quick heuristic algorithms as well as with the iteration algorithm

10

0 500
3

3.5

4

4.5

5
0.125 * 1/mu

ca
ll

bl
oc

ki
ng

0 500
3

3.5

4

4.5

5

tim
e

bl
oc

ki
ng

0 500
3

3.5

4

4.5

5
0.25 * 1/mu

0 500
3

3.5

4

4.5

5

0 500
3

3.5

4

4.5

5
0.5 * 1/mu

0 500
3

3.5

4

4.5

5

0 500
3

3.5

4

4.5

5
1 * 1/mu

0 500
3

3.5

4

4.5

5

0 500
3

3.5

4

4.5

5
2 * 1/mu

0 500
3

3.5

4

4.5

5

0 500
3

3.5

4

4.5

5
4 * 1/mu

0 500
3

3.5

4

4.5

5

0 500
3

3.5

4

4.5

5
8 * 1/mu

0 500
3

3.5

4

4.5

5

Figure 4: The effect of extending simulation period in the state cost estimation on the
blocking probability of the iteration algorithm. The routing parameters are ldelta=0 and
rmax=4, and basic is used as the standard policy. Load is a = 0.4 for each traffic class.

with different parameters. The resulting blocking probabilities are shown in figure 5. The
upper part of the bars (light gray) represent two times the standard deviation and the
mean value is in the middle of upper part. The routing parameters here were ldelta=1
and rmax=4 which clearly limit the set of routes. Bars 1-6 represent quick heuristics
basic, pcolor, porder, spread, ll and aurpack. Bars 7-9 represent iteration policy with
N = 50, 100, 200 using basic as the standard policy and bars 10-12 otherwise same but
pcolor is used as the standard policy.

The improvement obtained by the first policy iteration starting with the basic algorithm
was quite large, about 30%, while with pcolor the improvement is much less. Generally
the results from iteration approach are always better than any of the heuristics which used
same set of possible routes. The aurpack uses dynamic routing with routes of any length
in the search space and is here only for comparison.

In another set of simulations the iteration approach was applied with different standard
policies to get some idea about how important the underlying algorithm is. In the four
diagrams of figure 6 the results can be seen with four different offered loads, with the
blocking probability varying from quite a low to a really high value. The algorithms used
were (in order) basic, basic+iteration, pcolor, pcolor+iteration, lpcolor, lpcolor+iteration,
aurexhaustive and aurpack. In this simulation the routing parameters were ldelta=3 and
rmax=30, so the set of routes is much larger than in previous case. This explains why
aurpack loses its advantage over the other algorithms.

It can be seen from the figure that in each case the iteration algorithm indeed gives slightly
better results, except with lpcolor with low load a = 0.3, when the blocking probability
was about the same. It is also worth noting that pcolor performed worse than simpler
basic, which must be due to a rather high value of ldelta in relation to the average route
length.

11

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8
Estimated Blocking Probability

B
lo

ck
in

g
P

ro
ba

bi
lit

y
(%

)

Algorithm

Figure 5: Results with quick heuristic algorithms and the first policy iteration. The routing
parameters are: ldelta=1 and rmax=4. Algorithms are, from left to right, basic, pcolor,
porder, spread, ll, aurpack, basic+iteration(50), basic+iteration(100), basic+iteration(200),
pcolor+iteration(50), pcolor+iteration(100) and pcolor+iteration(200).

7 Conclusions

In this paper we have introduced the idea of applying the first iteration in the policy space
to the RWA problem. With this method one can derive from a given heuristic policy an
iteration policy, which theoretically always is a better policy, i.e. has lower average cost
rate (e.g. blocking probability). The relative costs of states needed in the decision analysis
are estimated on the fly by launching simulations from the current state of the system
and trying different decision alternatives. The simulations introduce some noise in the
cost estimates and careful control of the simulation parameters is required in order not to
deteriorate the performance of the resulting iteration policy.

The performance improvement obtained by the policy iteration depends on the standard
policy one starts with. The reduction of blocking probability in the numerical tests ranged
from a few tens of percents to almost nothing. This suggests that algorithms like lpcolor
and aurexhaustive, for which the improvement was small, are not far from optimal (with
this particular network and setup). Also we can generally conclude that the order in
which RW pairs are tried in a first-fit algorithm can be a very important factor for the
performance. As the method of first policy iteration obviously is computationally intensive,
it can be used in real time only if the dynamics of the system is slow. The inter-arrival
times of the connection requests must be of the order of few seconds or more (depending
on the number of possible decisions), but this may well be the case in WDM networks.
However, the method can always be used off-line e.g. to evaluate heuristic algorithms to
see how far they are from the optimum.

References

[1] D. Banaree and B. Mukherjee. A practical approach for routing and wavelength
assignment in large wavelength-routed optical networks. IEEE Journal on Selected

12

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7
a=0.3

1 2 3 4 5 6 7 8
1.5

2

2.5

3

3.5

4
a=0.4

1 2 3 4 5 6 7 8
6

6.5

7

7.5

8

8.5

9

9.5

10
a=0.5

1 2 3 4 5 6 7 8
12

13

14

15

16

17

18
a=0.6

Figure 6: Blocking probability with loads ranging from a = 0.3 to a = 0.6. The set
of routes were defined with ldelta=3 and rmax=30. Algorithms are, from left to right,
basic, basic+iteration, pcolor, pcolor+iteration, lpcolor, lpcolor+iteration, aurexhaustive
and aurpack.

Areas in Communications, 14(5), Jun 1996.

[2] S. Baroni. Routing and wavelength allocation in WDM optical networks. PhD thesis,
University College London, May 1998.

[3] E. Karasan and E. Ayanoglu. Effects of wavelength routing and selection algorithms
on wavelength conversion gain in wdm optical networks. IEEE/ACM Transactions
on Networking, 6(2), Apr 1998.

[4] G. Mohan and S.R. Murthy. A time optimal wavelength rerouting algorithm for
dynamic trafffic in wdm networks. Journal of Lightwave Technology, 17(3), Mar
1999.

[5] A. Mokhtar and M. Azizog̃lu. Adaptive wavelength routing in all-optical networks.
IEEE/ACM Transactions on Networking, 6(2), Apr 1998.

[6] Biswanath Mukherjee. Optical Communication Networks. McGraw-Hill series on
computer communications. McGraw-Hill, 1997.

[7] R. Ramaswami and K.N. Sivarajan. Routing and wavelength assignment in all-optical
networks. IEEE/ACM Transactions on Networking, 3(5), Oct 1995.

[8] R. Ramaswami and K.N. Sivarajan. Optical Networks, A Practical Perspective. Mor-
gan Kaufmann Series in Networking. Morgan Kaufmann Publishers, 1998.

[9] Henk C. Tijms. Stochastic Models, An Algorithmic Approach. John Wiley & Sons
Ltd, 1994.

[10] A.E. Willner. Mining the optical bandwidth for a terabit per second. IEEE Spectrum,
Apr 1997.

[11] Dziong Zbigniew. ATM Network resource management. McGraw-Hill, 1997.

13

