arXiv:cs.NI/0001007 10 Jan 2000

RED behavior with different packet sizes

Stefaan De Cnodder, Omar Ellodm(enny Pauwels

Traffic and Routing Technologies project
Alcatel Corporate Research Center, Francis Wellesplein, 1 - 2018 Antwerp, Belgium

Abstract

We consider the adaptation of random early detection (RED) as a buffer management algorithm for
TCP traffic in Internet gateways where different maximum transfer units (MTUSs) are used. We studied
the two RED variants described in [4] and point out a weakness in both. The first variant where the
drop probability is independent from the packet size discriminates connections with smaller MTUs.
The second variant results in a very high packet loss ratio (PLR), and as a consequence low goodpui,
for connections with higher MTUs. We show that fairness in terms of loss and goodput can be supplied
through an appropriate setting of the RED algorithm.

Index Terms. RED, TCP, active queue management.

1/ Introduction

The random early detection (RED) algorithm is becomingledacto standard for congestion
avoidance in the Internet and other packet switched networks.iRED active queue management
algorithm that aims at increasing the overall network througtybile maintaining low delays. The
main idea behind RED is to prevent from packets being dropped beoausiffer overflow by
dropping them randomly when the average queue size is aboveaia tarshold. When packets are
dropped from tail —the default drop strategy in packet switchéwonks— losses are arbitrarily
distributed among different competing flows. By randomly dropping pacR&D aims at fairly
distributing losses in proportion to the amount of bandwidth used by leachAnother goal of RED
is to avoid global synchronization caused by dropping packets $tsbass it is the case for tail-drop
gateways. Adaptive sources (e.g. TCP) reduce their sendingsrateéeaction to packet drops, which
are considered as an implicit indication of congestion. A moteiexit way, referred to as early
congestion notification (ECN), to inform sources of the congestido imark packets rather than
dropping them [9]. This explicit way aims at preventing theraexdelay incurred by packet
retransmission.

As a consequence of the incremental deployment of RED, severaltatgoliised on RED have been
and are still being proposed to improve its performance (e.g. [Bi&d)authors of [2] proposed RED
with In and Out (RIO) as an extension to RED to discriminatedoarity packets (Out) in times of
congestion. It is expected that a variant of RIO will be usedifferentiated services (DiffServ)
networks as a means to provide different forwarding treatments feratiffpacket priorities.

RFC2309 [1] states that RED should be used as the default mechanimeantmging queues in routers
unless there are good reasons to use another mechanism. Todth&ireng recommendations for
testing, standardization and widespread deployment of active quanagement in routers, to
improve the performance of today's Internet are made.

" Corresponding author: email: omar.elloumi@alcatel.be, Tel: +32 3 240 78 33, Fax: +32 3 240 99 32

1/13

In this paper we study the two RED variants proposed in [4] and poirea weakness in both. The
first variant where the drop probability is independent frobepiacket size discriminates connections
with smaller MTUs. The second variant results in a veghracket Loss Ratio (PLR), and as a
consequence low goodput, for connections with higher MTUs. We proposer3variants of RED
and compare their performance to the variants proposed in [45hdie that the proposed variants
solve the weaknesses pointed out in the original RED variants.

This paper is structured as follows: Section 2 describeméne idea behind RED as well as the two
proposed RED variants described in [4]. Section 3 reports simulaoits of RED when the traffic
is generated by TCP connections with different MTU valuestid®®ed describes the proposed
modifications in order to improve the performance of RED. Sectioppbrts simulation results
showing the obtained goodput and PLR for the proposed RED variantdy,FBeattion 5 gives
conclusions and recommendations on the optimal configuration of RED.

2/ RED and TCP background information

In this section we describe the RED algorithms as weth@dwo variants proposed in [4]. Then we
briefly introduce the TCP congestion control mechanisms. Tleeested reader can find additional
details on TCP congestion control in [10].

2.1/ RED gateways

In order to allow transient bursts, RED randomly drops packets basedarethge queue rather than
on the actual one. The average queue size is estimatediaagsfohvg — (1—Wq)[avg+wq[q,

where avg is the average queue simq is the weight used for the exponential weighted moving

average (EWMA) filter andy is the instantaneous queue size. An arriving packet is unicovadiy
accepted if the average queue siagg() is below a minimum threshold, is dropped with a certain
probability if avg is between the minimum and a maximum threshold, and finally ddopperwise.

In [4] two variants of RED are proposed, the first one (thatamote by RED_1) does not take the
packet size into account when estimating the drop probabiltile ihe second (that we denote by
RED_2) weights the drop probability by the packet size. This &indiscrimination between small
and large packets is intended to avoid extra delay, incurre@tignsmissions, for delay sensitive
interactive traffic (e.g. Telnet) which generally consistssmall packets. Table 1 gives the steps
needed in order to estimate the drop probability, on each packet arrival for RED_1 and RED_2.

RED_1 RED_2 Sep

count — count +1 count — count +1 (1)

P — maxp avg _mlr?th P — maxp avg _mlr.lth (2)
maxh — minth maxh — minth

- Pp — PpL/M ®)

Py < Pp/@—countCpy) | py — Pp/(@—count Cpy) 4)

2/13

Table 1: necessary steps to compute the drop probability, p,, for RED_1 and RED_2

In Table 1 the significance of the used parameters and variabéssfollowspy, is a temporarily
dropping probability,maxp is an upper bound on the temporarily packet drop probabiffii, and

maxth are the two thresholds limiting the region where packetsaaaomly dropped] is the size

of the incoming packetM is the maximum packet size acdunt is the number of accepted packet
since the last drop or sincavg exceededmintn . Note that the only difference between the two

algorithms is the third step in RED_2 where the temporarily drogpioigability py, is weighted by

the packet size.
Step (2) aims at having a drop probability that increasearlinegrom 0 to maxp, as the average

gueue size increases.

An attractive property of RED_1 resulting from using tbeunt variable is that the number of
accepted packets between two packet drops is uniformly digtibid]. By having a uniform
distribution, packet drops are not clustered, avoiding again pessibthronization of TCP sources.
Although quantitative benefits of having a uniform distribution west at the best of our knowledge,
reported in the literature it is commonly admitted that haliglgt-tailed distributions (such as the
uniform distribution) gives better performance in terms dtigficy and fairnessThe proof given in
[4] is as follows: let X be the number of packets that arafter a dropped packet and until the next
packet is dropped then:

n-2
PIX=nl=— 0 ___Op %— Pb_1 (1)
1-(n-)py j=oH 1-iAH
=pbfor1sns1/pb
and P[X =n] =0 for n>1/ pp.

Note that the interval between two drops is not uniformlyridisted for RED_2. In the following
section we propose a modification to RED_2 in order to solve this problem.

2.2/ TCP congestion control mechanisms

The slow start algorithm [10] was proposed by Jacobson as a dongagbidance and control
algorithm for TCP after a congestion collapse of the Inteift@s algorithm introduces a congestion
window mechanism to control the number of bytes that the sendeleisoatransmit before waiting
for an acknowledgment. For each received acknowledgment, two neverssgmay be sent. When
the window size reaches a threshold value, SSThreshold, thettalgarperates in Congestion
Avoidance mode. The slow start is triggered every retrangmisisneout by setting SSThreshold to
half the current congestion window and the congestion window to oneesegim the Congestion
Avoidance phase, the congestion window is increased by one segnmgriRevad Trip Time (RTT).
Thus when the mechanism anticipates a congestion, it incris@sesngestion window linearly rather
than exponentially. The upper limit for this region is the valuthefreceiver’'s advertised window. If
the transmitter receives three duplicate acknowledgmentshr88Wld is set to half the preceding
congestion window size while this latter is set to one paltkeTCP Tahoe and half the previous
congestion window for TCP Reno. At this point the algorithm assuilmat a packet is lost, and
retransmits it before the timer expires. This algorithrkriewn as thdast retransmit fast recovery
mechanism and avoids the inactivity period before the expiration of thasetission timer.

" Unpublished simulation results performed by Sally Floyd show that light-tailed distributions give better
performance than heavy-tailed ones. See the note in http://www.aciri.org/floyd/REDdistributions.ixt for
more details.

3/13

3/ Smulationswith different packet sizes

In this section we show simulation results obtained when théctimffienerated by TCP sources with
different packet sizes. Our simulations are performed usingmbevariants of the RED algorithm
described in 2.1.

3.1/ Simulation mode€

Our simulation model is composed of 3 groups of TCP sources/destshaharing the same network
path composed of a bottleneck link of 30 Mbits/s connecting tworsouEach group is composed of
20 TCP sources/destinations. All the simulations were done usingREGP [10] and TCP with
selective acknowledgments [9]. The MTU for each group is oispty 1500, 750 and 375 byfes
The timeout granularity was set to 200 ms. We performed twatsisiulations with small and large
propagation delay values for the bottleneck links (15 ms and 80rmssimulation model is depicted
in Figure 1.

TCP senders TCP receivers

1
MTU=375:

100 \Mb/s

1

20 20
MTU=750C_:D\ oG /®
s

1 1
20,

MTU=1500 :

Figure 1: The simulation model

3.1/ Simulation results

Simulation results reporting the goodput and the PLR for two sabfighe propagation delay are
depicted in the following figures. For goodput results we plot the suheajoodput obtained by each
of the 20 TCP connections having the same MTU (see Figure 2iguné B). A PLR for each MTU
value is reported in Figure 3 and Figure 5. The PLR is defined as the moinalbepped packet with a
given MTU over the total number of packets having that MTU.

From the simulation results we can conclude that RED_1, whicls gragkets without taking into
account their size, results in a higher throughput for largeep@ckhe obtained goodput is consistent
with the TCP goodput estimation formula [8] (see Section 4, iequégd)): the goodput doubles when
the MTU is doubled. However small Telnet packets could hawee &igh a PLR from an interactive
application requirements point of view.

2 Although these MTU values may be uncommon we choose them to better explain the results of the
paper. These MTU values correspond to large, medium and small MTUs in the graphs.

4/13

For RED_2 we can clearly see that the PLR is very lfwgdarge MTU values. This leads to a
considerable degradation of the TCP goodput especially when thegatiopadelay is small (Figure
2). Due to an increased PLR for high MTU values (close to fiegt%arge MTUs), the number of
timeouts increases considerably and leads to important irgesf/alactivity waiting for a timeout to
expire. The high value of the PLR for large MTUs preventsctmgestion window from reaching a
sufficient value to trigger thiast retransmit fast recovery algorithm after a packet loss. This prevents
connections with a high MTU values from achieving a considerabtiat of goodput. This problem
is less important when the propagation delay is relatively high (see Bigure

We can see from Figure 3 and Figure 5 that in all cases TAIIK ®xperiences a higher PLR
compared to TCP Reno. For RED_2 the goodput collapse observed ®mpkelet sizes is more
severe for TCP SACK which normally gives better perfaroeacompared to TCP Reno (see Figure
2). This is because TCP SACK is more aggressive during tuwer phase after packet losses.
However, comparing the performance of TCP SACK and TCP Remdat isf the scope of this paper.
Our intention is to show that the RED behavior with the preseof different packet sizes is not
specific for a given TCP version, i.e. the results obtained for bosiowerare comparable.

[uny
[e0)

=
»

R
|
|

@ Reno+RED_1
B SACK+RED 1
O Reno+RED_2
O SACK+RED 2

=
N

=
o 00 O
I I

Sum of TCP goodput (Mbits/s)

1
2
0 _|

small medium large
MTU

Figure 2: Obtained goodput for different MTUs, small propagation delay

0.16
0.14 - I
0.12 —
01 | | |@Reno+RED_1
x B SACK+RED_1
— 0.08 —
o O Reno+RED_2
0.06 -
O0SACK+RED 2
0.04 —
RSl NN Ssln BN
0
small medium large
MTU

Figure 3: PLR for different MTUs, small propagation delay

5/13

Sum of TCP goodput (Mbits/s)
(o2 0o] 5

O Reno+RED_1
B SACK+RED 1
OReno+RED_2
O SACK+RED 2

4
2 .
0
small medium
MTU

large

Figure 4: Obtained goodput for different MTUs, large propagation delay

0.06
0.05 -
0.04
— 0.03 r
0.02 -
0 ’_._‘_‘
small medium large
MTU

@mReno+RED_1
m SACK+RED 1
OReno+RED_2
OSACK+RED_2

Figure 5: PLR for different MTUs, small propagation delay

6/13

3/ Proposed modificationsto RED

In this section we propose three new settings of the RE®ithlgn: RED_3, RED_4 and RED_5. The
main differences compared to RED_1 and RED_2 is the way in whichdrtye probability is
estimated. The following table explains the basic steps for cafguthe drop probability for the three

new proposed variants.

RED 3 RED 4 RED 5 Step

count — count +1 - - 1)

By - mape 0= minth bp — maxp avg = minh By - maxpr g~ Mint (2)
maxh — minth maxh — minth maxh — minth

- - - 3)

; pplL) pplL Pp b2 (4)
a " (1-count Cp) M a " (1-count Cpy) M Pa (L-countCpy) M

_ 5
count — count + ﬁ count — count + (ﬁ) 2 ©®)

Table 2: necessary steps to compute the drop probability, p,, for RED_3, RED_4 and RED_5

RED_3 is proposed as an adjustment to RED_2 in order to weigfinah@acket drop probability by
the packet size. The only modification compared to RED_2 isstbpt(3) is removed and step (4) is
modified in order to weight the final drop probability, , (rather than the temporary ongy,) by the

packet size.
RED_4 is a small modification to RED_3 aiming at conserving ifoumly dropping function by
incrementing count by ﬁ and moving the update ofount after the final drop probability

calculation.
In order to proof that the number of accepted packets betweerrdws i uniformly distributed, let
N be the number of incoming packets after a packet is droppddthentnext drop including this

dropped packet antjj , the length of thelfp incoming packet after a drop then:

H

O

O .
P 0 Hopo O

P[N =n] = M _ oG- M P g)
a a nz—{ il:ll iill_ O
i =0 O
1- 1= Im 0 1- j=1 : 0
M P Yiids

_ : - . LI
= pbélﬂ if n verifies the following conditiony VSU Py
M i=1

n .
andP[N =n]=0if 3 —l>1/py.
iz M

7/13

The reason for which we proposed RED_5 comes from the TCP goodputiestifoemula proposed
in [8]:

MSSLC

RTTO/p’

where C is a constantMSS is the Maximum Segment Siz&TT is the Round Trip Time ang is
the packet drop probability. Ley1SSq and MSSy be two different MSS values corresponding to two
TCP connections with the same RTT then in order to achiewee$si the following equation needs to

PL _ P2
MSS12 MSS2
and the second connection. Substitutim@s, by the packet sizel., and MSSo by the maximum
packet sizeM , explains step (4) in Table 2.

goodput < 3)

be satisfied:

, where p; and p, are respectively the drop probability for the first

Note that as RED_4, RED_5 retains the property of a uniform drofyiegion. The proof is as in
equation (1) and results in the following expression of the dropping diginbut

n .
P[N =n] = pmen)Z if n verifies the following condition: s (ﬁ)2 <lpp, (4
M i=1

n .
andP[N=n]=0if 3 (ﬁ)2 >1/ pp.
2

4/ Simulation results of the proposed RED variants

Simulation results reporting the goodput and the PLR for the 3 @d@®BD variants are depicted in
Figure 6 through Figure 13.

We can conclude that RED_3 and RED_4 result in comparable goodpirL&sdand provide a
relatively good fairness when the propagation delay is sfrtab.fairness is less acceptable when the
propagation delay is large. However in order to improve theughput larger packets has to be
chosen. This means that the throughput increases as a functionpatka size which is a desirable
property in order to keep the packet overhead low. The PLR for RElbd RED_4 doubles when the
MTU doubles.

Finally RED_5 results in a good fairness especially when the gatipa delay is large. The PLR is
proportional to the square of the MTU which is an expected resoln B theoretical point of view
the drop probability should be weighted by the square of the ratio of thet parekever the maximum
packet size. The TCP goodput estimation formula given by equ&jdmlds under the assumption
that all retransmissions are made upon the receipt of dugeate acknowledgments and not after a
timeout. Hence using a small value of the timer granylanmid RED_5 dramatically improves the
fairnesé (compared to RED_1) when the traffic is generated by TCP sources hdfengndiMTUs.

3 Perfect fairness can hardly be achieved since it is likely that different TCP connections have different
RTT values. The fairness, as a function of the RTT, could be improved if the router has a means to
estimate the RTT of each connection which, in practice, is hardly feasible.

8/13

ORED_3
BRED 4
ORED_5

Sum of TCP goodput (Mbits/s)

small medium large
MTU

Figure 6: Obtained goodput for different MTUs, small propagation delay,Reti®

2 14
2

5 12

2

5

= O RED_3
S mRED_4
(@]

o ORED 5
©

kS

£

>

(%9}

small medium large
MTU

Figure 7: Obtained goodput for different MTUs, small propagation delay, SAIK

9/13

0.07

0.06 -

0.05
v 0.04 | | |ORED_3
— BERED_4
& 0.03 -

ORED_5
0.02 -
0-01 T B
0 I
small medium large
MTU

Figure 8: PLR for different MTUs, small propagation delay, TCP Reno

PLR

0.07

0.06 -
0.05 +

mRED 3
mRED 4
ORED 5

0.04 +
0.03 —

0.02 —

RNEN Sy r B

small medium large
MTU

Figure 9: PLR for different MTUs, small propagation delay, TCP SACK

10/13

12

mRED 3
mRED 4
ORED 5

Sum of TCP goodput (Mbits/s)

small medium large
MTU

Figure 10: Obtained goodput for different MTUs, large propagation delay, TG® Re

mRED 3
mRED 4
ORED 5

Sum of TCP goodput (Mbit/s)

small medium large
MTU

Figure 11: Obtained goodput for different MTUs, large propagation delay, TCK SA

11/13

0.03

0.025

0.02 -

0.01

0.005 -

i

LB

ORED_3
BRED 4
ORED_5

small

medium
MTU

large

Figure 12: PLR for different MTUs, large propagation delay, TCP Reno

0.03

0.025 -

0.02

0.015 -

PLR

0.01 -

0.005 -

D

mRED 3
mRED 4
ORED 5

small

medium
MTU

large

Figure 13: PLR for different MTUs, large propagation delay, TCP SACK

12/13

5/ Conclusions

The main results of our simulations can be summarized as follows:

- RED_1 can result in a too high a PLR for small Telnet packets,

- RED_2 could lead to a severe throughput collapse when the MTU is high,

- RED_3 gives good results in terms of loss differentiation anddavow throughput (as it is the
case with RED_2) for bulk transfers using large MTU values,

- RED_4 gives good results in terms of loss differentiation andefss and in addition results in
uniformly distributed drops,

- RED_5 is, from a theoretical point of view, the best RED vatiarachieve fairness for TCP-
friendly traffic.

Since the traffic in the Internet is a mixture of different padizes we strongly recommend the use of

RED_4 or RED_5 which improve the PLR differentiation and do not rastitroughput degradation
for connections with large MTUs.

6/ References

[1] B. Braden et al., “Recommendations on Queue Management and Gamgegidance in the
Internet”, RFC 2309, April 1998.

[2] D. D. Clark, W. Feng, “Explicit allocation of best-effort fiaf, IEEE/ACM Transactions on
Networking, vol. 6, n. 4, August 1998.

[3] W. Feng, D. Kandlur, D. Saha and K. Shin, “A Self-Configuring REBte®ay”, |IEEE
INFOCOM'99, March 1999.

[4] S. Floyd and V. Jacobson, “Random Early Detection gateways dogeStion Avoidance”,
|IEEE/ACM Transactions on Networking, vol.1 n.4, pp. 397-413, August 1993.

[5] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestiontr@l in the Internet”,
|IEEE/ACM Transactions on Networking, August 1999.

[6] D. Lin and R. Morris, “Dynamics of Random Early DetectioACM SGCOMM 97, October
1997, Cannes, France.

[7] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP Selective nssidedgment Options”,
Internet RFC 2018, October 19996.

[8] M. Mathis, J. Semske, J. Mahdavi and T. Ott, “The macrosdoghavior of the TCP congestion
avoidance algorithm'Computer Communication Review, vol. 27 n. 3, pp 67-82, July 1997.

[9] K. K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit Cstige Notification (ECN) to
IP”. Internet RFC 2481, January 1999.

[10] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fasamenit, and Fast Recovery
Algorithms", RFC 2001, January 1997.

13/13

