
Packet Classification Using Independent Sets

Xuehong Sun and Yiqiang Q. Zhao
School of Mathematics and Statistics

Carleton University
1125 Colonel By Drive

Ottawa, Ontario, Canada K1S 5B6
E-mail:

�
xsun, zhao � @math.carleton.ca

Abstract

This paper describes a new algorithm for packet clas-
sification using the concept of independent sets. The al-
gorithm has very small memory requirements. The search
speed is neither sensitive to the size of the rule table nor to
the percentage of wildcards in the fields. It also scales well
from two dimensional classifiers to high dimensional ones.
In particular, the algorithm is inherently parallel. Hard-
ware tailored to this algorithm can achieve very fast search
speed.

1. Introduction

Internet service provider (ISP) is going to provide more
value added services to end users. In order to provide these
services, the router needs to classify the packets into flows
according to different criteria. These criteria form rules
which are based on L2/L3/L4 fields in the packet header.
This function of router is called packet classification.

High speed internet relies on high speed packet classi-
fication functions. In the near future, 40 Gigabit per sec-
ond (OC768) wire speed is expecting to be achieved. Given
the smallest packet size of 40 bytes (worst-case), the router
needs to lookup packets at a speed of 125 million packets
per second. That, together with other needs in processing,
amounts to less than 8ns per packet lookup. Nowadays, one
access to on-chip memory takes 1-5ns for SRAM and 10ns
for DRAM; One access to off-chip memory takes 10-20ns
for SRAM and 60-100ns for DRAM . This figure shows that
it is highly demanding to develop high speed packet classi-
fication algorithms. It also shows that it is very difficult
for serial algorithms to achieve ideal wire speed. Develop-
ing parallel algorithms and integrating parallel or pipeline
mechanism into hardware seem a must for the future packet
classification.

We propose a new algorithm using the concept of in-
dependent sets. The new algorithm is theoretically sound.
Experimental studies have shown that its performance is at
least comparable to best available algorithms. Specifically,
the algorithm could convert a higher dimensional classifica-
tion problem into a lower dimensional one. Thus, the lower
bound that a � dimensional classification problem requires
to perform at least � one-dimensional range searches is ex-
pected to break. The algorithm has very small memory re-
quirements. The memory factor is expected to be smaller
than two (The memory factor is the ratio of the total amount
of memory used to that needed to store the rules). This fac-
tor was best reported in existing algorithms as four [2]. The
search speed of our algorithm is neither sensitive to the size
of the rule table nor the percentage of wildcards in the fields.
It scales well from two dimensional classifiers to high di-
mensional ones. In particular, the algorithm is inherently
parallel. It is easy to exploit the parallel mechanism in the
hardware. One of the possible limitations of the new algo-
rithm is that it depends on the characteristics in the rule ta-
ble. Experiments show that the memory access times can be
as low as 15 and as high as 100 for two-dimensional classi-
fication problems with a table size of 30000 (assuming that
one dimensional range search uses four memory accesses).

The rest of the paper is organized as follows. In Sec-
tion 2, the packet classification problem is defined and the
related notation is developed. The concept of independent
sets and the details of the new algorithm are described in
Section 3. In Section 4, results of experimental studies are
presented. In Section 5, results from some existing algo-
rithms are highlighted. Concluding remarks are made in
Section 6.

2. Packet Classification Problem

In the packet classification application, packets are clas-
sified into flows according to policy or routing information.
The policy is specified using fields in the header of a packet.

Specifications of fields are called rules. So flows are spec-
ified by rules applied to incoming packets. Each rule con-
sists of several fields, say � . A collection of rules is called
a classifier. Each field is either an exact value or a prefix
or a range. In fact, exact values and prefixes are special
ranges. In this paper, we treat fields as arbitrary ranges.
Each rule also has a priority index number. Usually, the
rules in a classifier are sorted according to their priorities.
This index number is necessary since a packet may match
more than one rule. In this case, the rule with the high-
est priority index is chosen. Let � be the classifier; or
����������	�
�
�
�	����� , where ������������	�
�
�
�	��� is a rule
and � is the number of the rules in the classifier. For each
rule ��� , let ��������� �� 	�
�
�
�	� �� � , where � � �"!#�$��	�
�
�
%	 �&�
is the ! th field. Throughout the paper, a field or a range of
integers is expressed as �'�)(*+	,�- , which means all integers
greater than or equal to * and smaller than or equal to , . *
and , are called the begin point and end point of the field
� respectively. For example, if the field is an IPv4 destina-
tion address, then either point is an integer between . and/103254 � .

When a packet is arriving, the values 6��7�8���9��	�
�
�
%	 �&�
from the relevant � fields are extracted and expressed as: �;�<6��+	�
�
�
�	36 � � . We say that a rule �=�>�?�@�+	�
�
�
�	� � �
is matched by the packet, if 6��BAC�D� for all �B����	�
�
�
%	 � .
Among the all matched rules, the rule with the highest pri-
ority index defines the flow that the packet belongs to.

With the above definitions, a rule can be considered as a
hyperrectangle in the � -demensional space. A classifier is a
set of such hyperrectangles. Hyperrectangles in the classi-
fier might be overlapped. A packet is then a point in the � -
demensional space. Thus, packet classification is equivalent
to finding all hyperrectangles which contain the query point.
This resembles the point location problem in computational
geometry [1]. The difference between the packet classifica-
tion and the point location problem is that hyperrectangles
in the point location problem are not overlapping, while hy-
perrectangles in the packet classification problem may over-
lap. Hence, the packet classification is more complex than
the point location problem. However, structures and char-
acteristics in classifiers could be exploited to develop high
performance packet classification algorithms. Such packet
classification algorithms may break the performance upper
bound achieved in the point location background. The al-
gorithm to be developed in this paper serves as one of such
examples.

3. Developing the Algorithm

3.1. Independent Sets

Our algorithm is based on the new concept of the inde-
pendent sets of rules. We first give the formal definition of

the independent sets and then explain the motivation behind
the concept.

Definition: Let �E�E�����F	�
�
�
%	3���B� , where ���������
��	�
�
�
�	��� is a rule. For index G , �IH$G'H � , two rules
���J�K��� �� 	�
�
�
�	3� �� � and � �K��� � 	�
�
�
�	� � � are called in-
dependent along dimension G , if � �L&M � L �ON . For a set P of
rules, if any two rules in it are independent along dimension
G , we call P an independent set along dimension G , which
is denoted as an Q L -set or simply an Q -set if no confusion
arises.

The number of the elements in a set R is referred to as
the size of the set R denoted by S RTS . For a classifier, con-
sider its all possible independent sets along dimension G .
An independent set with the largest size is defined as a max-
imum independent set along dimension G in � . A classifier
� may have more than one maximum independent set. An
independent set with the largest size among all independent
sets along all dimensions is called a global maximum inde-
pendent set.

The motivation of introducing Q L -sets is that rules in
an Q L -set are easy to distinguish. For example, PU�
�����+	3� 2 	� 0 � as in Fig. 1 is an Q�� -set in the two-
dimensional space. *��+	V* 2 and * 0 are the begin points of
field one in rules ���+	3� 2 and � 0 respectively. *��+	V* 2 and * 0
define the search intervals, say (* � 	V* 2 � , (* 2 	3* 0 � and (* 0 	VWI� ,
in a one dimensional space. Apparently, each interval con-
tains only one rule. Let each interval store all fields of
the corresponding rule. In order to query a point, say,: �X�<6 � 	V6 2 � , we only need to search for the interval that
6�� belongs to in one dimension. After the interval has been
found, we compare the point with the rule stored in the in-
terval. If the point is contained in the rule, there is a match.
Otherwise, there is no rule matched by the point.

We can easily find two advantages here. One is that we
only need the begin points of the field in rules to form a
range search structure instead of using both begin points
and end points. This reduces the search points to as at most
one half as in a traditional range search algorithm, e.g. in
[2]. The other advantage is that we only need to search in
one dimension rather than in all dimensions. This means

0 b b b

R

R

R

P=(f ,f)

1 2 3

1

2

3

21

Figure 1. An example of an independent set.

that we may only need to perform one range search for a
multidimensional packet classification problem.

Based on the concept of independent sets, we can de-
velop a new algorithm. The general procedure of imple-
menting the algorithm is described as follows. Given a
classifier �����+���+	�
�
�
�	����� , we try to separate from it
a global maximum independent set. Then, from the set of
the remaining rules (treated as a new classifier), we separate
a global maximum independent set with respect to the new
classifier, and continue the process until the set of the re-
maining rules is empty. More formally, assume that Q (��- is
a global maximum independent set separated from � . Let
�5� � � 4 Q (��- , we then find a global maximum indepen-
dent set Q (/ - with respect to � � . Let � 2 � � � 4 Q (/ - , we
continue the process until the resulting classifier is empty.
Thus, � is divided into a collection of independent sets
��Q (��-<	3Q (/ - 	�
�
�
 	Q (� -<� . Next, we group the independent sets
��Q (��-<	3Q (/ - 	�
�
�
 	Q (� -<� according to the dimension. Two in-
dependent sets belong to the same group if they are indepen-
dent along the same dimension. Let

� �1	 � 2 	�
�
�
�	 � � be the
resulting groups, where � is the number of dimensions for
rules in the classifier � .

� � �8�J� � 	�
�
�
%	 �&� is the group of
independent sets which are independent along dimension � .
Note that a group may be empty. We search in all nonempty
groups of

� �+	 � 2 	�
�
�
�	 � � respectively. The query result
can be obtained by comparing all the matches to find the
rule with the highest priority.

In the following, we will discuss how to find a maximum
independent set and how to create a data structure for search
in
� � ��� �'��	�
�
�
%	 � � .

3.2. Finding a Global Maximum Independent Set

For a classifier, there are two steps for finding a global
maximum independent set. First, a maximum independent
set along each dimension is found and then by comparing
the size of these maximum independent sets, a global max-
imum independent set is identified. Finding a maximum
independent set can be converted into the independent set
problem in graph theory.

For each dimension G �<GI�=� 	�
�
�
%	 � � , a graph � L cor-
responding to the independence of rules along dimension G
can be created as follows.

A vertex in the graph � L corresponds to a rule in the clas-
sifier. There is an edge between two vertices if and only if
the corresponding rules are not independent along dimen-
sion G . A set of vertices is called an independent set if no
pair of vertices in the set defines an edge in � L . An inde-
pendent set with the maximum size is called a maximum
independent set in � L .

To find a maximum independent set along dimension G
in the classifier is equivalent to finding a maximum inde-
pendent set in the graph � L . The maximum independent

Let V[] be the vertex set of the graph � L . n is the number of
vertices in the graph. V[] is sorted according to the vertex
degrees in increasing order. Let I be the computed maximum
independent set.

/*Begin Pseudocode*/
I={V[0]};
for i from 1 to n-1
if V[i] is independent of all ver-

tices in I
then I=I+{V[i]} endif

endfor
/*End Pseudocode*/

Figure 2. A heuristic algorithm for finding a
maximum independent set in a graph.

set problem in graph theory is an NP-problem [3]. Exact
algorithms are not scalable to graphs with large number of
vertices. Numerous references where heuristic solutions are
provided for solving this problem can be found in [4]. In
our preliminary study, we choose a simple one as shown
in Fig. 2 for finding a computed maximum independent set
along one dimension. The intuition behind the algorithm is
that the vertices of small degrees are less likely dependent
of other vertices in the graph. Therefore, they have high pri-
orities to be chosen for the testing of independence. Note
that a computed maximum independent set may not be a
true maximum independent set.

3.3. Basic Data Structure for a Group of Indepen-
dent Sets

In this section, we develop a data structure to facilitate
the search in a group of independent sets obtained from the
last section. We were inspired by the fractional cascading
technique [5] in developing this data structure.

Let
� � �+Q (.F- 	Q ("�%- 	�
�
�
%	Q (��� -?� be a group of inde-

pendent sets along dimension � obtained in the last sec-
tion, where Q (G -��?G � ��	�
�
�
%	 ��� � is an independent set
and ��� is the number of independent sets in

�
. Let

Q (G - � �+� L� 	�
�
�
�	3� L�	� � , where � L� �8� � ��	�
�
�
�	�
 L � is a
rule and
 L is the number of rules in Q (G - . For each Q (G -
�?G � � 	�
�
�
%	 ��� � , we extract the begin point * L� of each rule
� L� �8�B�$��	�
�
�
%	�
 L � along dimension � which gives a set
of points L � �F* L � 	�
�
�
%	V* L�	� � for each Q (G - . All points in
 L are different, since rules in Q (G - are independent. We
assume that all points in L are sorted in increasing or-
der. Next, we merge the points in all ��� sets ��+	�
�
�
�	�����
into a master set �� . Apparently, the number of points in

�� satisfies S ��&S H�� � ���� � S ��VS , since two different sets �

B

B

B

B

b b b b b b b

b

b

b b

b
0

1

2

3

0 0 0 0 0 0 0 0

1 1 1

2

1 2 3 4 5 6 7 8

2 4 5

4

b6
11

3b

1b2 2
2b 2

3b

3
1

3
2bb

1
1b

3
11

2
8

10

9

4 1 12

5
7 6

Figure 3. Merge sets of begin points into a
master set.

and may contain a same point. Let � � �ES �� S and
 � � �+* � � 	�
�
�
�	V* � � � � . Refer to Fig. 3 for an example. The
number in the rectangle (rule) is the priority of the corre-
sponding rule. The smaller the number is, the higher the
priority is. For convenience of explanation, we assume that
the priority is also the index of the corresponding rule.

Next, for each G'�<G;� ��	�
�
�
%	 ��� � , we add “virtual
points” to the set L . We first explain why we need the
virtual points by the example in Fig. 3. The interval of
(* 0 � 	3* 02 - of 0 which corresponds to the interval of (* �� 	3* � � -
of � . There are four points * �� 	3* � � 	3* � � and * � � in the interval
of (* �� 	3* � � - . Note that any rules between * �� and * � � and be-
tween * � � and * � � are dependent of rule 3; any rules between
* � � and * � � are independent of rule 3. In order to distinguish
these two situations, we add the point * � � to 0 as a virtual
point. Next, we give the definition.

Let * � � be the largest element in �� . For each * L� A L ,
let , L� be the end point corresponding to * L� . Let * L��� � A L
be the successor of * L� . If the successor does not exist, let
* L��� � � * � � . Assume * � 	V* � ��� A �� such that * � � * L�
and * � ��� � * L��� � . If there is an point * � �	��
 A �� with
* � � * � ����
 � * � ��� such that * � ����
 is the smallest one that
, L� � * � ����
 then add * � ����
 to L as a virtual point. For
convenience, if the smallest * � � �A L , then add * � � to L as a
virtual point. Each virtual point is assigned

4 � as its index.
As in Fig. 4, the points with

4 � as indices are all virtual
points.

Our algorithm consists of two parts. One is an array
that stores the classifier called the classifier array; each en-
try of the classifier array stores a rule which includes the
fields, priority and port number. The other part is a one-
dimensional range search structure based on � . Algo-
rithms for one-dimensional range search are plenty in the
literature. They have advantages and disadvantages. Some
have small number of access memory times, while others

B

B

B

B

b b b b b b b

b

b

b b

b
0

1

2

3

0 0 0 0 0 0 0 0

1 1 1

2

1 2 3 4 5 6 7 8

2 4 5

4

b6
11

3b

1b2 2
2b 2

3b

3
1

3
2bb

1
1b

-1

-1

-1

-1

-1 -1

-1

675

121
4

2
8

10
9

3
11

Figure 4. A data structure example.

b0

b0

b0

b0

b0

b0

b0

b0

1

2

3

4

5

6

7

8

-1 -1

-1

-1

10 -1

-1 -1

-1

5

7

6

1

4

4

-1

12

2

8

8

9

3

3

11

Figure 5. Index array pointed by leaves.

are easy to update. The multiway search [6, 7] and van
Emde Boas trees [8] are among the best algorithms. The
multiway search algorithm is easy to implement, but it ex-
ploits large cacheline. Van Emde Boas trees do not need a
large cacheline but are complicated to implement. Here we
choose the multiway search algorithm for the preliminary
study. We use ��� to create a multiway range search tree
where each element in ��� corresponds to a leaf. Each leaf
points to an entry of an array which stores the indices of the
rules as follows. For � � ��� � ����������� �!� �"�$#&%(' , we find in
each �*) �,+-�.�/�!� � � �$01%2' the largest �) 3$4 such that �) 3$465 � � � .
Each such a �) 3 4 corresponds to an index of a rule (or 7 �
for a virtual point). There are 08% indices. The indices are
stored in an array pointed by the leaves.

Fig. 4 and Fig. 5 illustrate an example with such a data
structure. In Fig. 4, 7 � is the index (and priority) of a virtual
point. 7 � has the lowest priority. Fig. 5 shows the indices
array pointed by the leaves.

3.4. Search

In Section 3.3., we demonstrated how to create the data
structure for one group of 9 -set. There are at most : such

data structures needed to be created. The search and update
can be performed in parallel or in serial in the � groups of
Q -sets.

For the search of a packet in a group, the value in the
relevant field of the packet is used as the key for the search
in the multiway range search tree. Find the leaf with the
value that is the largest one among all which are smaller
than or equal to the key. Fetch the indices pointed by the
leaf. Use the indices (ignore the index

4 �) one by one to get
the rule fields by indexing into the classifier array. Compare
them with the relevant fields of the packet. If there is a
match, choose the matching rule with the highest priority in
this group. Continue this process until all groups have been
searched. Compare all the matching rules found from the
groups and choose the one with the highest priority. This
rule defines the flow to which the packet belongs.

3.5. Update

For the dynamic packet classification, we need update
the algorithm to accommodate the changes in the packet
classification table. There are two kinds of updates. One
is to create the table data structure from scratch whenever
there is a change. Sometimes, this is called preprocessing.
Another one is to modify the table data structure whenever
there is a change. This is called incremental update. Usu-
ally incremental update is faster than recreating table data
structure from scratch. However, incremental update may
make the table data structure non optimal. Our algorithm is
amenable to incremental update. Details of the update will
be presented in an expanded version of this paper.

3.6. Complexities of the Algorithm

Globally, we need an array to store the classifier. The
size of the array is linear to the number of rules in the clas-
sifier. In addition, a multiway range search tree will be con-
structed corresponding to each of at most � groups of in-
dependent sets. Assume that the group

� � consists of �����
independent sets and contains � ��� rules. Then the memory
storage requirement for the multiway range search tree cor-
responding to group

� � is linear to the number of � � � . The
number of indices stored in the leaves is at most � � ��� ��� � ,
since there are at most � � � leaves and each leaf stores ��� �
indices. To add all these together, the memory storage re-
quirement for the algorithm is upper bounded by

� � � ��� ,
where � is the number of rules and � is the number of total
independent sets. We will see later that this bound is very
loose.

The memory access times consist of the times needed to
search in the multiway range search trees and to fetch the
indices plus � accesses to the rules.

The performance of our algorithm relies on � , the num-
ber of independent sets that the classifier is partitioned into.
The smaller the number is, the less memory access times
and memory storage is required. Fortunately, � is not ex-
pected high. Our experimental studies and studies in the
literature support this conclusion. Reference [9] observed
that every packet matches at most � rules. Similar small
numbers have been seen in [10]. The prefix containment is
quite rare in the backbone table and is limited to at most �
[9, 11]. These characteristics of classifiers guarantee that �
is small. The quantitative study is provided in Section 4.

3.7. Variations

So far, a basic version of the new algorithm has been de-
scribed. In fact, many variations of this algorithm, which
tailor to particular application or hardware architecture,
could be developed.

One variation is that we can increase the average search
speed by sorting the indices in each entry of indices. Thus,
the high priority rules are searched before the low priority
rules; whenever we have a match, we will stop the search
procedure. However, this change will affect the update.

Another variation is that, in the index arrays, we replace
the index with the corresponding rule itself. This removes
the need of index access and increases the search and update
speed. However, this will increase the memory storage.

In the preliminary study, we use the linear search for
each index in the index arrays. In fact, we can use other
techniques such as a multiway search, binary search or hash
search along other dimension(s) to speed up the search.

We will detail the variations in our future work.

4. Experimental Study

For a classifier, we first define the repeating factor of a
field. For a specified field, let
 � be the total number of
entries of the field in a classifier. Let
 2 be the number of
distinct entries of the field. The Repeating factor of the field
is defined as
D����
 2 . In the IP destination address field, the
repeating factor measures the average times that an IP ad-
dress is used in the rules. The performance of our algorithm
is directly related to the repeating factor of each field. The
data used in [2] show that repeating factors are around 	�.
for large classifiers (with about 1M entries). The data used
in [11] show that repeating factors are around 	 for small
classifiers (with about 200 entries).

For a preliminary study as in the paper, we construct
classifiers with characteristics we have seen from field data.
To do this, we download IP routing tables from [12] as bases
and conduct several groups of experiments for two dimen-
sional classifiers. The results are presented as follows.

4.1. Classifiers without Wildcards

We first study classifiers without wildcards. In the first
group of experiment, we study the effect of the repeating
factor on the performance of our algorithm. In the second
group we show that the size of the classifier is not sensi-
tive to the performance of our algorithm when the repeating
factor is fixed.

We use the routing table at Mae-west taken on March
15, 2002 from [12] as a base for constructing a classifier
� . Each rule in the classifier contains two fields: The IP
destination address and the source address.

In the first group of experiment, we generate four clas-
sifiers of the same size of 30000 with different repeating
factors. In order to generate a classifier, the expected re-
peating factor, say 6 , is given first. Then, from the Mae-
west routing table, � .�. .�. ��6 addresses are sampled. Next,
from the ��.�. .�. �16 addresses, ��. .�.�. addresses are randomly
selected as the IP destination addresses. For each destina-
tion address, the corresponding source address is randomly
selected from the � .�.�. . ��6 addresses to form a rule. If the
rule just formed is a duplicate rule of a previous generated
one, we reselect a source address until the rule formed is
unique.

Table 1 shows the resulting classifiers. The first column
is the expected repeating factor (6). The second column is
the number of distinct destination addresses (des), the third
column is the repeating factor (rf) of destination address
field and so on. The last column is the number of indepen-
dent sets of the classifiers. We can see that the number of
independent sets increases as the repeating factor increases.

In the second group of experiment, six classifiers of dif-
ferent sizes with the same expected repeating factor of ��.
are constructed. The base prefixes are from the AADS rout-
ing table taken on March 15, 2002 from [12]. The results
are shown in Table 2. It shows that the number of inde-
pendent sets of the classifiers is not sensitive to the size of
classifiers provided that the repeating factor is unchanged.
This shows that our algorithm is not sensitive to the size
of classifiers with a similar repeating factor. By observing
data used in the literature, we found that it is rare that the

Table 1. Experiments with different repeating
factors.

6 des rf src rf I-set
2 15422 1.95 14321 2.09 9

10 2807 10.69 2960 10.14 23
20 1422 21.10 1610 18.63 33
60 489 61.35 498 60.24 74

Table 2. Experiments with different table
sizes.

rules des rf src rf I-set
2000 65 30.77 62 32.26 34

10000 323 30.96 360 27.78 40
20000 677 29.54 710 28.17 43
100000 3499 28.58 3287 30.42 45
200000 7155 27.95 6567 30.46 48

1000000 32778 30.51 33698 29.68 61

repeating factor exceeds 100 even for large size classifiers.
Together with our experimental study, we believe that our
algorithm scales well to the size of classifiers.

4.2. Classifiers with Wildcards

We construct three classifiers with different percentages
of wildcards in them. The base prefixes are from the AADS
routing table taken on March 15, 2002 from [12]. The size
of base prefixes is � .�. .�. . Given a percentage � , � � / per-
cent rules have wildcards as their destination fields and � � /
percent rules have wildcards as their source fields. Alto-
gether, � percent rules have wildcards. The number of rules
is � .�. .�. for all three classifiers. Table 3 shows that the
number of independent sets of the classifiers is not sensitive
to percentage of wildcards in the classifiers. We note that
the repeating factor is small and hence the number of inde-
pendent sets is small. In fact, in a two-dimensional classi-
fier, it is not possible to generate high percent wildcards in
one field with a high repeating factor in the other field. We
can prove the following property.

Property: Assume that � is a two-dimensional classifier
without duplicated rules. If there are ��� rules that have
wildcards in one field, then the repeating factor in the other
field is less than ��. . ��� .

Proof: If two rules are wildcarded in one field, then the
entries of these rules in the other field are distinct. Since
there are ��� rules that have wildcards in one field, the en-

Table 3. Experiments with different percent of
wildcards.

% wildcards des rf src rf I-set
10 1.46 1.46 6
30 1.59 1.58 7
50 1.72 1.72 6

tries of these � � rules in the other field are distinct. There-
fore, the number of distinct entries in the other field is
greater than ��� of the total rules. Hence the repeating fac-
tor in the other field is less than ��.�. ��� .

�

For example, if 	1. � wildcards were generated in the
destination field, then the repeating factor in the source field
can not be higher than two.

4.3. One Scenario of Implementation

We choose the third classifier in Table 1 for the discus-
sion of implementation. There are � � Q -sets for this clas-
sifier among which � are Q�� -sets and

/ � Q 2 -sets. Corre-
sponding to these two groups of Q -sets, two multiway range
search trees are created. The multiway range search tree
corresponding to field one has at most � � /�/ leaves, since
the number of distinct destination addresses is � � /�/ . Each
leaf points to � rule indices. Since the number of rules is
��.�. .�. , each index uses ��� bits (in fact 15 bits are enough).
So the memory for the index arrays is less than ������.�� bytes.
Using the same argument, we find the memory for the in-
dex arrays in the other multiway range search tree is less
than � ��� / . bytes. For the array storing the rules, we as-
sume that each rule uses � / � bits. Among the � / � bits, � /
bits are for begin point of the destination address field and 	
bits for the length of the destination prefix. Another �	� bits
are for the source address field. � 	 bits are used for spec-
ifying priority, � / bits for the port number and � bits are
empty. So ��.�. .�. rules need ����. .�. . bytes of memory. To-
gether, 	
� � � / � bytes memory are needed excluding for the
multiway range search trees. Comparing the original rule
table, our algorithm increases the memory requirement in
less than a factor of one. This comes out with no surprise.
On one hand, the memory requirement is large if the num-
ber of Q -sets is large; on the other hand, if the number of
Q -sets is large, the repeating factors should be large hence
the number of distinct values in a field is small, thus the
number of leaves in the multiway range search tree is small.
Therefore, small memory requirement is needed to store the
indices array.

The memory access times for a search depends on the
cachline. We assume that � / � bits cacheline is used. Then,
	 memory accesses are needed for fetching the ��� / � in-
dices and � � memory accesses are needed for fetching the
rules including port number. Excluding for the multiway
range search, we need ��� memory accesses.

Update is fast. Since there are only � � ��. distinct source
addresses, the maximum number of entries of the index ar-
rays to be modified is ��� ��. rather than � .�.�. . .

5. Previous Work

It is difficult to make an exact comparison among all
other algorithms, not only because different algorithms rep-
resent different tradeoffs, but also the database used for ex-
periments are different and the performance measurement
is rather coarse. However, we can highlight some perfor-
mance measurements for some of the algorithms. More de-
tailed discussions on packet classification algorithms were
given in [13, 14].

The Recursive Flow Classification (RFC) [15] is very
fast for a search. However, the memory requirement is so
large and the preprocessing time is so slow that it is not
suitable for large classifiers. Reference [16] proposed a Bit
Vector (BV) search algorithm. For a � -dimensional clas-
sifier, the storage requirement is

� � � � 2 � , where � is the
number of rules in the classifier. Query time is � times of
the time needed for a range search plus � times of the time
for a bit vector fetching which is equal to � �� , where is
the size of cacheline. Reference [9] added new techniques
to the BV algorithm and reported an order of magnitude im-
provement on performance over the standard BV algorithm
with a small price of increasing memory requirement. The
tuple space search algorithm [11] needs small memory re-
quirement (

� �����), however, the search speed depends on
the number of tuples in the classifier and it supports only
prefixes rather than arbitrary ranges. In addition, the use
of hashing makes the time complexity of searches and up-
dates nondeterministic [13]. The Fat Inverted Segment tree
(FIS-tree) was proposed in [2]. The level of the FIS-tree
can be adjusted to make a tradeoff between the search speed
and memory requirements. Under the assumption that the
cacheline is 32 bytes large and the entry size of a rule is 12
bytes, [2] reported that for a two dimensional classifier with
more than ��.

�
rules, the search needs less than 22 (17 re-

spectively) memory accesses using three (two respectively)
levels of the FIS-tree. The memory is at most �
 � (� re-
spectively) times of the rule table size. They did not report
any experimental study on multifield classifiers. However,
they pointed out that the memory requirement and memory
accesses increase with a factor of � as the dimension � in-
creases, where � is the number of levels in the FIS-tree.

6. Conclusions

We developed a novel packet classification algorithm
based on independent sets. We proposed a basic data struc-
ture and an update algorithm for the data structure. We also
conducted an experimental study on our algorithm.

As mentioned earlier, packet classification algorithms
are measured by times of memory access, memory storage
requirements, update speed and scalability, etc. Existing al-
gorithms could perform well with respect to one or two of

these measurements. Our algorithm performs well in all as-
pects of the criteria. It seems that our algorithm is the first
to achieve such a success: Small memory requirements, fast
search and update speed and scalability to large classifier,
to multidimensional classifier. The algorithm is feasible for
parallel implementation. With these merits, our algorithm
could be a candidate among the possible bests for the future
high speed packet classification task.

7. Acknowledgments

The authors would like to thank Gerard Damm and Mi-
lan Zoranovic from Alcatel for their valuable comments and
suggestions. We also thank the anonymous referees for their
valuable comments for revising the paper.

This research is an initiative of Mathematics of In-
formation Technology and Complex Systems, MITACS
(www.mitacs.math.ca) and the National Capital Institute of
Telecommunications, NCIT (www.ncit.ca) in Collaboration
with Alcatel’s Research and Innovation Centre in Ottawa,
Canada (www.alcatel.com).

References

[1] F. Preparata and M. I. Shamos, “Computational Geom-
etry: an Introduction,” Springer-Verlag, 1985.

[2] A. Feldman and S. Muthukrishnan, “Tradeoffs for
Packet Classification,” Proceedings of Infocom, v3,
March 2000, pp. 1193-2002.

[3] D. S. Johnson and M. A. Trick (eds.), “Cliques, Color-
ing, and Satisfiability: Second DIMACS Implementa-
tion Challenge,” v26, DIMACS, American Mathemati-
cal Society, 1996.

[4] I. Bomze, M. Budinich, P. Pardalos and M. Pelillo,
“The Maximum Clique Problem,” In D.-Z. Du and P.
M. Pardalos, editors, Handbook of Combinatorial Op-
timization, volume 4, Kluwer Academic Publishers,
Boston, MA, 1999.

[5] B. Chazelle and L. J. Guibas, “Fractional Cascading I:
A Data Structuring Technique,” Algorithmica , v1, n2,
1986, pp. 133-162.

[6] S. Suri, G. Varghese and P.R. Warkhede, “Multiway
range trees: scalable IP lookup with fast updates ”,
Proc. IEEE GLOBECOM ’01 , v3 2001, pp. 1610 -
1614.

[7] B. Lampson, V. Srinivasan and G. Varghese, “IP
Lookups Using Multiway and Multicolumn Search,”
Proc. IEEE INFOCOM 98 , Apr. 1998, pp. 1248-56.

[8] D. E. Willard, “Log-logarithmic Worst-case Range
Queries Are Possible in Space � �?��� ,” Information
Processing Letters, 17(2), 1983, pp. 81-84.

[9] Florin Baboescu and George Varghese, “Scalable
Packet Classification,” ACM SIGCOMM , 2001, pp.
199-210.

[10] Pankaj Gupta and Nick McKeown, “Packet Classifi-
cation Using Hierarchical Intelligent Cuttings,” IEEE
Micro, v20, n1, January/ February 2000, pp. 34-41.

[11] V. Srinivasan, S. Suri and G. Varghese, “Packet Clas-
sification Using Tuple Space Search,” Proceedings of
ACM Sigcomm, September 1999, pp. 135-146.

[12] http://www.merit.edu/ipma/routing table/.

[13] Pankaj Gupta and Nick McKeown, “Algorithms for
Packet Classification,” IEEE Network Special Issue,
March/April 2001, v15, n2, pp 24-32.

[14] X. Sun, “IP Address Lookups and Packet Classifica-
tion: A Tutorial and Review”, Technical Report, Car-
leton University, 2002.

[15] Pankaj Gupta and Nick McKeown, “Packet Classifi-
cation on Multiple Fields,” Proc. Sigcomm, Computer
Communication Review, v29, n4, September 1999, pp.
147-160.

[16] T. V. Lakshman and D. Stiliadis, “High-Speed
Policy-based Packet Forwarding Using Efficient Multi-
dimensional Range Matching,” Proceedings of ACM
Sigcomm, September 1998, pp. 191-202.

