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Abstract 
Sensor networks have recently gained a lot of attention from the research community. 
Sensors are significantly resource-constrained devices and last till the depletion of their 
batteries.  Sensor networks typically have a large number of nodes. To ensure scalability 
sensor networks are often partitioned into clusters, each managed by a cluster head 
(gateway).  Efficient management of a sensor network for extending the lifetime of the 
network is among the prominent areas of research in this domain.  While most of the 
previous research focused on the optimal use of sensor’s energy, very little attention has 
been paid to the efficiency of energy usage at the gateway. Tasks need to be allocated to 
gateways in such a way that maximizes the life of these cluster-heads and eventually the 
whole network. In this paper, we present an optimization scheme for task allocation to 
gateways. The task allocation problem is modeled as a zero-one nonlinear program. 
Simulation results show that substantial energy savings can be obtained with the 
proposed method. 

1. Introduction 
Over the last few years, the design of sensor networks has gained increasing importance due to 

their potential for some civil and military applications. Each sensor is capable of detecting 

ambient conditions such as temperature, sound, or the presence of certain objects. A network of 

sensors can gather meteorological variables such as temperature and pressure in order to 

forecast harsh natural phenomena. In disaster management situations such as fires, sensor 

networks can be used to selectively map the affected regions directing the nearest emergency 

response unit to the fire. In military situations, sensor networks can perform surveillance missions 

by detecting moving targets, chemical gases, or presence of micro-agents. 

Sensors are generally equipped with data processing and communication capabilities. 

The sensing circuit measures parameters from the environment surrounding the sensor 

and transforms them into an electric signal. Processing such a signal reveals some 
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properties about objects located and/or events happening in the vicinity of the sensor.   

The sensor periodically sends such sensed data, usually via radio transmitter, to a 

command center either directly or through a data concentration center (a gateway). The 

gateway can perform fusion of the sensed data in order to filter out erroneous data and 

anomalies and to draw conclusions from the reported data over a period of time. For 

example, in a reconnaissance-oriented sensor network, sensor data indicates detection of 

a target while fusion of multiple sensor reports can be used for tracking and identifying 

the detected target [1]. 

Deployment of large number of unattended sensor nodes and the underlying network 

architecture, which will efficiently enable the cooperation of those nodes, has become 

one of the challenging areas in wireless sensor network research. Since energy is a crucial 

constraint on sensor nodes, the main aim in sensor network management is to 

conservatively consume the sensor’s energy in order to increase the lifetime of the whole 

network [2][3][4][5]. One of the possible approaches to the problem of deploying the 

sensor nodes is to employ network clustering in order to distribute the load evenly and 

efficiently throughout the whole network [4]. Such cluster-based architecture assigns for 

each cluster a gateway, which are less energy constrained than sensors. Each gateway is 

responsible for a particular cluster and interacts with command node and collaborates 

with other gateways on executing required missions.  

Given their geographical proximity to the sensor nodes, the gateways typically 

perform most of the data fusion and network management activities. Although gateways 

are relatively less energy constrained compared to sensors, excessive computation and 

communication load can quickly consume the gateways’ batteries and make them a cause 

for shortening the network lifetime.  Therefore, efficient distribution of load among 

gateways is crucial in order to extend the life of the gateway’s battery. On the other hand, 

most of the data collection tasks are time sensitive. For example accurate target tracking 

requires sampling at a rate proportional to the target speed. Therefore, the task allocation 

algorithm must take into consideration the real-time constraints. Since the end-to-end 

system response time of distributed applications is affected significantly by inter-task 

communication, one must account for the effect of delays and precedence constraints 

imposed by inter-task communication when task-allocation decisions are made. 
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Although task allocation problem has been studied within the scope of parallel and 

distributed data processing systems, we are not aware of any work that addresses the 

issues and constraints found in sensor networks. The contribution of this paper is on the 

model and algorithm for task allocation and scheduling for cooperative unattended 

ground sensors network. It is shown in this paper that task allocation to gateways can be 

modeled as a zero-one nonlinear goal-programming problem. The goal is set for 

maximize the lifetime of gateways in the network subject to resource and timing 

constraints imposed by the application environment. The model is studied for a simulated 

workload. The experimental results demonstrated the effectiveness our approach. 

In the balance of this section we describe our cluster-based sensor network 

architecture and summarize the related work. In Section 2, the task allocation problem is 

analyzed and mathematical modeling of the problem is described along with the 

optimization algorithm used. Section 3 discusses the validation efforts and analyzes the 

simulation results. Finally, section 4 concludes the paper and outline future research 

directions.  

1.1 Sensor Network Architecture 

We consider the sensor network architecture depicted in Fig. 1. In the architecture sensor 

nodes are grouped into clusters controlled by a single command node. Sensors are only 

capable of radio-based short-haul communication and are responsible for probing the 

environment to detect a target/event. Every cluster has a gateway node that manages 

sensors in the cluster. Clusters can be formed based on many criteria such as 

communication range, number and type of sensors and geographical location [6][7]. In 

this paper, we assume that sensor and gateway nodes are stationary and the gateway node 

is located within the communication range of all the sensors of its cluster. Clustering the 

sensor network is performed by the command node and is beyond the scope of this paper. 

The command node will inform each gateway node of the ID and location of sensors 

allocated to the cluster. 

Sensors receive commands from and send readings to its gateway node, which 

processes these readings. Gateways can track events or targets using readings from 

sensors in any clusters as deemed by the command node. However, sensors that belong to 
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a particular cluster are only accessible via the gateway of that cluster. Therefore, a 

gateway should be able to route sensor data to other gateways. Gateway nodes interface 

the command node with the sensor network via long-haul communication links. The 

gateway node sends to the command node reports generated through fusion of sensor 

readings, e.g. tracks of detected targets. The command node presents these reports to the 

user and performs system-level fusion of the collected reports for an overall situation 

awareness. 

A gateway node can perform target tracking using a set of sensors that belong to 

another cluster. The increased flexibility allows for efficient and optimized use of the 

gateway nodes. For example, heavy use of a gateway node can consume most of the node 

power and thus significantly shorten the life of the gateway. Optimized task allocation 

among gateways, can expand the life of a certain gateway node by reducing the load 

(number of tasks) on that node. Although the architecture raises many issues such as 

cluster formation, cluster-based sensor organization and management, and inter-gateway 

communication protocol, we only focus on the issue of task arbitration among gateways. 

Interested readers are referred to [4] for discussion about the network operation within 

the cluster.  

Command
Node

Sensor
nodes

Gateway
Node  

Fig. 1: Multi-gateway clustered network sensors 
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1.2 Related Work 

Resource Management typically consists of resource allocation strategy combined with 

resource usage monitoring. Resource allocation is a classical optimization problem faced 

in almost all engineering disciplines. Resource consumption models and the 

mathematical formulation of the allocation strategy are the main variations among 

resource allocation problems. A bulk of the research related to resource allocation 

considered centralized resource and task admission control [8][9][10]. Dynamic task 

assignment to heterogeneous computing resources is studied in [11][12][13]. However, 

these works lack energy consideration when considering the resources.  

Distributed resource management is also modeled as a distributed constrained 

satisfaction problem [14][15]. Approaches for distributed constrained satisfaction 

generally requires excessive exchange of messages and fits applications with very 

dynamic changes in sensor’s readings affect the decision of which sensors to turn on next 

and the required message for applying distributed constraint satisfaction algorithms are 

needed by the application anyway. However requests for gateway-level resources are not 

expected to be highly dynamic to justify the communication costs of modeling the inter-

cluster resource allocation as a distributed constraint satisfaction. 

Another approach to distributed resource management that handles dynamic changes 

in resource requirements through the lifetime of a single task is discussed in [16][17]. 

The idea is to continuously monitor resource usage at each node via a resource manager 

module. When a node is about to run out of resource capacity risking the fulfillment of 

task timing constraints, the resource manager of that node will establish negotiations with 

its counter parts at other nodes to migrate some tasks and free up some capacity of its 

local resources. Such approach is resource demanding in itself and might be justified in 

time-critical application where task timeliness is of great importance. In addition, the 

philosophy of the described approach is to manage system-wide resources only when 

there is a local resource crisis not at task release time. 

Our approach leverages the role of the command in overall network organization. We 

model the energy, processing and communication resources of the gateway. The 

command node performs task arbitration among the gateway with consideration the need 
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of the task and the efficiency of performing such a task while maximizing the life of the 

gateway. 

2. Task Allocation to Gateways 
In this section, we cover the mathematical modeling and algorithm for optimal allocation 

of tasks to gateways in order to extend the lifetime of the system. First we discuss some 

schedulability issues and the assumptions we made. 

2.1 Schedulability Issues 

Task allocation among gateway nodes is generally constrained by the accessibility of 

sensors, the ability of meeting application-related deadlines and the availability of 

required communication bandwidth. For example if a sensor is reachable only via 

gateway G1, collection of sensor readings has to be performed by G1. Similarly tasks 

assigned to a particular gateway have to be schedulable in order to meet the time 

constraints imposed by the nature of the application. For instance tracking multiple 

targets that requires on one gateway a computation time that exceed the periodicity of the 

sensor readings can lead to processing at half of the sampling frequency and thus losing 

50% of the accuracy of the reported tracks of some targets.  

Since the feasibility of an allocation is constrained by meeting the timing constraints 

of the allocated tasks, a detailed schedulability analysis is required for every gateway per 

possible allocation. Precise schedulability analysis is a NP-Hard problem and thus is 

computationally prohibitive [18]. To simplify the analysis and the actual scheduling of 

tasks on gateway nodes, we assume that the processing of data lags the collection of data 

by at least one cycle. Therefore, the target tracking algorithms running in cycle “k+1” 

will be using sensors’ readings collected in cycle “k”, as shown in Fig. 2. Such 

assumption is very practical and ensures source congruency of the sensor data. Since 

Time
Cycle k Cycle k+1

Data Collection for
Cycle K+1

Data Collection for
Cycle K+2

Processing for
Cycle K

Processing for
Cycle K+1

 

Fig. 2: Processing sensors’ data lags the collection of that data by one cycle 
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arrival of sensor data is asynchronous (arbitrary) within the cycle, the scheduling of data 

processing (target tracking) will be extremely unpredictable within the cycle. By giving 

at least one cycle for collecting the sensor data, we omit dependency between data 

collection and processing within the cycle and thus ensure data availability when 

scheduling the data processing task.  

2.2 Problem Formulation 

We refer to a system-level mission, such as target tracking, as a job, which consists of 

multiple tasks that perform required communication and processing related to achieving a 

mission. Tasks of a particular job are assigned to one or multiple gateways. For example, 

a job for target tracking consists of sensors’ data collection, data routing (if needed) and 

data processing tasks. We formulize the problem of task allocation among gateways as an 

optimization problem. The objective of the optimization is to maximally extend the life of 

all gateways, while attaining satisfactory mission results, by balancing the load 

proportional to the energy that each gateway has. We assume that the relationship 

between power consumption and both CPU processing and communication is known a 

priori, so that the energy needed for task execution can be estimated during the allocation. 

We also assume that any gateway node consumes the same amount of energy to send the 

same size of data to any other gateway node in the network. In the presented formulation, 

tasks previously assigned to a particular gateway are not subject to reallocation 

(migration) to different gateways during allocation of a new set of tasks. We further 

assume that the communication latency among gateways is bounded and negligible 

compared to the cycle time. It should be noted that if the communication latency is not 

negligible compared to the cycle time, additional lag cycles between data collection and 

processing might have to be enforced in order to ensure timely data availability. 

Before describing the objective function and the conditions for the task allocation 

optimization, we define the following definitions and notations to be used. 

• N   Number of gateway nodes in the system 

• m  Number of sensors needed to track a target  

• to  System start time 

• tb  Current time before allocation 
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• ta  Time after allocation 

• τ  System cycle time, which is determined by the frequency of the arrival of 
sensor readings (if they are similar), or the least common multiple of the 
different reading frequencies.  

• α i(t) Available processing capacity per cycle of gateway node i at time t.  

• gβi(t) Available inter-gateway communication bandwidth, per cycle for 
gateway node i at time t. 

• sβi(t) Available sensor-gateway communication bandwidth, per cycle for 
gateway node i at time t. 

• Ψ The set of jobs to be allocated to gateways. Each job J ∈  Ψ is a (m+1)-
tuple (p, c1, c2, c3 …cm) where p is the computation load, and c1, 
c2…cm are the communication loads for the m sensors required for the 
job.  

• DΨ The duration, in cycles, for which the jobs in Ψ need to be performed. 

• Φ The set of tasks to be allocated to gateways. Each job Jk ∈  Ψ will have 
m+1 tasks in Φ, namely Jk,p , Jk,c1 , Jk,c2 , …, Jk,cm corresponding to the 
computation and communication loads of the job, respectively.  

• ϕ i  The set of tasks allocated to a gateway node i, where Φ ⊇  ϕi . 

• Ei(t) Remaining energy at gateway node i at time t. 

• rEUi(t) Rate of energy consumption (usage) per cycle of gateway node i at time t, 
which is the sum of all energy consumption for computation and 
communication of all assigned task to gateway node i (i ≤ N). It should 
be noted that changes in this rate due the termination of tasks have to be 
tracked by the command node so that the actual energy consumption rate 
is referred to during task allocation. The command node can track  

• Li(t) Remaining life in cycles of the gateway i at time t, where  
Li (t) = Ei(t)/rEUi(t). 

• MRLi(t) Minimum remaining life in cycles of the gateway i at time t, where 
MRLi(t) ≤ Li(t). It results from previous commitments to perform jobs 
assigned in previous allocations to the time extend of these jobs.  

• ePEUi(Jp) Estimated energy consumed by computation per cycle to process a task Jp 
at a gateway node i (i ≤ N). 

• eCEUi(Jc) Estimated energy consumed per cycle by communication to perform a 
task Jc at a gateway node i (i ≤ N), including required computation for 
data collection. For sensors unreachable by the gateway (outside the 
cluster) this function equals to ∝ , since it not possible to allocate such 
task to this gateway.   

• eRPEUi(Jc) Estimated energy consumed per cycle for routing collected data of a task 
Jc at a gateway node i (i ≤ N) to another gateway (assuming equal 
communication energy-usage rate between any two gateways).  
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• ePi(Jp) Estimated processing capacity per cycle required for performing the 
computation for a task Jp at a gateway node i (i ≤ N). 

• eRPi(Jc) Estimated processing capacity per cycle required for routing the sensor 
data of a task J at a gateway node i (i ≤ N) to another gateway (assuming 
equal processing need for communication between any two gateways). 

• eGCi(Jc) Estimated inter-gateway communication bandwidth per cycle needed by 
a gateway node i (i ≤ N) to perform a task Jc. 

• eSCi(Jc) Estimated sensor-gateway communication bandwidth per cycle needed 
by a gateway node i (i ≤ N) to perform a task Jc. 

If the set of jobs Φ could be successfully allocated to the N gateways, the following the 

relationships hold: 

1. Φ = U
N

i 1=

ϕi    Ensuring that all the tasks are successfully allocated 

2. U
ji≠

ϕi ϕj  = φ     ∀  i, j ≤ N  Every ask is uniquely assigned to one gateway. 

Since no resource reclamation is considered while allocating new tasks (previously 

allocated tasks are not subject to migration to other gateways), the power consumed by 

the load of a gateway at tb will not change. Therefore, the rate of energy consumption at 

gateway node i after the allocation, is the rate of power consumption of the recently 

allocated tasks added to the consumption’s rate prior to the allocation. 

rEUi(ta) =  rEUi(tb) + ∑
∈∀ ipkJ ϕ   ,

ePEUi(Jk,p) + ∑
∈∀ ickJ ϕ   ,

eCEUi(Jk,c)  + ∑
∉

∈∀
ipkwhere

ick
J

J
ϕ

ϕ
  

  
 , 

 ,

eRPEUi(Jk,c)  

                 +  ∑
∉

∈∀
ipkwhere

ick
J

J
ϕ

ϕ
  

  
 , 

 ,

eRRecvUi 

The minimal remaining life of a gateway node i, MRLi(tb), reflects the number of cycle 

for which the node ought to last at the current energy consumption rate in order to 

perform the jobs it has for the duration required. After successfully allocating new tasks 

to that gateway, the new minimal remaining life, MRLi(ta), is calculated as follows: 

MRLi(ta) = 
nconsumptioenergy  of rate New
 jobs allfinish   torequiredEnergy   

    = 
)(

)]()([)()(

ai

biaibibi

trEU
trEUtrEUDtrEUtMRL −∗+∗ Ψ  
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MRLi(ta) simply indicates the number of cycle the gateway energy would last performing 

the jobs at the new energy consumption rate rEUi(ta). It should be noted that the new 

minimal remaining life of the gateway could not exceed the longer of old and new 

allocated jobs, i.e. MRLi(tb) ≤ MRLi(ta) ≤ max(DΨ, MRLi(tb)),   since for DΨ ≠ MRLi(tb) 

the new rate of power consumption might be dropped after a number of cycles equals to 

min(DΨ, MRLi(tb)). 

Objective Function: The objective of the allocation is to maximize the life of the clusters 

by maximizing the sum of weighted-value of the remaining life of all gateways. A High 

weight reflects the importance of extending the life of a particular gateway for current 

and future missions.  

  Max ∑
=

∗
N

1i
ii LW  = Max ∑

=

∗
N

1i )(
)(

ai

bi
i trEU

tE
W  ≡   Min ∑

=

∗
N

1i )(
)(

bi

ai
i tE

trEU
W  

 

Constraints: The task allocation optimization is subject to the following conditions: 

1. Schedulability condition: The allocated tasks have to be schedulable at the gateway 

nodes so that each task will meet the timing constraints. By assuming at least one 

cycle of time lag between data collection and processing, dependencies among tasks 

running within the same cycle are removed. Therefore the allocated tasks are 

schedulable if the gateway has sufficient processing capacity to execute all of these 

tasks.  

αi(tb)   ≥ ∑
∈∀ ipkJ ϕ   ,

ePi(Jk,p) + ∑
∉

∈∀
ipkwhere

ick
J

J
ϕ

ϕ
  

  
 , 

 ,

eRPi(Jk,c)  ∀  i ≤ N,  Jk ∈  Ψ 

2. Bound on the available communication bandwidth per gateway for interaction with 

sensors in the cluster:  

sβi(tb)  ≥ ∑
∈∀ ickJ ϕ   ,

eSCi(Jk,c)   ∀  i ≤ N,  Jk ∈  Ψ 

3. Bound on the available communication bandwidth per gateway for interaction with 

other gateways:  

gβi(tb)  ≥  ∑
∉

∈∀
ipkwhere

ick
J

J
ϕ

ϕ
  

  
 , 

 ,

eGCi(Jk,c)  ∀  i ≤ N,  Jk ∈  Ψ 
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4. The gateway needs to have available enough power to perform the newly allocated 

tasks for the required duration DΨ, in addition to the energy needed to fulfill the 

previous commitment for existing tasks for MRLi.  

MRLi(tb) ∗  rEUi(tb) + DΨ∗  [rEUi(ta) - rEUi(tb)] ≤ Ei(tb)  ∀  i ≤ N 

2.3 Optimization Algorithm 
The complexity of a general optimization problem depends on the linearity of the 

objective function and the constraints [19]. Our model can be classified as a zero-one 

nonlinear optimization problem, for which the technique of simulated annealing proved 

to be very effective [20][21]. The Simulated Annealing Optimization method 

distinguishes between different local optima and has been successfully applied to similar 

problems [22]. The validation experiments, as described next, used an implementation of 

the simulated annealing algorithm developed by Taygeta Scientific Inc. [23]. 

3. Experiments and Analysis 
Recall that gateways’ remaining energy is at the core of the objective function. For 

experimental purposes, we formulated variants of the objective function based on three 

metrics. The metrics that we considered and corresponding objective functions are shown 

in Table 1. 

  Table 1: Metrics and corresponding Objective Functions 

Metric Objective Function 

Minimum Remaining Energy ))*(( iii
LWMinMax  

Total Remaining Energy 






∑
=

N

i
ii LWMax

1

)*(  

Average Remaining Energy ))*(( ii
i

LWAvgMax  

3.1 Experimental Setup 
The parameters chosen for the experiments are listed in Table 2. In order to predict the 

energy consumption for computation and communication for a gateway node, we utilize 

the energy models mentioned in [5]. In that work a computation task involve the 

execution of a set of the algorithms like fast Fourier transform. In the experiment, the 

energy required for performing a computation task is computed as a random summation 

of one or more of the energy dissipation values required by the mentioned algorithms. 
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The communication model for energy dissipation assume that the radio dissipates elecE = 

50 nJ/bit in the transmitter or receiver circuitry and ampε  = 100 pJ/bit/m2 for the transmit 

amplifier. An 2r energy loss due to channel transmission is assumed. Thus, the 

transmission ETx and receiving ERx energy for a k-bit message a distance d, are: 

 ),()(),( dkEkEdkE ampTxelecTxTx −− += 2*** dkkE ampelec ε+=  

 kEkEkE elecelecRxRx *)()( == −  

Based on the above model, we calculated the energy required by a gateway to route data 

to another gateway. The distance between the two gateways is considered to be between 

2 and 20 km. Sensors are picked for the generated tasks using a normal distribution. 

    Table 2: Parameters for the experiment 

Total number of gateways  5 
Load (the total number of jobs to be performed) 10 to 200 
Total number of communication tasks corresponding to a job j 3 
Remaining energy at a gateway node i (in joules) 5 
Weight associated with gateway 1 
Rate of energy consumption at a gateway before new task allocation (in joules) 0.000123  
Energy required for performing a communication task by a gateway (in joules) 0.000005 
Energy required for FFT (in joules) 0.005389 
Energy required for DCT (in joules) 0.0001 
Energy required for IDCT (in joules) 0.00013 
Energy required for FIR (in joules) 0.00123 
Energy required for TDLMS (in joules) 0.002129 
Energy required by a gateway i for receiving data from any gateway (in joules) 0.00000005 

3.2 Results and Analysis 
After the optimal allocation of tasks to the gateways, we calculated the remaining energy 

for each gateway by using the objective functions mentioned in section 3.1. We tried to 

maximize the minimum, total and average remaining energy of all the gateways and 

obtained the results depicted in figures 3, 4 and 5 respectively. Each graph shows the 

results of one particular objective function generated by the optimization algorithm and 

also the results obtained without performing any optimization. The baseline allocation, 

with no optimization, assigns a task to the gateway whose cluster includes the most 

number of sensors involved in that job.  
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Fig. 4: Total remaining energy of gateways for different loads 
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Fig. 5: Average remaining energy of gateways for different loads 
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The results show that that our optimized task allocation lowers the rate of energy 

consumption at the gateways. It is worth noting that the descent in the energy curves for 

all metrics are mainly due to the increased use of gateway energy for larger number of 

tasks. In case of maximizing the minimum gateway energy as shown in Fig. 3, our 

approach almost doubles the minimal remaining energy at the end of task execution. This 

metric also can lead load balancing for scenarios, in which one cluster is overwhelmed 

with tasks. Monitoring the minimal energy reserve at all gateways, allow tasks to be 

assigned to lightly loaded clusters.   

For the total remaining energy metric, Fig. 4, some performance gain could be 

achieved. Such performance gain is only due to our optimal handling of tasks that have a 

maximum of one sensor per cluster. For these tasks, the gateway of the cluster that 

includes the first sensor on the list will be picked in the baseline allocation. The 

optimization in this case minimizes the energy for inter-gateway communication. 

However, at high load the frequency of this scenario diminishes and the performance of 

the optimized allocation becomes close to the baseline. It is worth noting that we run the 

experiment using uniform distribution for sensor selection and found that the 

performance of the optimized approach is consistently better than the baseline allocation 

using this metric. Since the sensor selection for a task is application-dependant, we 

envision total remaining energy metric to be useful for applications that require reading 

from distant locations, e.g. forest fire monitoring and detection of harsh weather 

phenomena.  Similar observations could be made for the average remaining energy 

metric, depicted in Fig. 5. 

4. Conclusion and Future Work 

In this paper, we described a method for optimal allocation of tasks to gateways in a 

cluster-based sensor network. The presented approach maximizes the lifetime for the 

gateways and eventually for the whole network. The problem of allocation of tasks is 

modeled as a non-linear constrained satisfaction problem and implemented by using 

simulated annealing optimization technique. Three different objective functions, aiming 

at the minimum, average and total remaining energy of gateways are considered. 

Simulation results have shown that optimized allocation of tasks always give better 
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results than non-optimized case in terms of energy usage. In addition, the results 

indicated that maximizing the minimum gateway energy fits well with application in 

which some clusters are used more than the others. On the other hand maximizing total or 

average remaining gateway energy can suit applications that require reading from distant 

locations. 

Our future plan includes extending the system architecture to support multi-command 

node and multi-gateway. The presence of multi-command node would require the task 

allocation to be performed in a distributed manner. To avoid conflicting strategy among 

the command nodes, task arbitration has to be performed at the gateway in such setup. 

We are planning to investigate lightweight distributed optimization mechanisms that fit 

such dynamic and resource-constrained network architecture.  
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