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Abstract

One of the key tasks in network reliability evaluation 

is to enumerate all the paths or minimal cutsets of a 

network. Then the reliability can be calculated from the 

disjoint form of these terms. Enumerating all the 

minimal cutsets may be a feasible way to evaluate the 

reliability of a network if the number of paths is too 

huge to enumerate practically. One example of this kind 

of networks is the 2x100 lattice network. Many 

algorithms have been proposed to enumerate the 

minimal cutsets of a graph. Most of them require 

advanced mathematics or can only be applied to either 

one of the two broad categories, directed and undirected 

graphs. This paper presents a simple and systematic 

recursive algorithm that guarantees the generated 

cutsets are minimal and the same logic can be applied to 

both directed and undirected graphs with ease. This 

algorithm is so simple to implement and efficient that it 

can also be used to check the correctness of the cutsets 

generated by other algorithms. This algorithm can also 

be combined with OBDD (Ordered binary decision 

diagram) to calculate the reliability of a network. 

Experimental results show that: (1) the running time of 

enumerating all cutsets versus the graph density is 

linear for a given number of nodes and (2) it takes 96.71 

seconds to evaluate the network reliability of a 2x100 

lattice network which has 2
99

 paths. 

1. Introduction 

One of the key tasks in network reliability evaluation 

is to enumerate all the paths or the minimal cutsets of a 

network. Then the reliability can be calculated from the 

disjoint form of these terms [1-2]. Some networks have 

such a huge number of paths that it is simply impractical 

to enumerate all these paths. If the number of minimal 

cutsets is far less than the number of paths, then it may 

be a feasible way to evaluate the reliability through 

cutsets. A 2x100 lattice network is an example of such 

networks. It has 2
99

 paths but contains only 10,000 

minimal cutsets. 

One other method evaluates the reliability by 

applying the edge expansion diagram and OBDD 

(Ordered binary decision diagram) without enumerating 

all the paths or cutsets [3-4]. Though this method can 

evaluate network reliabilities very efficiently, it does not 

produce the pathset (set of all paths) or cutsets of a 

network. The pathset or cutsets may be useful in some 

applications such as network management or network 

flow control and calculation. Our algorithm can generate 

all minimal cutsets and evaluate the reliability. It is even 

faster than the method in [4] for the complete network 

with 10 nodes. 

Many algorithms have been proposed to generate 

minimal cutsets for directed or undirected graphs [5-13]. 

Some of the algorithms need special preprocessing on 

the graphs or can only be applied to a special kind of 

graphs [9, 12, 13]. Some algorithms require advanced 

mathematics [5] and some others can only be applied to 

undirected networks. One other approach obtains the 

minimal cutsets by inverting minimal pathset [10] but it 

may be impractical to generate the pathset of a graph. 

Tsukiyama [7] presented methods and mathematical 

background to enumerate all the minimal cutsets (also 

called s-t cutset in their paper) of a graph. The way of 

choosing vertices can be made even clearer and more 

systematic. This paper presents a simple and systematic 

algorithm that guarantees the generated cutsets are 

minimal and the same logic can be applied to both 

directed and undirected graphs with ease. This algorithm 

is very simple to implement and is efficient that it can 

also be used to check the correctness of other algorithms 

[6, 14]. This algorithm can also be combined with BDD 
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to calculate the reliability of a network. Unfortunately, 

enumerating all the cutsets is a well-known NP-hard 

problem [15] and our experiments demonstrate this 

exponential growth rate of the computation time. 

Experimental results also show that: (1) the running time 

versus the graph density is linear for a given number of 

nodes and (2) it takes 96.71 seconds to evaluate the 

network reliability of a 2x100 lattice network which has 

2
99

 paths. 

2. Preliminaries

Notations:

V, E  set of vertices and edges respectively. 

G  a graph, G = [V, E].

(u, v) an undirected edge connecting vertices u

and v. u and v∈V.

<u, v> a directed edge from u to v. u and v∈V.

s, t source node and sink node respectively. 

S, T disjoint subsets of V such that s∈S and t∈T.

SS (source set) set of vertices such that s∈SS and SS

is connected. 

G*n node n is merged into SS of G by deleting any 

edge connecting n and SS.

A graph is connected if there is a path between each 

pair of vertices. A graph G’ = [V’, E’] is a subgraph of G

if V’⊂V and E’⊂E. A maximal connected subgraph of 

a graph G is called a connected component of G. For any 

subset X of V, a graph consisting of a set of vertices X

and a set of edges E[X]≡{e = (u, v)∈E | u, v∈X} is 

designated as a section subgraph of G and is denoted by 

G[X] = [X, E[X]]. A node v is said to be adjacent to G[X]

if there exists an edge <u, v> or (u, v) such that u∈X

and v∉X. In other words, node v is adjacent to X if there 

is an edge leading to node v from X. Let s∈S and 

t∈ S ≡V – S and let the set of edges connecting S and 

S  represent a cutset C = w(S, S )≡{(u, v)∈E | u∈S,

v∈ S }. If C does not contain any other cutset, then it is 

referred to as a minimal cutset.

According to Lemma 4 in [7], if we can find two 

connected components S and S , s∈S and t∈ S , such 

that any node adjacent to S is in S , then there exists a 

single minimal cutset C = w(S, S ). Lemma 3 in [7] 

suggests that if S  is not connected, then any other 

node not included in a connected component W, which 

contains t, can be merged into S to form a new S. For 

detailed proof, please refer to [7]. Our algorithm is based 

on these two Lemmas. To prove that our algorithm does 

indeed enumerate all the minimal cutsets, we need to 

show that: (1) our algorithm does not produce isolated 

nodes in the intermediate subgraph and (2) any cutset 

generated by the algorithm in [7] can also be produced 

by our recursive merge algorithm. The proof is given in 

section 4 after the algorithm is illustrated. 

3. The algorithm for undirected graphs

For any connected graph G, it is obvious that deleting 

all the edges emitting from s prevents s from arriving t.

If one of these edges is not deleted, then s has a way out 

and can get to t since the rest of the graph is connected. 

Therefore, this is a minimal cutset of G. The basic idea 

is to generalize the source node into the source set. Then 

the minimal cutset is composed of all the edges emitting 

from the source set. 

The algorithm is shown in the pseudo-code form in 

Figure 1 and it is invoked by initializing G to the 

original graph, SS to empty, and n to s. In the algorithm, 

we merge the nodes adjacent to the source set one by 

one and absorb (merge) redundant nodes of G into SS.

This can ensure that the set of all emitting edges from a 

particular SS is a minimal cutset. In the conventional 

sense, a node is called a redundant node if a node n other 

than s or t is connected to only one other node. In this 

paper, a node is called a redundant node if it is adjacent 

to SS and has no way to get to t without going through 

any node in SS. If an SS is found in the hash table, it has 

been evaluated in the recursive process and nothing 

needs to be done. If an SS is not found in the hash table, 

then add it to the hash table and then output a cutset. A 

cutset is the set of all edges emitting from SS. Any node 

adjacent to SS is then merged to the SS one by one to 

form a new SS and call the recursive function. The SS

can be thought of as being a single node that represents 

the original s. A node is merged into SS by deleting any 

edge linking this node and any node in SS while 

maintaining all other edges. 

RecursiveMerge( G, SS, n ) 

{

if ( n == t )  return; 

G = G*n; SS = SS + n;

Recursively absorb (merge) redundant nodes of G into SS;

if ( SS is found in the hash table )  return; 

else  {add SS to the hash table;} 

Output a cutset of SS;

for each node n
i
 adjacent to SS

{

RecursiveMerge( G, SS, n
i
 ); 

}

}

Figure 1. Minimal cutsets enumeration algorithm. 

Figure 2 illustrates this algorithm and the graph 

contains 5 nodes and 6 edges. Node 1 and 5 are s and t
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respectively. The RecursiveMerge algorithm begins by 

setting SS to empty and n to 1. The rectangle G1 in 

Figure 2 outputs a cutset {e1, e2}. There are two nodes, 

2 and 3, adjacent to SS in G1 and SS is merged with 

them to produce G2 and G3. G2 then merges with node 

3 into G4 to have a SS containing {1, 2, 3} and output a 

cutset {e3, e4, e5}. The SS in G2 can also merge with 

node 4 to have SS = {1, 2, 4}. As we can see in the 

figure that node 3 will become a redundant node and 

have to be absorbed into SS. It will create G6 by 

absorbing node 3 into SS. Of course, if G6 has not been 

found in the hash table, it will produce a cutset and call 

the recursive merge function as a normal sub-graph does. 

If G3 merges with node 2, its SS will contain {1, 2, 3} 

and it is found in the hash table. Therefore, no cutset 

shall be output and no recursive processing is needed. 

There are 6 rectangles G1 to G6 in Figure 2 and this 

means we have 6 cutsets for this graph. 
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Figure 2. Example of the recursive merge algorithm. 

4. The algorithm for directed graphs

The above algorithm can also be applied to directed 

graphs without modification. But care must be taken as 

to what nodes can be merged to and what nodes can be 

absorbed into SS. In the directed graph, a node v can be 

merged into SS if there is a node u∈SS such that <u, v>

is an edge connecting from u to v. Similarly, a node n

can be absorbed into SS if there is a node u∈SS such 

that <u, n> is an edge and n have no way to get to t

without going through any node in SS. Consider an 

intermediate sub-graph of a directed graph shown in 

Figure 3. If e4 does not exist, then both node x and y are 

redundant nodes and shall be absorbed into SS. If e4 

does exist, then only node x is redundant and absorbed 

into SS. Therefore, if a node n is not a redundant node, 

any other node reachable from n is not necessarily a 

non-redundant node. But if a node n is a redundant node, 

then any node r∉ SS reachable from n is also a 

redundant node. Otherwise, n will have a path to t

through r.
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��
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Figure 3. An intermediate sub-graph (directed). 

For an undirected graph, the performance of the 

recursive merge algorithm can be improved if we can 

absorb a group of redundant nodes into SS. Consider an 

intermediate sub-graph of an undirected graph shown in 

Figure 4. If edge e4 does not exist, node x and y are both 

redundant nodes and shall be absorbed into SS.

Obviously, if e4 exists, both node x and y are not 

redundant nodes and shall not be absorbed into SS. In 

other words, if a node n is a redundant node in an 

undirected graph, any node r∉SS reachable from n is 

also a redundant node. Therefore, a group of nodes can 

be absorbed into SS in the undirected graph and it speeds 

up the enumeration process. In some graphs, we have 

observed up to 3 times speedup compared to the 

approach that absorbs one node at a time. Other 

sophisticated methods or data structures can also be 

devised to improve the performance in the hashing 

mechanism or in finding the redundant nodes of an 

intermediate SS.
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Figure 4. An intermediate sub-graph (undirected). 

The following two Lemmas and the Lemmas in [7] 

can prove that our recursive merge algorithm does 

indeed generate complete enumerations of minimal 

cutsets. The Lemmas in [7] are not described again in 

this paper. 

Lemma 1: For the input of a connected graph, the 

recursive merge algorithm does not produce isolated 

nodes in any intermediate subgraph. 

[Proof.] In the recursive merge algorithm, merge (or 

absorption) is the only process that will delete edges. 

According to the algorithm, a set of nodes SS can be 

merged together if they are connected. Besides, for any 
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node u∈V – SS and v∈V, any edge connecting u and v,

whether it is (u, v), <u, v>, or <v, u>, is not deleted. In 

other words, they are connected to some other nodes. 

Thus, the recursive merge algorithm does not produce 

isolated nodes in any intermediate subgraph. 

Lemma 2: Any cutset generated by the algorithm in [7] 

is also produced by our recursive merge algorithm. 

[Proof.] The algorithm in [7] partitions the graph into 

two connected components S and S , s∈S and t∈ S ,

such that any node not in S is in S . Then, the edges 

connecting S and S  is a minimal cutset. In the 

recursive merge algorithm, SS is connected since only 

connected nodes can be merged together. We want to 

show t is in SS  and SS  is also connected. In the 

algorithm, recursion terminates if t is reached. Besides, t

is not a redundant node by definition. Therefore, t is in 

SS . By definition, a node is called a redundant node if 

it is adjacent to SS and has no way to get to t without 

going through any node in SS. Consider a redundant 

node v not adjacent to SS. There must be a redundant 

node u adjacent to SS and can reach v. Each node along 

the path from u to v is also redundant because if they are 

not redundant, then u will not be redundant. The nodes 

along this path can be absorbed (merged) into SS. Thus, 

any redundant node can be absorbed into SS. In other 

words, any node n∈ SS  has a way to t. Thus, SS  is 

connected.

5. Reliability Evaluation with BDD

The BDD [3] is based on a decomposition of a 

Boolean function called the Shannon expansion. A 

function f can be decomposed in terms of a variable z as: 

01 ==

⋅+⋅=
zz

fzfzf

In the equation above, 
1=z

f  is called the positive 

cofactor of f with respect to z, i.e., the result of 

evaluating f with z = 1. Similarly, 
0=z

f  is the negative 

cofactor of f. The node z and its descendants in an BDD 

represent a Boolean function f; one outgoing edge of z is 

directed to the subgraph representing 
1=z

f , and the 

other is to the subgraph representing 
0=z

f . In a BDD, A 

dashed line is for taking the value 0 and a solid line for 

value 1. Following a path from the root to a terminal 

node, we can simply take successive cofactors of a 

function until a terminal node is reached. 

BDD has a useful property, which guarantees that all 

paths from the root to a terminal node are mutually 

disjoint. Thus, the recursive merge algorithm in Figure 1 

can be modified to evaluate the unavailability of a graph 

by using BDD. This algorithm is shown in Figure 5. The 

gBdd in the RM_BDD is a global BDD variable 

initialized to bdd_Zero. Assume P(z) is the success 

probability of variable z. After all the cutsets has been 

generated, gBdd can be used to evaluate the 

unavailability by: 

)Pr()()Pr())(1()Pr(
01 ==

×+×−=

ii
zizi

gBddzPgBddzPgBdd

The summation of unavailability and availability 

(reliability) should be 1. Therefore, we can get the 

reliability of a graph by subtracting unavailability from 

1. The BDD and the unavailability of Figure 2 are 

shown in Figure 6. The success probability of each edge 

is assumed to be 0.9. As we can see from Figure 6, the 

reliability of Figure 2 is 1 – 0.031078 = 0.968922. 

RM_BDD(G, SS, n ) 

{

    bdd temp_bdd; 

    temp_bdd = bdd_One; 

    if ( n == t )  return; 

G = G*n; SS = SS + n;

Absorb (merge) redundant nodes of G into SS;

  if ( SS is found in the hash table )  return; 

    else  {add SS to the hash table;} 

    Output a cutset C of SS;

    for each edge e
i
 in the cutset C

    temp_bdd = bdd_And( e
i
, temp_bdd ); 

    gBdd = bdd_Or( gBdd, temp_bdd ); 

release temp_bdd; 

for each node n
i
 adjacent to SS

{

  RM_BDD( G, SS, n
i
 ); 

}

}

Figure 5. BDD construction with recursive merge. 
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Figure 6. Unavailability and BDD of Figure 2. 

6. Experimental Results

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03) 
1530-1346/03 $17.00 © 2003 IEEE 



There exist various methods to derive the SDP (sum 

of disjoint products) terms from the pathset or cutsets of 

a network. Then the reliability can be obtained by 

evaluating the SDP terms. Soh [2] showed that different 

pre-processing methods could produce different 

numbers of SDP terms and thus have different 

computation time. Unfortunately, enumerating all paths 

or cutsets for a large network is simply impractical. Kuo 

[4] has presented a very efficient method to tackle this 

problem. Their method does not enumerate all the paths 

or cutsets. Instead, they use the edge expansion diagram 

and the binary decision diagram (BDD). The reliability 

is then evaluated by traversing the BDD. In some 

applications, such as network management or network 

flow control and calculation, the set of paths or cutsets 

may be very useful. 

We apply the DeMorgan’s law to the 

Path_Function_Construct algorithm in [4] and derive 

from it a cut-based algorithm using edge expansion 

diagram. We also implement that cut-based algorithm 

and name it Cut_EED in this paper for identification and 

comparison. Twelve benchmark networks from [2, 4] are 

tested and they are shown in Figure 7. 
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(4) (5) (6)
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A complete graph

with 10 nodes 2 x 100

s

Figure 7. Twelve benchmark networks. 

Both Cut_EED and RM_BDD are written in C++ and 

compiled with gcc 3.2 on a Linux system. Our hardware 

system has a Pentium-III 1GHz CPU and 512 MB of 

memory. The experimental results for these 12 

benchmark networks are shown in Table 1. The unit of 

time is in seconds. Note that the running time in [2] does 

not include the time to enumerate all the paths or cutsets 

while ours includes the time to enumerate all cutsets. 

The edge expansion diagram used by Cut_EED can 

delete more edges at each step than the recursive merge 

algorithm RM_BDD. Besides, the edge expansion 

diagram produces much fewer sub-problems than the 

recursive merge algorithm. Therefore, algorithms based 

on the edge expansion diagram are in general faster than 

RM_BDD. But this is not true for network 11. The edge 

expansion diagram produces a lot of sub-problems just 

as RM_BDD does. RM_BDD stops recursive function 

call if an SS is found in the hash table and it applies 

BDD operations (AND or OR) on each cutset. Unlike 

RM_BDD, Cut_EED also applies BDD operations to the 

isomorphic sub-graphs. Other than these facts, network 

11 also has much less cuts than paths. These may be the 

reason why RM_BDD is faster than Cut_EED for 

network 11. 

Table 1. Comparisons of benchmark networks. 

Network # of paths # of 

cuts

Reliability Lex 

[2]

Cut_EED RM_BDD 

1 13 28 0.964855 0 0 0 

2 14 18 0.996664 0 0 0

3 25 20 0.997494 0 0 0 

4 29 29 0.996217 0.1 0 0

5 24 19 0.975116 0 0 0 

6 18 110 0.994076 0.1 0 0.03

7 44 528 0.904577 0.3 0 0.14 

8 64 78 0.997506 0.1 0 0.02

9 281 1,300 0.985928 3.8 0.01 0.71 

10 98 105 0.987831 - 0.01 0.03

11 109601 256 1.0 - 2.17 1.36 

12 2
99

10,000 0.304317 - 0.24 96.71

For some networks, it is simply impractical to 

enumerate all paths since there are a huge number of 

paths. Consider network 12 in Figure 7. Though it has 

2
99

 paths, it contains only 10,000 cutsets. Though 

Cut_EED is faster than RM_BDD, applications other 

than reliability evaluation may need pathsets or cutsets. 

Enumerating their cutsets seems to be a feasible 

alternative way for such networks. RM_BDD can 

calculate the reliability of network 12 within reasonable 

time.

We also run the recursive merge algorithm on some 

randomly generated graphs and measure their time to 

enumerate all the cutsets. Figure 8 shows the result of 

running time versus density. The number of nodes 

ranges from 16 to 20 and the density is from 0.4 to 1.0 at 

a step size of 0.1. The graph density is defined as 

2m/(n(n-1)) where m and n are the number of edges and 

the number of nodes respectively. From Figure 8, we can 

see that for a particular node size, the growth rate of the 

processing time is linear to the density of a graph. Table 

2 shows the detailed results for 19-node and 20-node 

networks.

�

���

���

���

���

���

���

���

� �	� � �	�


��
���

�
��

��
��
�
�	

�������


�������


�������


�������


�������


Figure 8. Processing time versus graph density. 
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Unfortunately, hidden under the linear relationship 

between time and the density is the nature of exponential 

growth rate. This exponential growth rate is 

demonstrated in Figure 9 where we plot the time to 

enumerate all the cutsets versus the number of nodes. 

The number of cutsets increases with the number of 

nodes so rapidly that it is impossible to enumerate all the 

cutsets of a large graph. 

Finally, we also verify the network in [14] and 

confirm that our algorithm also generates 214 cutsets. 

Table 2. Detailed experimental results.

20 nodes 19 nodes Density

# of cuts Time (sec) # of cuts Time (sec) 

0.4 186233 112.86 99528 45.94 

0.5 243036 197.94 121940 83.22

0.6 258473 282.16 128501 116.68 

0.7 261266 357.33 130614 148.96

0.8 261876 449.48 130969 182.13 

0.9 262129 541.39 131044 225.76

1.0 262144 640.78 131072 259.41 
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Figure 9. Exponential growth nature of cutset 

enumeration.

7. Conclusions 

This paper presents a simple recursive algorithm that 

employs the idea of generalizing the redundant node and 

the source node to the source set. The minimal cutset is 

composed of all the edges emitting from the source set. 

The algorithm can also be combined with BDD to 

evaluate network reliabilities. The same logic of the 

algorithm can be applied to both directed and undirected 

graphs with ease. This algorithm is very simple to 

implement that it can also be used to check the 

correctness of other algorithms. Unfortunately, 

enumerating all the cutsets is a well-known NP-hard 

problem and our experiments demonstrated this 

exponential growth rate of the computation time. 

Experimental results also show that: (1) the running time 

versus the graph density is linear for a given number of 

nodes and (2) it takes only 96.71 seconds to evaluate the 

network reliability of a 2x100 lattice network which has 

2
99

 paths. 
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