
Minimal Cutset Enumeration and Network Reliability Evaluation by Recursive

Merge and BDD

Hung-Yau Lin Sy-Yen Kuo Fu-Min Yeh

Department of Electrical Engineering

National Taiwan University, Taipei, Taiwan

Chung-Shan Institute of Science

and Technology, Taoyuan, Taiwan

hylin@lion.ee.ntu.edu.tw sykuo@cc.ee.ntu.edu.tw fmyeh@tpts5.seed.net.tw

Abstract

One of the key tasks in network reliability evaluation

is to enumerate all the paths or minimal cutsets of a

network. Then the reliability can be calculated from the

disjoint form of these terms. Enumerating all the

minimal cutsets may be a feasible way to evaluate the

reliability of a network if the number of paths is too

huge to enumerate practically. One example of this kind

of networks is the 2x100 lattice network. Many

algorithms have been proposed to enumerate the

minimal cutsets of a graph. Most of them require

advanced mathematics or can only be applied to either

one of the two broad categories, directed and undirected

graphs. This paper presents a simple and systematic

recursive algorithm that guarantees the generated

cutsets are minimal and the same logic can be applied to

both directed and undirected graphs with ease. This

algorithm is so simple to implement and efficient that it

can also be used to check the correctness of the cutsets

generated by other algorithms. This algorithm can also

be combined with OBDD (Ordered binary decision

diagram) to calculate the reliability of a network.

Experimental results show that: (1) the running time of

enumerating all cutsets versus the graph density is

linear for a given number of nodes and (2) it takes 96.71

seconds to evaluate the network reliability of a 2x100

lattice network which has 2
99

 paths.

1. Introduction

One of the key tasks in network reliability evaluation

is to enumerate all the paths or the minimal cutsets of a

network. Then the reliability can be calculated from the

disjoint form of these terms [1-2]. Some networks have

such a huge number of paths that it is simply impractical

to enumerate all these paths. If the number of minimal

cutsets is far less than the number of paths, then it may

be a feasible way to evaluate the reliability through

cutsets. A 2x100 lattice network is an example of such

networks. It has 2
99

 paths but contains only 10,000

minimal cutsets.

One other method evaluates the reliability by

applying the edge expansion diagram and OBDD

(Ordered binary decision diagram) without enumerating

all the paths or cutsets [3-4]. Though this method can

evaluate network reliabilities very efficiently, it does not

produce the pathset (set of all paths) or cutsets of a

network. The pathset or cutsets may be useful in some

applications such as network management or network

flow control and calculation. Our algorithm can generate

all minimal cutsets and evaluate the reliability. It is even

faster than the method in [4] for the complete network

with 10 nodes.

Many algorithms have been proposed to generate

minimal cutsets for directed or undirected graphs [5-13].

Some of the algorithms need special preprocessing on

the graphs or can only be applied to a special kind of

graphs [9, 12, 13]. Some algorithms require advanced

mathematics [5] and some others can only be applied to

undirected networks. One other approach obtains the

minimal cutsets by inverting minimal pathset [10] but it

may be impractical to generate the pathset of a graph.

Tsukiyama [7] presented methods and mathematical

background to enumerate all the minimal cutsets (also

called s-t cutset in their paper) of a graph. The way of

choosing vertices can be made even clearer and more

systematic. This paper presents a simple and systematic

algorithm that guarantees the generated cutsets are

minimal and the same logic can be applied to both

directed and undirected graphs with ease. This algorithm

is very simple to implement and is efficient that it can

also be used to check the correctness of other algorithms

[6, 14]. This algorithm can also be combined with BDD

Acknowledgement: This research was supported by the National Science Council, Taiwan, R. O. C., grant NSC 91-2213-E-002-042.

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

to calculate the reliability of a network. Unfortunately,

enumerating all the cutsets is a well-known NP-hard

problem [15] and our experiments demonstrate this

exponential growth rate of the computation time.

Experimental results also show that: (1) the running time

versus the graph density is linear for a given number of

nodes and (2) it takes 96.71 seconds to evaluate the

network reliability of a 2x100 lattice network which has

2
99

 paths.

2. Preliminaries

Notations:

V, E set of vertices and edges respectively.

G a graph, G = [V, E].

(u, v) an undirected edge connecting vertices u

and v. u and v∈V.

<u, v> a directed edge from u to v. u and v∈V.

s, t source node and sink node respectively.

S, T disjoint subsets of V such that s∈S and t∈T.

SS (source set) set of vertices such that s∈SS and SS

is connected.

G*n node n is merged into SS of G by deleting any

edge connecting n and SS.

A graph is connected if there is a path between each

pair of vertices. A graph G’ = [V’, E’] is a subgraph of G

if V’⊂V and E’⊂E. A maximal connected subgraph of

a graph G is called a connected component of G. For any

subset X of V, a graph consisting of a set of vertices X

and a set of edges E[X]≡{e = (u, v)∈E | u, v∈X} is

designated as a section subgraph of G and is denoted by

G[X] = [X, E[X]]. A node v is said to be adjacent to G[X]

if there exists an edge <u, v> or (u, v) such that u∈X

and v∉X. In other words, node v is adjacent to X if there

is an edge leading to node v from X. Let s∈S and

t∈ S ≡V – S and let the set of edges connecting S and

S represent a cutset C = w(S, S)≡{(u, v)∈E | u∈S,

v∈ S }. If C does not contain any other cutset, then it is

referred to as a minimal cutset.

According to Lemma 4 in [7], if we can find two

connected components S and S , s∈S and t∈ S , such

that any node adjacent to S is in S , then there exists a

single minimal cutset C = w(S, S). Lemma 3 in [7]

suggests that if S is not connected, then any other

node not included in a connected component W, which

contains t, can be merged into S to form a new S. For

detailed proof, please refer to [7]. Our algorithm is based

on these two Lemmas. To prove that our algorithm does

indeed enumerate all the minimal cutsets, we need to

show that: (1) our algorithm does not produce isolated

nodes in the intermediate subgraph and (2) any cutset

generated by the algorithm in [7] can also be produced

by our recursive merge algorithm. The proof is given in

section 4 after the algorithm is illustrated.

3. The algorithm for undirected graphs

For any connected graph G, it is obvious that deleting

all the edges emitting from s prevents s from arriving t.

If one of these edges is not deleted, then s has a way out

and can get to t since the rest of the graph is connected.

Therefore, this is a minimal cutset of G. The basic idea

is to generalize the source node into the source set. Then

the minimal cutset is composed of all the edges emitting

from the source set.

The algorithm is shown in the pseudo-code form in

Figure 1 and it is invoked by initializing G to the

original graph, SS to empty, and n to s. In the algorithm,

we merge the nodes adjacent to the source set one by

one and absorb (merge) redundant nodes of G into SS.

This can ensure that the set of all emitting edges from a

particular SS is a minimal cutset. In the conventional

sense, a node is called a redundant node if a node n other

than s or t is connected to only one other node. In this

paper, a node is called a redundant node if it is adjacent

to SS and has no way to get to t without going through

any node in SS. If an SS is found in the hash table, it has

been evaluated in the recursive process and nothing

needs to be done. If an SS is not found in the hash table,

then add it to the hash table and then output a cutset. A

cutset is the set of all edges emitting from SS. Any node

adjacent to SS is then merged to the SS one by one to

form a new SS and call the recursive function. The SS

can be thought of as being a single node that represents

the original s. A node is merged into SS by deleting any

edge linking this node and any node in SS while

maintaining all other edges.

RecursiveMerge(G, SS, n)

{

if (n == t) return;

G = G*n; SS = SS + n;

Recursively absorb (merge) redundant nodes of G into SS;

if (SS is found in the hash table) return;

else {add SS to the hash table;}

Output a cutset of SS;

for each node n
i
 adjacent to SS

{

RecursiveMerge(G, SS, n
i
);

}

}

Figure 1. Minimal cutsets enumeration algorithm.

Figure 2 illustrates this algorithm and the graph

contains 5 nodes and 6 edges. Node 1 and 5 are s and t

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

respectively. The RecursiveMerge algorithm begins by

setting SS to empty and n to 1. The rectangle G1 in

Figure 2 outputs a cutset {e1, e2}. There are two nodes,

2 and 3, adjacent to SS in G1 and SS is merged with

them to produce G2 and G3. G2 then merges with node

3 into G4 to have a SS containing {1, 2, 3} and output a

cutset {e3, e4, e5}. The SS in G2 can also merge with

node 4 to have SS = {1, 2, 4}. As we can see in the

figure that node 3 will become a redundant node and

have to be absorbed into SS. It will create G6 by

absorbing node 3 into SS. Of course, if G6 has not been

found in the hash table, it will produce a cutset and call

the recursive merge function as a normal sub-graph does.

If G3 merges with node 2, its SS will contain {1, 2, 3}

and it is found in the hash table. Therefore, no cutset

shall be output and no recursive processing is needed.

There are 6 rectangles G1 to G6 in Figure 2 and this

means we have 6 cutsets for this graph.

2

51

3 4

e1

e2

e3

e4

e5

e6

�������

�������

����

5

3 4

e2

e3

e4

e5

e6

2

5

4

e1

e3

e4

e5

e6

����������

5

4

e3

e4

e5

e6

����������

5

3

e2

e3

e5

e6

�������������

5

e3

e6

	
�����
������������

����������

2

5

e1

e3

e4

e6

�
���
����������

e1 e2

e2
e4

e1

e5

e1 or e4

e6e3

e4 or e5

G1

G2 G3

G4

G5

G6

t

t
t

t
t

t

t

Figure 2. Example of the recursive merge algorithm.

4. The algorithm for directed graphs

The above algorithm can also be applied to directed

graphs without modification. But care must be taken as

to what nodes can be merged to and what nodes can be

absorbed into SS. In the directed graph, a node v can be

merged into SS if there is a node u∈SS such that <u, v>

is an edge connecting from u to v. Similarly, a node n

can be absorbed into SS if there is a node u∈SS such

that <u, n> is an edge and n have no way to get to t

without going through any node in SS. Consider an

intermediate sub-graph of a directed graph shown in

Figure 3. If e4 does not exist, then both node x and y are

redundant nodes and shall be absorbed into SS. If e4

does exist, then only node x is redundant and absorbed

into SS. Therefore, if a node n is not a redundant node,

any other node reachable from n is not necessarily a

non-redundant node. But if a node n is a redundant node,

then any node r∉ SS reachable from n is also a

redundant node. Otherwise, n will have a path to t

through r.

x

t

y

e1

e4

e2

e3

��
���������

�	
��
��

Figure 3. An intermediate sub-graph (directed).

For an undirected graph, the performance of the

recursive merge algorithm can be improved if we can

absorb a group of redundant nodes into SS. Consider an

intermediate sub-graph of an undirected graph shown in

Figure 4. If edge e4 does not exist, node x and y are both

redundant nodes and shall be absorbed into SS.

Obviously, if e4 exists, both node x and y are not

redundant nodes and shall not be absorbed into SS. In

other words, if a node n is a redundant node in an

undirected graph, any node r∉SS reachable from n is

also a redundant node. Therefore, a group of nodes can

be absorbed into SS in the undirected graph and it speeds

up the enumeration process. In some graphs, we have

observed up to 3 times speedup compared to the

approach that absorbs one node at a time. Other

sophisticated methods or data structures can also be

devised to improve the performance in the hashing

mechanism or in finding the redundant nodes of an

intermediate SS.

x

t

y

e1

e4

e2

e3

��
���������

�	
��
��

Figure 4. An intermediate sub-graph (undirected).

The following two Lemmas and the Lemmas in [7]

can prove that our recursive merge algorithm does

indeed generate complete enumerations of minimal

cutsets. The Lemmas in [7] are not described again in

this paper.

Lemma 1: For the input of a connected graph, the

recursive merge algorithm does not produce isolated

nodes in any intermediate subgraph.

[Proof.] In the recursive merge algorithm, merge (or

absorption) is the only process that will delete edges.

According to the algorithm, a set of nodes SS can be

merged together if they are connected. Besides, for any

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

node u∈V – SS and v∈V, any edge connecting u and v,

whether it is (u, v), <u, v>, or <v, u>, is not deleted. In

other words, they are connected to some other nodes.

Thus, the recursive merge algorithm does not produce

isolated nodes in any intermediate subgraph.

Lemma 2: Any cutset generated by the algorithm in [7]

is also produced by our recursive merge algorithm.

[Proof.] The algorithm in [7] partitions the graph into

two connected components S and S , s∈S and t∈ S ,

such that any node not in S is in S . Then, the edges

connecting S and S is a minimal cutset. In the

recursive merge algorithm, SS is connected since only

connected nodes can be merged together. We want to

show t is in SS and SS is also connected. In the

algorithm, recursion terminates if t is reached. Besides, t

is not a redundant node by definition. Therefore, t is in

SS . By definition, a node is called a redundant node if

it is adjacent to SS and has no way to get to t without

going through any node in SS. Consider a redundant

node v not adjacent to SS. There must be a redundant

node u adjacent to SS and can reach v. Each node along

the path from u to v is also redundant because if they are

not redundant, then u will not be redundant. The nodes

along this path can be absorbed (merged) into SS. Thus,

any redundant node can be absorbed into SS. In other

words, any node n∈ SS has a way to t. Thus, SS is

connected.

5. Reliability Evaluation with BDD

The BDD [3] is based on a decomposition of a

Boolean function called the Shannon expansion. A

function f can be decomposed in terms of a variable z as:

01 ==

⋅+⋅=
zz

fzfzf

In the equation above,
1=z

f is called the positive

cofactor of f with respect to z, i.e., the result of

evaluating f with z = 1. Similarly,
0=z

f is the negative

cofactor of f. The node z and its descendants in an BDD

represent a Boolean function f; one outgoing edge of z is

directed to the subgraph representing
1=z

f , and the

other is to the subgraph representing
0=z

f . In a BDD, A

dashed line is for taking the value 0 and a solid line for

value 1. Following a path from the root to a terminal

node, we can simply take successive cofactors of a

function until a terminal node is reached.

BDD has a useful property, which guarantees that all

paths from the root to a terminal node are mutually

disjoint. Thus, the recursive merge algorithm in Figure 1

can be modified to evaluate the unavailability of a graph

by using BDD. This algorithm is shown in Figure 5. The

gBdd in the RM_BDD is a global BDD variable

initialized to bdd_Zero. Assume P(z) is the success

probability of variable z. After all the cutsets has been

generated, gBdd can be used to evaluate the

unavailability by:

)Pr()()Pr())(1()Pr(
01 ==

×+×−=

ii
zizi

gBddzPgBddzPgBdd

The summation of unavailability and availability

(reliability) should be 1. Therefore, we can get the

reliability of a graph by subtracting unavailability from

1. The BDD and the unavailability of Figure 2 are

shown in Figure 6. The success probability of each edge

is assumed to be 0.9. As we can see from Figure 6, the

reliability of Figure 2 is 1 – 0.031078 = 0.968922.

RM_BDD(G, SS, n)

{

 bdd temp_bdd;

 temp_bdd = bdd_One;

 if (n == t) return;

G = G*n; SS = SS + n;

Absorb (merge) redundant nodes of G into SS;

 if (SS is found in the hash table) return;

 else {add SS to the hash table;}

 Output a cutset C of SS;

 for each edge e
i
 in the cutset C

 temp_bdd = bdd_And(e
i
, temp_bdd);

 gBdd = bdd_Or(gBdd, temp_bdd);

release temp_bdd;

for each node n
i
 adjacent to SS

{

 RM_BDD(G, SS, n
i
);

}

}

Figure 5. BDD construction with recursive merge.

10

e1

e2

e3

e4

e5

e6

e2

e3e3

e4 e4

e5

e6
0.1*1+0.9*0=0.10.1*1+0.9*0=0.1

0.1*1+0.9*1=0.190.1

0.109 0.19 0.109

0.1171

0.20539

0.0190.0109

0.01171

0.1*0.20539+0.9*0.01171=0.031078

Figure 6. Unavailability and BDD of Figure 2.

6. Experimental Results

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

There exist various methods to derive the SDP (sum

of disjoint products) terms from the pathset or cutsets of

a network. Then the reliability can be obtained by

evaluating the SDP terms. Soh [2] showed that different

pre-processing methods could produce different

numbers of SDP terms and thus have different

computation time. Unfortunately, enumerating all paths

or cutsets for a large network is simply impractical. Kuo

[4] has presented a very efficient method to tackle this

problem. Their method does not enumerate all the paths

or cutsets. Instead, they use the edge expansion diagram

and the binary decision diagram (BDD). The reliability

is then evaluated by traversing the BDD. In some

applications, such as network management or network

flow control and calculation, the set of paths or cutsets

may be very useful.

We apply the DeMorgan’s law to the

Path_Function_Construct algorithm in [4] and derive

from it a cut-based algorithm using edge expansion

diagram. We also implement that cut-based algorithm

and name it Cut_EED in this paper for identification and

comparison. Twelve benchmark networks from [2, 4] are

tested and they are shown in Figure 7.

s

t

s t

s ts t

(1)

s s

ss s ttt

t t t

(2) (3)

(4) (5) (6)

(7) (8)

(9)

(10)

(11) (12)

A complete graph

with 10 nodes 2 x 100

s

Figure 7. Twelve benchmark networks.

Both Cut_EED and RM_BDD are written in C++ and

compiled with gcc 3.2 on a Linux system. Our hardware

system has a Pentium-III 1GHz CPU and 512 MB of

memory. The experimental results for these 12

benchmark networks are shown in Table 1. The unit of

time is in seconds. Note that the running time in [2] does

not include the time to enumerate all the paths or cutsets

while ours includes the time to enumerate all cutsets.

The edge expansion diagram used by Cut_EED can

delete more edges at each step than the recursive merge

algorithm RM_BDD. Besides, the edge expansion

diagram produces much fewer sub-problems than the

recursive merge algorithm. Therefore, algorithms based

on the edge expansion diagram are in general faster than

RM_BDD. But this is not true for network 11. The edge

expansion diagram produces a lot of sub-problems just

as RM_BDD does. RM_BDD stops recursive function

call if an SS is found in the hash table and it applies

BDD operations (AND or OR) on each cutset. Unlike

RM_BDD, Cut_EED also applies BDD operations to the

isomorphic sub-graphs. Other than these facts, network

11 also has much less cuts than paths. These may be the

reason why RM_BDD is faster than Cut_EED for

network 11.

Table 1. Comparisons of benchmark networks.

Network # of paths # of

cuts

Reliability Lex

[2]

Cut_EED RM_BDD

1 13 28 0.964855 0 0 0

2 14 18 0.996664 0 0 0

3 25 20 0.997494 0 0 0

4 29 29 0.996217 0.1 0 0

5 24 19 0.975116 0 0 0

6 18 110 0.994076 0.1 0 0.03

7 44 528 0.904577 0.3 0 0.14

8 64 78 0.997506 0.1 0 0.02

9 281 1,300 0.985928 3.8 0.01 0.71

10 98 105 0.987831 - 0.01 0.03

11 109601 256 1.0 - 2.17 1.36

12 2
99

10,000 0.304317 - 0.24 96.71

For some networks, it is simply impractical to

enumerate all paths since there are a huge number of

paths. Consider network 12 in Figure 7. Though it has

2
99

 paths, it contains only 10,000 cutsets. Though

Cut_EED is faster than RM_BDD, applications other

than reliability evaluation may need pathsets or cutsets.

Enumerating their cutsets seems to be a feasible

alternative way for such networks. RM_BDD can

calculate the reliability of network 12 within reasonable

time.

We also run the recursive merge algorithm on some

randomly generated graphs and measure their time to

enumerate all the cutsets. Figure 8 shows the result of

running time versus density. The number of nodes

ranges from 16 to 20 and the density is from 0.4 to 1.0 at

a step size of 0.1. The graph density is defined as

2m/(n(n-1)) where m and n are the number of edges and

the number of nodes respectively. From Figure 8, we can

see that for a particular node size, the growth rate of the

processing time is linear to the density of a graph. Table

2 shows the detailed results for 19-node and 20-node

networks.

�

���

���

���

���

���

���

���

� �	� � �	�

��
���

�
��

��
��
�
�	

�������

�������

�������

�������

�������

Figure 8. Processing time versus graph density.

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

Unfortunately, hidden under the linear relationship

between time and the density is the nature of exponential

growth rate. This exponential growth rate is

demonstrated in Figure 9 where we plot the time to

enumerate all the cutsets versus the number of nodes.

The number of cutsets increases with the number of

nodes so rapidly that it is impossible to enumerate all the

cutsets of a large graph.

Finally, we also verify the network in [14] and

confirm that our algorithm also generates 214 cutsets.

Table 2. Detailed experimental results.

20 nodes 19 nodes Density

of cuts Time (sec) # of cuts Time (sec)

0.4 186233 112.86 99528 45.94

0.5 243036 197.94 121940 83.22

0.6 258473 282.16 128501 116.68

0.7 261266 357.33 130614 148.96

0.8 261876 449.48 130969 182.13

0.9 262129 541.39 131044 225.76

1.0 262144 640.78 131072 259.41

�

���

���

���

���

���

���

���

� �� �� ��

	
��
��������
�

�
��
�
��
��
�
	 �
�����������

�
�����������

�
�����������

�
�����������

Figure 9. Exponential growth nature of cutset

enumeration.

7. Conclusions

This paper presents a simple recursive algorithm that

employs the idea of generalizing the redundant node and

the source node to the source set. The minimal cutset is

composed of all the edges emitting from the source set.

The algorithm can also be combined with BDD to

evaluate network reliabilities. The same logic of the

algorithm can be applied to both directed and undirected

graphs with ease. This algorithm is very simple to

implement that it can also be used to check the

correctness of other algorithms. Unfortunately,

enumerating all the cutsets is a well-known NP-hard

problem and our experiments demonstrated this

exponential growth rate of the computation time.

Experimental results also show that: (1) the running time

versus the graph density is linear for a given number of

nodes and (2) it takes only 96.71 seconds to evaluate the

network reliability of a 2x100 lattice network which has

2
99

 paths.

References

[1] S. Rai and K. K Aggarwal, “An Efficient Method for

Reliability Evaluation of a General Network,” IEEE

Trans. Reliability, vol. 27, pp. 206-211, Aug 1978.

[2] S. Soh and S. Rai, “Experimental Results on

Preprocessing of Path/Cut Terms in Sum of Disjoint

Products Techniques,” IEEE Trans. Reliability, vol.

R-42, no. 1, pp. 24-33, Mar 1993.

[3] R. E. Bryant, “Graph-Based Algorithms for Boolean

Function Manipulation,” IEEE Trans. Computers,

vol. C-35, no. 8, pp. 677-791, Aug 1986.

[4] Sy-Yen Kuo, Shyue-Kung Lu, and Fu-Min Yeh,

“Determining Terminal-Pair Reliability Based on

Edge Expansion Diagrams Using OBDD,” IEEE

Trans. Reliability, vol. 48, pp. 234-246, Sep 1999.

[5] Alberto Martelli, “A Gaussian Elimination Algorithm

for the Enumeration of Cut Sets in a Graph,”

Journal of A.C.M., vol. 23, pp. 58-73, Jan 1976.

[6] S. Arunkumar and S. H. Lee, “Enumeration of All

Minimal Cut-Sets for a Node Pair in a Graph,”

IEEE Trans. Reliability, vol. 28, pp. 51-55, Apr

1979.

[7] S. Tsukiyama, I. Shirakawa, and H. Ozaki, “An

Algorithm to Enumerate All Cutsets of a Graph in

Linear Time Per Cutset,” Journal of A.C.M., vol. 27,

no. 4, pp. 619-632, Oct 1980.

[8] U. Abel and R. Bicker, “Determination of All

Minimal Cut-Sets between a Vertex Pair in an

Undirected Graph,” IEEE Trans. Reliability, vol.

R-31, no. 2, pp. 167-171, Jun 1982.

[9] C. S. Sung and B. K. Yoo, “Simple Enumeration of

Minimal Cutsets Separating 2 Vertices in a Class of

Undirected Planar Graphs,” IEEE Trans. Reliability,

vol. R-41, no. 1, pp. 63-71, Mar 1992.

[10] D. R. Shier and D. E. Whited, “Algorithms for

Generating Minimal Cutsets by Inversion,” IEEE

Trans. Reliability, vol. 34, pp. 314-319, Oct 1985.

[11] D. R. Shier and D. E. Whited, “Iterative Algorithms

for Generating Minimal Cutsets in Directed

Graphs,” Networks, vol. 16, pp. 133-147, 1986.

[12] S. H. Ahmad, “Simple Enumeration of Minimal

Cutsets of Acyclic Directed Graph,” IEEE Trans.

Reliability, vol. R-37, no. 5, pp. 484-487, Dec 1988.

[13] L. Yan, and H. A. Taha, “A Recursive Approach for

Enumerating Minimal Cutsets in a Network,” IEEE

Trans. Reliability, vol. 43, pp. 383-388, Sep 1994.

[14] V. Sankar, V. C. Prasad, and K. S. Parakasa Rao,

“Comment on: Enumeration of All Minimal Cutsets

for a Node Pair in a Graph,” IEEE Trans. Reliability,

vol. R-42, no. 1, pp. 44-45, Mar 1993.

[15] M. O. Ball, “Computational Complexity of

Network Reliability Analysis: An overview,” IEEE

Trans. Reliability, vol. 35, pp. 230-239, Aug 1986.

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

