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Abstract 
 Local area network (LAN) will be a hybrid network 
that includes wired and wireless links together. 
Nonetheless, the wired hosts always take the most 
bandwidth and bring about the bandwidth allocation 
unfairness. This problem is caused by the flow control 
mechanism that is dominated by the round-trip time (RTT). 
Among the connections on a share link, the ones with 
shorter RTT tend to acquire bandwidth easier and exhaust 
the link bandwidth eventually. The RTT of wireless 
transmission is much longer than wired transmission. 
Therefore, the protocol that implements flow control 
mechanism such as TCP suffers a severe low performance 
problem on wireless links.  
 This paper proposed a new scheme called DFQ that 
works on gateway. It prevents the wired hosts from 
grabbing the bandwidth of share link too much and averts 
the unfairness or starvation of wireless connections. The 
DFQ has been implemented and test on Linux OS. The 
experiment result shows that DFQ is practicable and 
makes wireless network to work with wired network 
seamlessly. 
 
 
1. Introduction 
 

The revolution of Internet is going faster and faster. 
The core network transmission materials are changing 
from copper wire to optical fiber. Many Internet Service 
Providers (ISP) already offer Fiber-to-The-Home (FTTH) 
service. Meanwhile, a variety of mobile computers such 
as mobile phones, PDAs and notebooks equipped with 
wireless communication devices have become more 
popular. New transmission techniques such as Bluetooth, 
GSM and satellite are joining into Internet. There will be 
different transmission media (wired and wireless) 
conjunct together in the future network. To communicate 
with existing network devices, these innovative devices 
have to follow legacy network protocols. However, those 
protocols were developed before the invention of new 

network transmission techniques. New problems arise 
from the integration of these devices [1][2][12][13]. 

One of these problems is the unfair bandwidth 
allocation for wired and wireless connections that adopt 
the protocols with flow control supported such as TCP in 
a hybrid network. TCP treats packet loss as network 
congestion based on the assumption that the wired links 
are reliable. However this is not the case in wireless 
communication. The errant reaction for packet loss in the 
circumstance of high bit error rate makes the suffering of 
wireless TCP communication performance. A number of 
approaches have been invented to solve this problem 
[3][4][5][14]. These approaches focus on dealing with 
packet loss and enhanceing performance of TCP 
connections over heterogeneous networks.  

Nevertheless, it exists another problem that brings 
about the unfairness. The round trip time (RTT) also 
affects the flow control mechanism of TCP. For several 
connections among a link, the shorter the RTT of a 
connection is, the more bandwidth it tends to obtain form 
that link. Generally, RTT of wireless links are ten or more 
times greater than that of wired links, hence the wired 
connections will prevent the wireless connections from 
acquiring bandwidth. This paper proposed a mechanism 
named Dynamic Fair Queuing (DFQ) to solve this 
problem. 

The DFQ is designed as a resource manager that 
running on the gateway of a LAN. Unlike general fairness 
schedulers, it doesn’t allocate distinct bandwidth for every 
flow. Instead, it classifies network devices by RTT and 
prevents the starvation of bandwidth for devices which 
have long RTTs. By doing this, DFQ will adaptively 
manage resource fairly and efficiently. This paper 
considers that a hybrid local area network (LAN) includes 
wired and wireless links, so several wired and wireless 
devices are tested together. DFQ can identify wired and 
wireless devices and adjust bandwidth allocation 
dynamically to improve wireless transmission. 

This paper is organized as follows: section 2 gives a 
briefing of unfairness problems among hybrid networks. 
And the proposed solution DFQ is depicted in section 3. 
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The implementation details of DFQ are explained in 
section 4 and section 5 illustrates the experiment results 
of DFQ. Finally, a conclusion remark is given in section 
6. 
 
2. Background Overview 
 
 Typically, a hybrid LAN includes wired and 
wireless links. Ethernet and IEEE 802.11 represent two 
general standards respectively. The IEEE 802.11 
defines the data-link layer protocol for data 
communication equipments that interconnect via the “air”, 
like radio or infrared, in a local area network. The 
frequency of IEEE 802.11 is located in 900MHz and 
2.4GHz called ISM (Industrial, Scientific and Medical) 
band. The ISM band license is free; every one can use this 
frequency band under regulated power. In other words, 
the ISM band gets interference easily, so some strategies 
[10][11] were suggested to alleviate this problem. Still, 
high error bit rate and long RTT are two drawbacks of 
wireless links. These drawbacks mislead the flow control 
mechanism of TCP and cause the unfair bandwidth 
utilization. 
 TCP is a protocol that has been operating on 
Internet for a long time. It is one kind of 
connection-oriented and provides reliable connections. 
Basically, the TCP sender and the TCP receiver 
handshake during the data transmission time to guarantee 
the correctness of packet delivery. In order to control the 
flow rate, TCP brings in sliding windows concept, and 
contents two windows implements. One is the sliding 
window which is dominated by receiver. It keeps tracking 
the sequence number of transmitted TCP packets and 
adjusts its size as receiver’s desire. This window size 
specifies the maximum amount of data that sender can 
send out at a time before receiving the acknowledgement 
(the ACK packet) from receiver. Ideally, this size is equal 
to effective bandwidth multiplied by RTT. 

The other window is the congestion window (cwnd) 
which is dominated by sender. It specifies the number of 
packets that sender can send out at one time interval to 
control the sending rate of packets and to evade the 
network congestion. There are two phases of this window: 
slow start and congestion avoidance. When a new TCP 
connection starts, the congestion window size is 
initialized to be one packet. The congestion window will 
be increased by one for every acknowledged packet. This 
phase is called “slow start” in which congestion window 
is increased in exponential. 
 Eventually, the congestion window will reach the 
limitation of network bandwidth, and then intervening 
routers have to drip packets. To deal with packets loss, a 
slow start threshold size (ssthresh) is set. When cwnd is 
greater than this threshold, TCP changes from slow start 
to congestion avoidance phase. In this phase, cwnd is 

incremented by 1/cwnd for each acknowledged packet. 
The growth curve of cwnd will become smoother to avoid 
high packet drop rate [6]. 
 If there is any packet loss during the transmission, 
TCP will assume that the packet is dropped because of 
network congestion. In response, sender will decrease its 
cwnd by half and reduces packet-sending rate. If cwnd 
drops down below ssthresh, it changes to slow start mode 
again. Note that the ssthresh may also be dynamically 
changed on the subject of RTT. 
 Given that the cwnd grows as sender receive ACK 
from receiver, RTT has an effect on the growing speed of 
cwnd. Figure 1 shows the influence of RTT on cwnd. The 
long RTT is 3 times of the short RTT. Both ssthresh are 
set to be 32. 
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Figure 1. The effect of RTT to TCP cwnd  
 
 For the short RTT connection, it increases its cwnd 
more rapidly than long RTT connection does. Therefore, 
short RTT connections always exhaust bandwidth rapidly 
and lead unfairness to long RTT connections. As a hybrid 
network is considered, it could be worse than ever. 
Typically, the RTT in wireless link is ten times than that 
in wired link (Wired RTT≒300μs, Wireless RTT≒3ms). 
It goes without saying that wireless connections will 
suffer bandwidth starvation when competing with wired 
connections.  
 
3. DFQ scheduling scheme 
 

To provide a better quality of service for wireless 
connection, it is necessary to interpose between wired and 
wireless connections. In this thesis, we propose a new fair 
scheduler which called Dynamic Fair Queuing (DFQ) 
which works on the gateway to solve the unfairness 
problem over hybrid network. 
 Figure 2 illustrates where the DFQ installed in the 
gateway. 
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Figure 2. The place that DFQ installed in 

gateway 
 
 The DFQ is installed on the downlink of the 
gateway. It is because that most end-users play as clients 
in Internet and the downlink traffic is always more 
significant than uplink traffic. The main goal of DFQ is to 
allocate a reasonable bandwidth for each host. Figure 3 
shows the model of DFQ. 
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These components are explained as follows: 
Classifier: The Classifier classifies each packet and 

dispatches it to a proper queue 
according to the destination address of 
packet. 

Monitor: The Monitor statistics bandwidth usage 
of each queue and reports to the 
Controller periodically.  

Controller: Controller is the soul of DFQ. It 
commands Server to shoot or drop 
packets. The controller makes decision 
according to the information that other 
components report. 

Server: The Server decides the service order of 
queues and shoots or drops packets 
according to the Controller’s command. 

RTT detector: The function of RTT detector is to 
identify the host type that is wired or 
wireless device. It sends broadcast ping 
as a probe periodically. Every host in 

this LAN will reply with a ping 
acknowledgment. RTT detector can 
distinguish between wired and wireless 
links by the collected RTT. 

Shooter: It injects packets into the network and 
reports the length of packets to the 
Controller. 

Dropper: The Dropper drops packets and reports 
to the Controller. 

There are two flows in figure 3. One is packet flow 
that shows packet path in DFQ. There are four stages, 
1.classifier 2.queue 3.sever 4.dropper or shooter, which 
every packet will come over in DFQ. The other flow is 
control flow that shows relationship between each 
component. 
 When a packet arrived, the Classifier dispatches the 
packet to the proper queue. The Monitor will watch 
arrival rate of each queue and report the queue 
information to the Controller. Every queue is linked like a 
circle. The Server takes packet from each queue by means 
of a round robin principle. The Controller will make a 
decision and tell Server to shoot or drop the packet. The 
Dropper and Shooter inform the Controller if they drop or 
shoot any packet. The Controller gathers all necessary 
information from other components and makes decision 
by these data. 
 The algorithm for the Controller to make decision 
is quite simple. For each packet of wired connection, the 
controller drops it with the probability Pd.  
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Where Bwireless and Bwired represent the total allocated 
bandwidth for wireless and wired connection 
correspondingly. They are observed and updated by the 
Monitor at regular intervals. The RTTwireless and RTTwired 
are the round trip time discovered by the RTT detector. 
We assume that the receiving buffers are the same for 
wired and wireless devices. Hence DFQ considers the 
bandwidth inversely proportional to RTT. 
 
4. Implementation of DFQ 
 

This paper considers the implementation of DFQ on 
Linux. Linux is an open source operating system thus 
suites for experimental testing. Figure 4 explains the 
network architecture in Linux. 
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Figure 4. Linux network architecture 

  
When the network interface card receives a packet, 

it triggers a hardware interrupt and OS invokes the 
interrupt service routine that will enqueue the packet to 
backlog queue in Linux kernel. The Linux kernel will 
check the backlog queue periodically. If there are any 
packets in the backlog queue, they will be brought to 
upper layers. In the case of an IP packet, the kernel will 
pass it to Ip_rcv routine. The Ip_rcv routine determines 
the packet should be sent to upper layer or to Ip_forward 
routine according to this packet is for local host or for 
other host, respectively. The Ip_forward routine looks up 
the routing table and determines the output network 
interface that this packet should go and pass it to 
Ip_queue_xmit routine. The Ip_queue_xmit builds IP 
header for the packet and transfer it to Dev_queue_xmit 
routine. The Dev_queue_xmit routine is one of Linux core 
network procedure. In this procedure, the Linux kernel 
offers an interface to add different schedulers called 
queuing discipline. The default output queue, FIFO queue, 
can be replaced by other user-specified queuing discipline. 
Finally, this packet is sent to the network device queue 
and the network interface card will deliver it to the next 
hop.  

Mainly, DFQ invokes Dev_queue_xmit routine to 
add its redefined queuing discipline. In Linux kernel, 
there are some queuing discipline residing in the directory 
net/sched/. The Linux queuing discipline is a nested 
structure. There are three kinds of traffic control elements 
that form building blocks: 
z Queuing discipline 
z Classes 
z Filter / Policer 

The default queuing discipline is FIFO queue in 
Linux. 

 

 
Figure 5. FIFO queuing discipline 

 
If queuing discipline needs to carry out more 

complex functions, extra classifiers can be added and 
attached with another queuing discipline. Every building 
block can contain other building blocks. Figure 6 shows a 
more complex queuing discipline. 

 

 
Figure 6. A queuing discipline contain classifier 

and other queuing discipline 
 
The queuing discipline operation and classifier 

structure are defined in include/net/pkt_sched.h. The 
queuing discipline should provide the following set of 
functions to control operation: 

enqueue、dequeue、requeue、drop、init、change、
reset、destroy、dump 

The classifier should provide the following set of 
functions to control operation: 

graft、leaf、get、put、change、delete、walk; 
The detail definitions of these operations are 

described in [7]. 
 To add a new queuing discipline into Linux kernel, 
the user-specified functions for queuing discipline and 
classifier should be declared in a struct Qdisc_ops. Routin 
register_qdisc is invoked to register the struct Qdisc_ops 
and the unregister_qdisc is for removing a queuing 
discipline from the kernel [8]. 

To operate the DFQ, we also need a program named 
tc. The tc program can manipulate (add, del or change 
etc…) the kernel traffic control elements. It is one part of 
iproute2 project [9]. 
 
5. Experiment Results 
 
5.1. Experimental Platform 
 
 Figure 7 displays our experiment platform. The 
Mouse is the gateway where DFQ is implemented in. 
There are 2 wired hosts Dragon and Rabbit and 3 wireless 
hosts MS1, MS2 and MS3 that form a hybrid network. 
These hosts act as clients and the rest of 3 hosts Bull, 
Snake and Tiger act as the servers. 
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Figure 7. The experiment platform 
 
 The platform contains three 100MBps LANs that 
are connected by a gateway running Linux OS with kernel 
2.4.17. The wireless devices are IEEE 802.11b network 
interface cards with 11Mbps maximum data transmission 
rate and 7.5Mbps efficient data transmission rate. There 
are two kinds of mobile stations: one is laptop pc (MS3); 
the other two are iPAQ PDAs (MS1 and MS2). We use 
the pttcp tool to track the bandwidth allocation. The pttcp 
records the bandwidth usage of every connection 
periodically and the time interval we set here is 5 seconds. 
 
5.2. Effectiveness of DFQ 
 
 In order to verify the effectiveness of DFQ, we 
measured the throughput of wireless connection while the 
wired connection acts. 
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Figure 8. 1Wired connection & 1Wireless connection 

(Without DFQ) 
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Figure 9. 1 Wired connection & 1Wireless connection 

(With DFQ) 
 

Firstly, we test one wired connection and one 
wireless connection which are Bull to Dragon and Snake 
to MS1, correspondingly. As figure 8 shows, the wired 
host grabs most of the bandwidth. The wireless 
connection just gets about 0.55Mbps bandwidth even 
though its maximum bandwidth of TCP flow is about 
4Mbps theoretically. Figure 9 demonstrates the 
effectiveness of DFQ. The wired bandwidth is decreased 
to 40Mbps and the wireless bandwidth is pulled up to 
1.8Mbps. The bandwidth of wireless connection has about 
300% improvement while the wired connection can still 
maintain 40% bandwidth allocation. 

Secondly, we test two wired connections and two 
wireless connections. We placed these two servers (Snake 
and Tiger) at different LAN segments to verify the 
fairness with different sources. 
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Figure 10. 2 Wired connections & 2Wireless 

connections (Without DFQ) 
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Figure 11. 2 Wired connections & 2Wireless 

connections (With DFQ) 
 

Figure 10 indicates that wired connection obtains 
most bandwidth as well. Figure 11 illustrates that DFQ 
successfully improves the wireless transmission and does 
not induce any unfairness. Note that at the time 6, we 
close the connection of MS 1 and start a new TCP session 
for it. The congestion window of MS 1 will be set to one 
packet at that time. By doing this, we can observe the 
change of bandwidth allocation between wired and 
wireless connections. The results show that the total 
bandwidth of wireless connections still retains at a certain 
level. Due to the lack of space, the scenario of multiple 
wired and wireless connections is not shown here. Their 
experimental results are consistent with experiment 2. The 
total bandwidth of wired connections is about 40Mbps 
while the total bandwidth of wireless connections is about 
2Mbps. The fairness among connections is sustained in 
these cases. 
 
5.3. Trade-off of DFQ 
 
 The penalty of DFQ protecting wireless connection 
bandwidth is the degradation of total link bandwidth 
utilization. However, consider a scenario that a wireless 
connection is trying to deliver a 1 Mbytes mail when 
wired connection is transferring a 100 Mbytes file. The 
ordinary transmission time is 11.4 and 12.5 seconds for 
wired and wireless connections, respectively. While with 
DFQ, the transmission time becomes 13.1 and 4.4 
seconds, as the link bandwidth utilization decrease from 
65% to 62%. The transmission time of wireless 
connection is reduced significantly whereas the influence 
of wired connection and link bandwidth utilization is 
minor. It is especially true when most wireless 
connections deliver small bulks of data. 
 
6. Conclusion and Future Work 
 
 This paper proposed a new scheme called DFQ that 
improves the wireless communication. It is implemented 

on gateway to protect wireless connections from wired 
connections and solve the unfairness problem between 
them. The experiment results show that DFQ is feasible 
and make the IEEE 802.11 network working with 
Ethernet seamless. In the future, the DFQ will be 
extended to collaborate with other proposed mechanisms 
[3][4][5][14] over heterogeneous network. Meanwhile, 
the authors are studying in offering a fair bandwidth 
allocation for wireless connection with more efficient link 
bandwidth. Different bandwidth allocation strategies can 
be applied and are still an open issue. 
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