

Dynamic Fair Queuing (DFQ): A Novel Fair Scheduler Improving Wireless

Transmission over Hybrid LANs

Ce-Kuen Shieh, Yu-Ben Miao, Ming-Qi Shieh, Wen-Shyang Hwang
Institute of Electrical Engineering, National Cheng Kung University, Taiwan, R.O.C.

{ckshieh, ybmiau, mingchi }@hpds.ee.ncku.edu.tw, wshwang@cc.kuas.edu.tw

Abstract
 Local area network (LAN) will be a hybrid network
that includes wired and wireless links together.
Nonetheless, the wired hosts always take the most
bandwidth and bring about the bandwidth allocation
unfairness. This problem is caused by the flow control
mechanism that is dominated by the round-trip time (RTT).
Among the connections on a share link, the ones with
shorter RTT tend to acquire bandwidth easier and exhaust
the link bandwidth eventually. The RTT of wireless
transmission is much longer than wired transmission.
Therefore, the protocol that implements flow control
mechanism such as TCP suffers a severe low performance
problem on wireless links.
 This paper proposed a new scheme called DFQ that
works on gateway. It prevents the wired hosts from
grabbing the bandwidth of share link too much and averts
the unfairness or starvation of wireless connections. The
DFQ has been implemented and test on Linux OS. The
experiment result shows that DFQ is practicable and
makes wireless network to work with wired network
seamlessly.

1. Introduction

The revolution of Internet is going faster and faster.
The core network transmission materials are changing
from copper wire to optical fiber. Many Internet Service
Providers (ISP) already offer Fiber-to-The-Home (FTTH)
service. Meanwhile, a variety of mobile computers such
as mobile phones, PDAs and notebooks equipped with
wireless communication devices have become more
popular. New transmission techniques such as Bluetooth,
GSM and satellite are joining into Internet. There will be
different transmission media (wired and wireless)
conjunct together in the future network. To communicate
with existing network devices, these innovative devices
have to follow legacy network protocols. However, those
protocols were developed before the invention of new

network transmission techniques. New problems arise
from the integration of these devices [1][2][12][13].

One of these problems is the unfair bandwidth
allocation for wired and wireless connections that adopt
the protocols with flow control supported such as TCP in
a hybrid network. TCP treats packet loss as network
congestion based on the assumption that the wired links
are reliable. However this is not the case in wireless
communication. The errant reaction for packet loss in the
circumstance of high bit error rate makes the suffering of
wireless TCP communication performance. A number of
approaches have been invented to solve this problem
[3][4][5][14]. These approaches focus on dealing with
packet loss and enhanceing performance of TCP
connections over heterogeneous networks.

Nevertheless, it exists another problem that brings
about the unfairness. The round trip time (RTT) also
affects the flow control mechanism of TCP. For several
connections among a link, the shorter the RTT of a
connection is, the more bandwidth it tends to obtain form
that link. Generally, RTT of wireless links are ten or more
times greater than that of wired links, hence the wired
connections will prevent the wireless connections from
acquiring bandwidth. This paper proposed a mechanism
named Dynamic Fair Queuing (DFQ) to solve this
problem.

The DFQ is designed as a resource manager that
running on the gateway of a LAN. Unlike general fairness
schedulers, it doesn’t allocate distinct bandwidth for every
flow. Instead, it classifies network devices by RTT and
prevents the starvation of bandwidth for devices which
have long RTTs. By doing this, DFQ will adaptively
manage resource fairly and efficiently. This paper
considers that a hybrid local area network (LAN) includes
wired and wireless links, so several wired and wireless
devices are tested together. DFQ can identify wired and
wireless devices and adjust bandwidth allocation
dynamically to improve wireless transmission.

This paper is organized as follows: section 2 gives a
briefing of unfairness problems among hybrid networks.
And the proposed solution DFQ is depicted in section 3.

0-7695-1961-X/03 $17.00 (c) 2003 IEEE

The implementation details of DFQ are explained in
section 4 and section 5 illustrates the experiment results
of DFQ. Finally, a conclusion remark is given in section
6.

2. Background Overview

 Typically, a hybrid LAN includes wired and
wireless links. Ethernet and IEEE 802.11 represent two
general standards respectively. The IEEE 802.11
defines the data-link layer protocol for data
communication equipments that interconnect via the “air”,
like radio or infrared, in a local area network. The
frequency of IEEE 802.11 is located in 900MHz and
2.4GHz called ISM (Industrial, Scientific and Medical)
band. The ISM band license is free; every one can use this
frequency band under regulated power. In other words,
the ISM band gets interference easily, so some strategies
[10][11] were suggested to alleviate this problem. Still,
high error bit rate and long RTT are two drawbacks of
wireless links. These drawbacks mislead the flow control
mechanism of TCP and cause the unfair bandwidth
utilization.
 TCP is a protocol that has been operating on
Internet for a long time. It is one kind of
connection-oriented and provides reliable connections.
Basically, the TCP sender and the TCP receiver
handshake during the data transmission time to guarantee
the correctness of packet delivery. In order to control the
flow rate, TCP brings in sliding windows concept, and
contents two windows implements. One is the sliding
window which is dominated by receiver. It keeps tracking
the sequence number of transmitted TCP packets and
adjusts its size as receiver’s desire. This window size
specifies the maximum amount of data that sender can
send out at a time before receiving the acknowledgement
(the ACK packet) from receiver. Ideally, this size is equal
to effective bandwidth multiplied by RTT.

The other window is the congestion window (cwnd)
which is dominated by sender. It specifies the number of
packets that sender can send out at one time interval to
control the sending rate of packets and to evade the
network congestion. There are two phases of this window:
slow start and congestion avoidance. When a new TCP
connection starts, the congestion window size is
initialized to be one packet. The congestion window will
be increased by one for every acknowledged packet. This
phase is called “slow start” in which congestion window
is increased in exponential.
 Eventually, the congestion window will reach the
limitation of network bandwidth, and then intervening
routers have to drip packets. To deal with packets loss, a
slow start threshold size (ssthresh) is set. When cwnd is
greater than this threshold, TCP changes from slow start
to congestion avoidance phase. In this phase, cwnd is

incremented by 1/cwnd for each acknowledged packet.
The growth curve of cwnd will become smoother to avoid
high packet drop rate [6].
 If there is any packet loss during the transmission,
TCP will assume that the packet is dropped because of
network congestion. In response, sender will decrease its
cwnd by half and reduces packet-sending rate. If cwnd
drops down below ssthresh, it changes to slow start mode
again. Note that the ssthresh may also be dynamically
changed on the subject of RTT.
 Given that the cwnd grows as sender receive ACK
from receiver, RTT has an effect on the growing speed of
cwnd. Figure 1 shows the influence of RTT on cwnd. The
long RTT is 3 times of the short RTT. Both ssthresh are
set to be 32.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

time(ms)

cw
nd

RTT:short
RTT:long

Figure 1. The effect of RTT to TCP cwnd

 For the short RTT connection, it increases its cwnd
more rapidly than long RTT connection does. Therefore,
short RTT connections always exhaust bandwidth rapidly
and lead unfairness to long RTT connections. As a hybrid
network is considered, it could be worse than ever.
Typically, the RTT in wireless link is ten times than that
in wired link (Wired RTT≒300μs, Wireless RTT≒3ms).
It goes without saying that wireless connections will
suffer bandwidth starvation when competing with wired
connections.

3. DFQ scheduling scheme

To provide a better quality of service for wireless
connection, it is necessary to interpose between wired and
wireless connections. In this thesis, we propose a new fair
scheduler which called Dynamic Fair Queuing (DFQ)
which works on the gateway to solve the unfairness
problem over hybrid network.
 Figure 2 illustrates where the DFQ installed in the
gateway.

D F Q

G a t e w a y

D o w n l i n k

U p l i n k

Figure 2. The place that DFQ installed in

gateway

 The DFQ is installed on the downlink of the
gateway. It is because that most end-users play as clients
in Internet and the downlink traffic is always more
significant than uplink traffic. The main goal of DFQ is to
allocate a reasonable bandwidth for each host. Figure 3
shows the model of DFQ.

Dropper

Classifier

Monito
r

Shooter

Server

Controller

Command

RTT
Detector

Drop

ShootPacket
Dispatch

Figure 3. DFQ architecture

These components are explained as follows:
Classifier: The Classifier classifies each packet and

dispatches it to a proper queue
according to the destination address of
packet.

Monitor: The Monitor statistics bandwidth usage
of each queue and reports to the
Controller periodically.

Controller: Controller is the soul of DFQ. It
commands Server to shoot or drop
packets. The controller makes decision
according to the information that other
components report.

Server: The Server decides the service order of
queues and shoots or drops packets
according to the Controller’s command.

RTT detector: The function of RTT detector is to
identify the host type that is wired or
wireless device. It sends broadcast ping
as a probe periodically. Every host in

this LAN will reply with a ping
acknowledgment. RTT detector can
distinguish between wired and wireless
links by the collected RTT.

Shooter: It injects packets into the network and
reports the length of packets to the
Controller.

Dropper: The Dropper drops packets and reports
to the Controller.

There are two flows in figure 3. One is packet flow
that shows packet path in DFQ. There are four stages,
1.classifier 2.queue 3.sever 4.dropper or shooter, which
every packet will come over in DFQ. The other flow is
control flow that shows relationship between each
component.
 When a packet arrived, the Classifier dispatches the
packet to the proper queue. The Monitor will watch
arrival rate of each queue and report the queue
information to the Controller. Every queue is linked like a
circle. The Server takes packet from each queue by means
of a round robin principle. The Controller will make a
decision and tell Server to shoot or drop the packet. The
Dropper and Shooter inform the Controller if they drop or
shoot any packet. The Controller gathers all necessary
information from other components and makes decision
by these data.
 The algorithm for the Controller to make decision
is quite simple. For each packet of wired connection, the
controller drops it with the probability Pd.

wired

wireless

wired

wireless
d RTT

RTT
B

BP ×−=1

Where Bwireless and Bwired represent the total allocated
bandwidth for wireless and wired connection
correspondingly. They are observed and updated by the
Monitor at regular intervals. The RTTwireless and RTTwired
are the round trip time discovered by the RTT detector.
We assume that the receiving buffers are the same for
wired and wireless devices. Hence DFQ considers the
bandwidth inversely proportional to RTT.

4. Implementation of DFQ

This paper considers the implementation of DFQ on
Linux. Linux is an open source operating system thus
suites for experimental testing. Figure 4 explains the
network architecture in Linux.

Ip_rcv() Ip_forward()

Routing(
)

Ip_queue_xmit
()

Ip_local_deliver()

Layer 3

Ip_send()

NET_BH

Layer 2

Netif_rx()

Backlog

Dev_queue_xmit()

Hard_start_xmit()

Output
queue

Network Interface Card Network Interface CardLayer 1

Higher Layer

Figure 4. Linux network architecture

When the network interface card receives a packet,

it triggers a hardware interrupt and OS invokes the
interrupt service routine that will enqueue the packet to
backlog queue in Linux kernel. The Linux kernel will
check the backlog queue periodically. If there are any
packets in the backlog queue, they will be brought to
upper layers. In the case of an IP packet, the kernel will
pass it to Ip_rcv routine. The Ip_rcv routine determines
the packet should be sent to upper layer or to Ip_forward
routine according to this packet is for local host or for
other host, respectively. The Ip_forward routine looks up
the routing table and determines the output network
interface that this packet should go and pass it to
Ip_queue_xmit routine. The Ip_queue_xmit builds IP
header for the packet and transfer it to Dev_queue_xmit
routine. The Dev_queue_xmit routine is one of Linux core
network procedure. In this procedure, the Linux kernel
offers an interface to add different schedulers called
queuing discipline. The default output queue, FIFO queue,
can be replaced by other user-specified queuing discipline.
Finally, this packet is sent to the network device queue
and the network interface card will deliver it to the next
hop.

Mainly, DFQ invokes Dev_queue_xmit routine to
add its redefined queuing discipline. In Linux kernel,
there are some queuing discipline residing in the directory
net/sched/. The Linux queuing discipline is a nested
structure. There are three kinds of traffic control elements
that form building blocks:
z Queuing discipline
z Classes
z Filter / Policer

The default queuing discipline is FIFO queue in
Linux.

Figure 5. FIFO queuing discipline

If queuing discipline needs to carry out more

complex functions, extra classifiers can be added and
attached with another queuing discipline. Every building
block can contain other building blocks. Figure 6 shows a
more complex queuing discipline.

Figure 6. A queuing discipline contain classifier

and other queuing discipline

The queuing discipline operation and classifier

structure are defined in include/net/pkt_sched.h. The
queuing discipline should provide the following set of
functions to control operation:

enqueue、dequeue、requeue、drop、init、change、
reset、destroy、dump

The classifier should provide the following set of
functions to control operation:

graft、leaf、get、put、change、delete、walk;
The detail definitions of these operations are

described in [7].
 To add a new queuing discipline into Linux kernel,
the user-specified functions for queuing discipline and
classifier should be declared in a struct Qdisc_ops. Routin
register_qdisc is invoked to register the struct Qdisc_ops
and the unregister_qdisc is for removing a queuing
discipline from the kernel [8].

To operate the DFQ, we also need a program named
tc. The tc program can manipulate (add, del or change
etc…) the kernel traffic control elements. It is one part of
iproute2 project [9].

5. Experiment Results

5.1. Experimental Platform

 Figure 7 displays our experiment platform. The
Mouse is the gateway where DFQ is implemented in.
There are 2 wired hosts Dragon and Rabbit and 3 wireless
hosts MS1, MS2 and MS3 that form a hybrid network.
These hosts act as clients and the rest of 3 hosts Bull,
Snake and Tiger act as the servers.

Snake
200.2

Bull
200.1

Rabbit
100.11

Dragon
100.12

Mouse
(Linux Gateway Intel 900Mhz

with DFQ)

SD

1A-001
Access
Point

MS3 MS2
MS1

Ethernet 100Mbps

Ethernet 100Mbps

Tiger
210.3

Linux Intel 550MHz Linux AMD 350MHz Linux Intel 350MHz

Ethernet 100Mbps

Linux Intel 800MHz Linux Intel 300MHz

Linux iPAQ 3600
Linux iPAQ 3600Linux Intel 900MHz

LAN1

LAN2
LAN3

Figure 7. The experiment platform

 The platform contains three 100MBps LANs that
are connected by a gateway running Linux OS with kernel
2.4.17. The wireless devices are IEEE 802.11b network
interface cards with 11Mbps maximum data transmission
rate and 7.5Mbps efficient data transmission rate. There
are two kinds of mobile stations: one is laptop pc (MS3);
the other two are iPAQ PDAs (MS1 and MS2). We use
the pttcp tool to track the bandwidth allocation. The pttcp
records the bandwidth usage of every connection
periodically and the time interval we set here is 5 seconds.

5.2. Effectiveness of DFQ

 In order to verify the effectiveness of DFQ, we
measured the throughput of wireless connection while the
wired connection acts.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 Time (5 sec)

W
ire

d
co

nn
ec

tio
n

ba
nd

w
id

th
 (M

bp
s)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

W
ire

le
ss

 c
on

ne
ct

io
n

ba
nd

w
id

th
 (M

bp
s)

Dragon<->Bull MS1<->Snake

Figure 8. 1Wired connection & 1Wireless connection

(Without DFQ)

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 Time (5 sec)

W
ire

d
co

nn
ec

tio
n

ba
nd

w
id

th
(M

bp
s)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

W
ire

le
ss

 c
on

ne
ct

io
n

ba
nd

w
id

th
 (M

bp
s)

Dragon<->Bull MS1<->Snake

Figure 9. 1 Wired connection & 1Wireless connection

(With DFQ)

Firstly, we test one wired connection and one
wireless connection which are Bull to Dragon and Snake
to MS1, correspondingly. As figure 8 shows, the wired
host grabs most of the bandwidth. The wireless
connection just gets about 0.55Mbps bandwidth even
though its maximum bandwidth of TCP flow is about
4Mbps theoretically. Figure 9 demonstrates the
effectiveness of DFQ. The wired bandwidth is decreased
to 40Mbps and the wireless bandwidth is pulled up to
1.8Mbps. The bandwidth of wireless connection has about
300% improvement while the wired connection can still
maintain 40% bandwidth allocation.

Secondly, we test two wired connections and two
wireless connections. We placed these two servers (Snake
and Tiger) at different LAN segments to verify the
fairness with different sources.

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 Time (5 sec)

W
ire

d
co

nn
ec

tio
n

ba
nd

w
id

th
 (M

bp
s)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

W
ire

le
ss

 c
on

ne
ct

in
ba

nd
w

id
th

 (M
bp

s)

Dragon<->Snake Rabbit<->Tiger
MS1<->Snake MS3<->Tiger

Figure 10. 2 Wired connections & 2Wireless

connections (Without DFQ)

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 Time (5 sec)

W
ire

d
co

nn
ec

tio
n

ba
nd

w
id

th
(M

bp
s)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

W
ire

le
ss

 c
on

ne
ct

io
n

ba
nd

w
id

th
 (M

bp
s)

Dragon<->Snake Rabbit<->Tiger
MS1<->Snake MS3<->Tiger

Figure 11. 2 Wired connections & 2Wireless

connections (With DFQ)

Figure 10 indicates that wired connection obtains
most bandwidth as well. Figure 11 illustrates that DFQ
successfully improves the wireless transmission and does
not induce any unfairness. Note that at the time 6, we
close the connection of MS 1 and start a new TCP session
for it. The congestion window of MS 1 will be set to one
packet at that time. By doing this, we can observe the
change of bandwidth allocation between wired and
wireless connections. The results show that the total
bandwidth of wireless connections still retains at a certain
level. Due to the lack of space, the scenario of multiple
wired and wireless connections is not shown here. Their
experimental results are consistent with experiment 2. The
total bandwidth of wired connections is about 40Mbps
while the total bandwidth of wireless connections is about
2Mbps. The fairness among connections is sustained in
these cases.

5.3. Trade-off of DFQ

 The penalty of DFQ protecting wireless connection
bandwidth is the degradation of total link bandwidth
utilization. However, consider a scenario that a wireless
connection is trying to deliver a 1 Mbytes mail when
wired connection is transferring a 100 Mbytes file. The
ordinary transmission time is 11.4 and 12.5 seconds for
wired and wireless connections, respectively. While with
DFQ, the transmission time becomes 13.1 and 4.4
seconds, as the link bandwidth utilization decrease from
65% to 62%. The transmission time of wireless
connection is reduced significantly whereas the influence
of wired connection and link bandwidth utilization is
minor. It is especially true when most wireless
connections deliver small bulks of data.

6. Conclusion and Future Work

 This paper proposed a new scheme called DFQ that
improves the wireless communication. It is implemented

on gateway to protect wireless connections from wired
connections and solve the unfairness problem between
them. The experiment results show that DFQ is feasible
and make the IEEE 802.11 network working with
Ethernet seamless. In the future, the DFQ will be
extended to collaborate with other proposed mechanisms
[3][4][5][14] over heterogeneous network. Meanwhile,
the authors are studying in offering a fair bandwidth
allocation for wireless connection with more efficient link
bandwidth. Different bandwidth allocation strategies can
be applied and are still an open issue.

Acknowledgement: This project is sponsored by
NSC-91-2213-E-006-054.

Reference
[1]. Fu-Ming Tsou, Hong-Bin Chiou, Zsehong Tasi, “WDFQ :

An Efficient Traffic Scheduler with Fair Bandwidth Sharing
for Wireless Multimedia Services,“ IEICE TRANS.
Communications JANUARY 2000

[2]. Songwu Lu, Vaduvur Bharghavan, R. Srikant, “Fair
Scheduling in Wireless Packet Networks,” IEEE/ACM
TRANSACTIONS ON NETWORKING, VOL. 7 NO. 4,
Auguest 1999

[3]. Jian-Hao and Kwan L. Yeung,“FDA: A Novel Base Station
Flow Control Scheme for TCP over Heterogeneous
Networkings,” IEEE INFOCOM 2001

[4]. H. Balakrishnan, S. Seshan, and R.H. Katz, “Improving
Reliable Transport and Handoff Performance in Cellular
Wireless Networks.” ACM Wireless Networks, Vol.1(4),
December 1995

[5]. E. Ayanoglu, S. Paul, et.al, “A Link-Layer Protocol for
Wireless Networks,” ACM/Baltzer Wireless Networks
Journal, Vol.1, Page 47-60, February 1995

[6]. V. Jacobson, “Congestion Avoidance and Control.” In Proc.
ACM SIGCOMM 88, August 1988

[7]. Werner Almesberger, “Linux Network Traffic Control
-Implementation Overview,” April 23, 1999

[8]. Saravanan Radhakrishnan, “Linux-Advanced Networking
Overview Version1,” August 22, 1999

[9]. Bert Hubert, Gregory Maxwell, “Linux Advanced Routing
& Traffic Control Howto,” December 17, 2001

[10]. Christine Fragouli, Vijay Sivaraman, Mani B. Srivastava,
“Controlled Multimedia Wireless Link Sharing via
Enhanced Class-Based Queuing with
Channel-State-Dependent Packet Scheduling,” IEEE 1998.

[11]. Pravin Bhagwat, Partha Bhattacharya, Arvind Krishna and
Satish K. Tripathi, “Using channel state dependent packet
scheduling to improve TCP throughput over wireless
LANs,” Wireless Networks 3 (1997) Page 91-102

[12]. Z. D. Shelby et al, “Wireless IPv6 Networking – WINE,”
IST Mobile communicate, Summit 2000, Galway, Ireland,
Oct. 2000,Page 575-80.

[13]. WINE Project http://www.vtt.fi/ele/projects/wine
[14]. Claudio Casetti, Saverio Mascolo, “TCP Westwood:

Congestion Window Control Using Bandwidth Estimation,”
IEEE 2001.

http://www.vtt.fi/ele/projects/wine

	Abstract
	3. DFQ scheduling scheme
	Implementation of DFQ

	5. Experiment Results
	5.1. Experimental Platform
	5.2. Effectiveness of DFQ
	5.3. Trade-off of DFQ
	The penalty of DFQ protecting wireless connection bandwidth is the degradation of total link bandwidth utilization. However, consider a scenario that a wireless connection is trying to deliver a 1 Mbytes mail when wired connection is transferring a 100 M

	6. Conclusion and Future Work

