
MUM: a Middleware for the Provisioning of
Continuous Services to Mobile Users

Paolo Bellavista, Antonio Corradi, Luca Foschini
Dipartimento di Elettronica Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 – 40136 Bologna – ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073

{pbellavista, acorradi, lfoschini}@deis.unibo.it

Abstract

Advances in wireless solutions and portable devices
are enabling new challenging service scenarios where
mobile users are willing to access ubiquitous and con-
tinuous services. This calls for novel middleware ca-
pable of tailoring service contents to client character-
istics and of following client movements at provision
time. The paper proposes MUM, a dynamic and flexi-
ble middleware to support continuous services to mo-
bile users in ubiquitous scenarios. MUM performs
service configuration by dynamically distributing mid-
dleware components to intermediate nodes along the
client-server path and provides service session conti-
nuity by automatically migrating the session state in
response to user movements during service provision-
ing. MUM exploits mobile agents to move both mid-
dleware components and session state, where and
when needed, while it allows service developers to
continue using the traditional client/server model for
MUM-based application components. In addition, the
paper presents the implementation of a Video-on-
Demand service on top of MUM, with the goal of veri-
fying the feasibility of our approach when applied to
the challenging multimedia application area. First
experimental results show that, notwithstanding the
application-level approach, the MUM configura-
tion/session migration times are compatible even with
the strict requirements imposed by multimedia distri-
bution over the best-effort Internet.

1. Introduction

The diffusion of networked computing environments at
home/office/open public spaces and the proliferation of
wireless-enabled portable devices, e.g., palm-sized
computers, cellular phones and pagers, identify new
scenarios of service provisioning where mobile users
are willing to have ubiquitous and continuous access to

both traditional and novel context-aware Internet ser-
vices. This suggests not only to provide mobile users
with seamless service accessibility independently of
their movements and of their current access points to
the network, but also to consider the strict limitations
on the hardware/software characteristics of their cur-
rent access terminals (together with their wide hetero-
geneity) [1].

The above issues are motivating novel distributed
infrastructures to support service provisioning and
tailoring at runtime, by involving the active participa-
tion not only of service end-points but also of interme-
diate nodes along the path between clients and servers,
especially on the nodes at the wireless-wired network
edges [2]. Middleware support over intermediate nodes
is a strategy that have demonstrated to be capable of
flexibly providing monitoring, control and adaptation
of service flows, without leaving the whole manage-
ment burden to either client or server end-nodes [3].

An active service is the result of the cooperation of
interworking components distributed along the Service
Path (SP), between client and server, and traversed by
service flows. For instance, in the multimedia applica-
tion domain, some recent research projects are propos-
ing solutions where service components are distributed
on the client, on the server and along the SP, to down-
scale Video on Demand (VoD) flows at the optimal
node of the multimedia distribution tree, depending on
both network resource availability and the profiles of
served clients [4].

In particular, the paper claims the relevance of ac-
tive middleware infrastructures in ubiquitous comput-
ing scenarios, mainly to support service configuration,
i.e., the tailoring of provided levels of Quality of Ser-
vice (QoS) depending on resource availability and cli-
ent profile of characteristics, and service session conti-
nuity, i.e., the maintenance of session state notwith-
standing user movements (also between different ac-
cess points, connectivity technologies and access ter-

minals) during service provisioning. We call continu-
ous service an application service which supports both
service configuration and session continuity.

Design and implementation of continuous services
in ubiquitous environments is extremely complex,
since it must address many unsolved issues such as
provision-time client mobility and service reconfigura-
tion in response to environment variations, in a very
heterogeneous (for client characteristics, employed
wireless technologies, changing availability of local
resources) deployment scenario. This complexity can
significantly slow down service development and dif-
fusion, thus reducing the potential grow of the ubiqui-
tous service market. For the above reasons, we claim
the need of application-level middleware to simplify
the design and deployment of continuous services. The
application level is recognized as suitable to provide
flexible solutions to some crucial mobility issues, such
as application-specific caching/filtering, security, and
interoperability. In fact, an application-level middle-
ware can relevantly benefit from the availability of
standard mechanisms, solutions and tools at this ab-
straction layer [5].

In particular, the paper proposes the Mobile agent-
based Ubiquitous multimedia Middleware (MUM*), a
dynamic and flexible infrastructure to transparently
support service configuration and session continuity
for ubiquitous environments. MUM performs service
configuration by dynamically distributing middleware
components to intermediate nodes along the SP, and
provides session continuity by automatically migrating
the reached session state where corresponding users
move to during service provisioning. MUM is built on
top of the SOMA platform and exploits Mobile Agents
(MA) to move both middleware components and ses-
sion state, where and when needed [6]. However,
MUM allows service developers to continue using the
traditional client/server model in the design and im-
plementation of MUM-based application components.

Finally, the paper presents a VoD service for ubiq-
uitous environments built on top of MUM. We verify
the MUM support in a very challenging application
domain, the multimedia distribution, to extensively
check the feasibility of the application-level approach.
The first experimental results coming from VoD ser-
vice deployment show that MUM configura-
tion/session migration times are compatible even with
the requirements imposed by VoD distribution over the
Internet.

* Additional details and the code of the MUM prototype are available
at: http://www.lia.deis.unibo.it/Research/MUM/.

2. Service Configuration and Session Con-
tinuity Issues

For several reasons middleware for continuous ser-
vices should include service configuration and session
continuity as core functionalities. In the following we
will discuss and analyze in detail these reasons to-
gether with some associated issues, presenting then the
related work in the field.

Service configuration is the first fundamental step
to address the heterogeneity of different clients as well
as user mobility. For instance, consider the case of one
user, Alice, watching the lesson, which she has missed
in class in the morning, on her workstation at home.
She suddenly remembers her appointment at the library
to finish the group work. In the library a WiFi connec-
tion is available, but the video playing component is
not installed on her PDA for memory sake. Hence, the
appropriate player must be downloaded and installed
on the PDA. In addition, depending on her PDA pro-
file, it is necessary to include another component in the
SP to suitably downscale the multimedia flow. This
example shows that in highly heterogeneous domains
not all components can be assumed already present and
configured on all the nodes participating to a certain
SP. In this sense, the service configuration facility
saves time-consuming and error-prone set up opera-
tions by automating component downloading and con-
figuration depending on client profiles.

Service session continuity permits to keep up and
move service state when nomadic or roaming move-
ments happen. Nomadic users access their services
from wired terminals and, when they decide to log off,
the infrastructure records their session state. Later,
logging again on the same/another terminal, the mid-
dleware transparently re-establishes their session. For
instance, Bob could open a session on his workstation
at the office (departure node) working on his docu-
ments and accessing his services; when Bob goes back
home, the infrastructure support will be able to find
and restore the session on his personal computer (tar-
get node). Roaming users, instead, moving around with
their wireless devices, want to keep their sessions,
when they cross different localities, as it happens con-
tinuously for cell phone services. In both cases, when
session movement is required, the middleware must
perform the management operations for session hand-
off. Session handoff includes service component re-
binding (disconnection and reconnection) and state
movement; session handoff should be transparent to
user and possibly to application components.

Service configuration and session continuity issues
become particularly crucial for multimedia service

provisioning. In fact, this kind of services has strict
QoS requirements to be respected even when provi-
sioning over the best-effort Internet. For this reason,
only complex design allows QoS tailoring to achieve
resource booking at negotiation time and resource
monitoring at runtime. In addition, multimedia service
continuity is particularly critical during session hand-
off management.

All above issues call for novel approaches to ser-
vice and infrastructure design [7]. So far some solu-
tions have been proposed to assist nomadic users rather
than device roaming, or code downloading rather than
SP configuration, but to our knowledge none considers
these issues together. This section presents some re-
lated research projects and prototypes without any pre-
tence of being exhaustive: it sketches only a partial
state of the art in middleware for user mobility and
service continuity.

The 2KQ+ is a programming environment for devel-
oping and deploying component-based continuous
services with QoS requirements [8]; recently its core
has been extended adding nomadic and roaming mo-
bility [9]. In follow me Desktop, an MA-based infra-
structure, nomadic users can move their opened ses-
sions, but there is no definition of SPs and of service
configuration along that path [10]. Another system that
explores the MA usage to support roaming mobility is
[1] that proposes a general architecture for session
handoff, by focusing on the tailoring/adaptation opera-
tions necessary when delivering service to access de-
vices with very limited capabilities. The Telecommu-
nications Information Networking Architecture
(TINA) consortium has promoted the specification of
novel middleware for personal mobility, by integrating
TINA access sessions with MA [11]. Finally, specifi-
cally for code distribution and service configuration,
there is an MA-based solution exploited in the distrib-
uted system for the live broadcast of NASA's Mars
Pathfinder mission [12].

3. MUM Overview and Architecture

We have developed MUM, an MA-based middleware
to support continuous services in ubiquitous environ-
ments. MUM simplifies service design by performing
all the operations required for service configuration
and session continuity.

MUM has been designed and implemented at the
application layer to better face some aspects related to
continuous service management, from dynamic
un/installation of infrastructure/service components to
configuration management, from resource accounting
to security and interoperability [4]. We claim that op-
erating at this level increases portability and flexibility.

In addition, there is no need of modifying existing op-
erating systems and traditional services already imple-
mented can continue to execute along with the new
ones.

The location awareness requirement guides the
MUM design; it offers visibility of node positions at
the infrastructure level. This awareness lets the mid-
dleware act transparently when SP management is re-
quired and makes possible informed choices at both
configuration and session handoff time.

We have followed also two development guide-
lines: simplicity and separation of concerns. The first
one means that MUM should provide the application
developers with means that facilitate service develop-
ment. In particular, service configuration, session
handoff and resource management are demanded to the
middleware. In addition, we would like to offer a
framework for service component development that
should follow the well-known C/S model, thus simpli-
fying the application logic design. The second one
calls for separation of concerns between service and
infrastructure deployment. We decided to treat func-
tional aspects, such as streaming control, at the service
layer while non-functional ones, like resource book-
ing/monitoring, configuration/reconfiguration man-
agement and mobility management, are performed at
the infrastructure layer. Following these guidelines we
divide components in two categories as explained in
Section 3.1.

3.1. Application and Middleware Components

Within MUM we define two kinds of components:
application components (ACs) and middleware com-
ponents (MCs). The service developers implement the
ACs that encapsulate the application logic for the spe-
cific application. MUM instead provides them with
MCs that manage different aspects treated at the mid-
dleware layer, from QoS management to ACs mobility
support.

For ACs development MUM supports three general
kinds of ACs for continuous service design: Client,
Proxy and Server. While the Client and the Server re-
spond to the well known C/S model, the Proxy does
not. The Proxy participates in service delivery as an
entity that acts as both client and server, by passing the
service data received from the previous entity in the SP
to the next one. First, it is important to monitor the
resource situation not only on the client and server
end-nodes, but also in the middle of the SP. Secondly,
its introduction lets the session handoff to be achieved
near the user position as it will be explained in Section
4.2. Finally, proxies add flexibility and modularity to
the overall service architecture. For instance, in the

future proxies could encapsulate the adapta-
tion/transformation operations necessary when client
profiles require it as well as data filter operations in
response to user preferences.

3.2. The MUM Layered Architecture

The MUM architecture, see Figure 1, consists of two
layers, the Mechanisms Layer that realizes basic ser-
vices, and the Facilities Layer that encapsulates the
strategies and implements advanced middleware ser-
vices. Multimedia applications are built on top of the
Facilities Layer.

Location
Awareness

Configuration/
Reconfiguration

F
ac

ili
tie

s
La

ye
r

Downloading
Nomadic/Roaming

Handoff
QoS

Management
QoS

Management
QoS

Management

Resource
Broker/Monitor

Software
Repository

Metadata/Profile
Repository

Metadata/Profile
Repository M

ec
h.

La
ye

r

Location
Awareness
Location

Awareness

Configuration/
Reconfiguration
Configuration/

Reconfiguration

F
ac

ili
tie

s
La

ye
r

DownloadingDownloading
Nomadic/Roaming

Handoff
Nomadic/Roaming

Handoff
QoS

Management
QoS

Management
QoS

Management
QoS

Management
QoS

Management
QoS

Management
QoS

Management

Resource
Broker/Monitor

Resource
Broker/Monitor

Software
Repository
Software

Repository
Metadata/Profile

Repository
Metadata/Profile

Repository M
ec

h.
La

ye
r

Figure 1: MUM layered architecture

The Mechanisms Layer realizes the basic middleware
mechanisms offered to the more complex Facilities
Layer:

Location Awareness provides location visibility of
the nodes to the upper layer, by using the location
abstractions of SOMA organized in a tree [13];
Resource Broker and Monitor perform resource
monitoring and admission control;
Software Repository stores downloaded code and
component descriptors;
Metadata and Profile Repositories maintain all the
titles available within the system, the descriptors
of presentations (i.e., presentation metadata), and
client profiles.

The Facilities Layer includes the strategies and the
most dynamic parts of MUM:

Configuration/Reconfiguration configures the SP,
by including also all QoS negotiation aspects, and
by reconfiguring it at runtime in response to
variations in the provisioning environment;
Nomadic/Roaming Session Handoff realizes
application handoff for nomadic/roaming users;
QoS Management encapsulates the strategies for
QoS Management at the middleware layer by
using the above Resource Broker/Monitor;
Downloading searches and downloads the needed
code.

As observed in the previous section, the MA pro-
gramming paradigm was already proposed and applied
in some existing projects because of its properties of
dynamicity, asynchronicity and autonomy [14] [1].
MUM proposes a mixed approach based both on Cli-

ent/Server (C/S) and MA models to achieve the best of
the two approaches. The mechanisms use only stan-
dard C/S solutions while the facilities mix the two ap-
proaches. That is motivated by the fact that mecha-
nisms should be available on all nodes and are not ex-
pected to change frequently, while facilities encapsu-
late strategies that could modify frequently. In fact,
MA-based technologies make it fairly simple to change
and distribute Facilities Layer action strategies.

4. The Configuration and Nomadic Session
Handoff Facilities

The main effort put so far in designing the MUM ar-
chitecture strives for flexibility and generality. We
have already developed all Mechanisms Layer mod-
ules described in [15] [16] [17]. The facility core mod-
ules implemented in the first MUM prototype are the
Configuration and the Nomadic Session Handoff Fa-
cility. This paper presents them by explaining their
crucial relevance and detailing their design.

The Configuration Facility is important because SP
establishment is fundamental for continuous services
and because Reconfiguration Facility should subsume
it. The Nomadic Session Handoff is fundamental be-
cause it permits session state movement; it has been
designed without dealing with other Roaming Session
Handoff related issues, e.g., hopping connectivity.

4.1. Configuration Facility

This module offers functions for the configuration of
distributed services and the QoS negotiation/booking
at configuration time. This service is based on two
MCs: the Decision Maker (DM) and the Plan Visitor
Agent (PVA). Figure 2 presents the scenario consid-
ered for the configuration process.

The DM is an object without moving capabilities
that encapsulates the strategies to decide how to con-
figure the SP. By using the services offered by the
Mechanisms Layer the DM gets the user profile, the
position of the current node within the distributed sys-
tem, and the presentation metadata for the title required
by the user. The information permits to produce a Plan
that contains one or more solutions corresponding to
different QoS levels according to the adopted strategy.
For instance, to take into account proximity, the Plan
would be built by choosing, for the required title, the N
presentations with the best QoS (one for each QoS
level) nearest to the client. Note that one title may cor-
respond to several presentations at different QoS lev-
els: any solution states the actions to configure the SP
for the specific presentation, i.e., the needed compo-
nents and the necessary resources.

Soma Place

P

Soma Place

C

P
S

CA

PA

PA

PVA

Soma Place

Code or people movement

Multimedia streaming

Sent messages

PVA

PVA

PVA
Soma Place

DM

Application Component

Middleware Component

Soma PlaceSoma PlaceSoma Place

P

Soma PlaceSoma PlaceSoma Place

C

P
S

CACA

PAPA

PAPA

PVA

Soma PlaceSoma PlaceSoma Place

Code or people movement

Multimedia streaming

Sent messages

PVA

PVA

PVA
Soma PlaceSoma PlaceSoma Place

DM

Application Component

Middleware Component

Figure 2: Configuration service scenario

The PVA is an MA that moves along the SP to config-
ure it. Once the configuration service has obtained the
Plan from the DM, it passes it to the PVA that goes
through the path from the Client (C) to the Server (S)
to negotiate and book resources, by downloading the
components code if necessary, to initialize and config-
ure all ACs and corresponding MCs. These MCs are
the ClientAgent and the ProxyAgent (CA and PA in
Figure 2) that control and manage the Client and the
Proxy at runtime. The PVA design followed the Visi-
tor Pattern, being the PVA the visitor and the Plan the
visited structure, thus providing flexibility and easy
extendibility [18]. In each participating node the PVA
asks if there are enough resources for the first available
solution in the Plan and, in that case, it books them and
instantiates another PVA, to be sent forward. Arriving
PVAs remain on the nodes participating in the service
delivery to finish the component configuration. In fact,
each PVA has to wait the endpoint of the next applica-
tion component along the path (the envelope in Figure
2) sent back by next node PVA.

If there are enough resources in the system, the SP
is established and service delivery can start, otherwise
a configuration trace back is required. The configura-
tion trace back begins as soon as one PVA does not
succeed in booking required resources. In that case it
checks if there is another configuration to explore (at a
lower QoS level) in its plan. If there are enough re-
sources for the second solution the configuration proc-
ess can continue, otherwise a message is sent back to
the previous PVA, by asking it to trigger an alternative
solution.

4.2. Nomadic Movement Facility

This support is based on several MCs: ClientAgent,
ProxyAgent and PVA. We assume that the user re-

quires moving the opened session from the departure
node to the target node. The locality-based design al-
lows to keep session handoff cost-effective even when
the distance between Client and Server grows. In fact,
by adopting this approach, the required modifications
impact only the last part of the SP, namely the Client
and its nearest Proxy node, as Figure 3 shows in gen-
eral and Figure 4 visualizes in its most relevant phases.

Soma Place

C

P

C

Soma Place

IM3. move
session

6. sends MSG back

CACA

7. migrates

PA

Soma Place

PVA

2. migrates physically

Code or people
movement

Multimedia streaming

Operation invocations

Sent messages

1. migrate

5. sends
new PVA

4. creates PVA

Application Component

Middleware Component

Soma PlaceSoma PlaceSoma Place

C

P

C

Soma Place

IM3. move
session

6. sends MSG back

CACACACACA

7. migrates

PAPA

Soma PlaceSoma Place

PVAPVA

2. migrates physically

Code or people
movement

Multimedia streaming

Operation invocations

Sent messages

1. migrate

5. sends
new PVA

4. creates PVA

Application Component

Middleware Component

Figure 3: Nomadic movement scenario

The user request is caught by the ClientAgent and
passed to the InitManager (IM in Figure3) along with
the Proxy endpoint. Hence, the InitManager, a MC
present on each node, obtains from the DM a Plan with
the actions to take for the session movement. The Plan
is passed to the PVA that sends a new PVA to the tar-
get node. Once arrived there, the new PVA downloads
the Client code if necessary, initializes the Client and
binds it to the Proxy. The session handoff terminates
when the new PVA sends back a message triggering
the ClientAgent movement to the target node. The de-
signed protocol ensures session continuity, in fact
when the ClientAgent migrates the Client is already
present and initialized on the target node and the
streaming has already begun. In other words, we suc-
ceed in non stopping the presentation. Let us observe
that step 2 and steps 3 to 7 happen concurrently.

This proposed architecture is general enough to ap-
ply also to roaming. In fact, the migration process is
rather similar with the main difference that it should
deal with wireless connections and, instead of moving
clients, should move proxies (the first in the SP from
the client to the server). Of course more work is
needed to decide how to detect device movements and
to treat disconnections that can frequently occur in a
wireless network.

4.3. MUM Implementation Insights

The main technologies involved in the implementation
of the MUM are Java, the Secure and Open Mobile

Agent (SOMA), and the Java Media Framework
(JMF).

Java has been chosen for several different reasons.
First for its portability over different platforms. More-
over, Java is the typical implementation language em-
ployed by most MA environments because it permits
an easy support to weak mobility, i.e., it is possible to
move the application state, but not the execution stack
of the MA [19].

Figure 4: Nomadic movement service design

SOMA is a Java-based MA system with weak mobil-
ity, and MUM implementation is built on top of it.
SOMA offers locality abstractions to describe any kind
of interconnected system, from simple LANs to the
Internet and these abstractions called places can be
organized in a tree, to identify univocally resource
positions. In other words, SOMA offers a good naming
support to location of users, devices and presentations
within the system, by offering the visibility needed to
develop a location-aware middleware like MUM.

JMF is the SUN framework proposed for multime-
dia object management within Java environment [20].
JMF supports streaming, by adopting the RealTime
Protocol (RTP) for video streaming, and by using the
RealTime Control Protocol (RTCP) to monitor net-
work status. The JMF implementation that uses only
pure Java code solutions could incur in efficiency loss
due to the fact that multimedia data management is
CPU intensive. That is the reason why JMF provides
the possibility of applying native plug-ins, even differ-
ently implemented for different platforms, such as
Windows, Linux and Solaris, as long as accessible by
the Java environment.

Other implementation details and the code of the
MUM proposal are available at: http://www.lia.deis.
unibo.it/Research/MUM/.

5. Experimental Evaluations

This section presents one typical Video on Demand
(VoD) application developed within MUM and the
experimental results collected from its execution. We
have measured system performance for the realized
service to see how MUM behaves in a very challeng-
ing scenario.

5.1. The MUM-based VoD Service

The realized application is a video streaming service
with the possibility of commanding the presentation
delivery. We are targeted to an Internet scenario where
many users may desire to share their favorite videos.
Each node participating in the coordinated architecture
decides the presentations to make available for
downloading, by registering them to the Metadata Re-
pository. Then, the VoD service makes possible to
remotely play the presentations commanding their de-
livery.

The service designer is involved only in designing
the three application components: Client, Proxy and
Server. In particular, they implement the GUI used to
show the presentation and to command the video play-
ing, realize the necessary protocols to pass the com-
mands through the SP and manage the multimedia
flows delivery. Let us stress again that the whole exe-
cution of the tasks required by service configuration,
resource management and session movement is dele-
gated to the MUM support. In particular, MUM is in-
voked to download the needed code, to book/monitor
the resources, to initialize ACs, to bind them without
any programmer intervention, and to move session
state when needed.

5.2. Evaluation Methodology

The testbed used to run the application consists of a set
of nodes connected by a 100 Mbps Ethernet LAN.
Each node is a Sun Blade 2000 workstation equipped
with a 900 MHz processor and 1024MB RAM. The
operating system running on each machine is SunOS
5.9, and the rest of the software installed is the Java
Virtual Machine (JVM) version 1.4.0_00_b05, and the
Java Media Framework (JMF) Performance Pack for
Solaris version 2.1.1e. The test done can be split into
two parts, namely: the Service Configuration and the
Nomadic Session Movement.
Service configuration. At the beginning of the test the
Server, the Proxy and the Client are all not working.
When one user logs to one node asking the beginning
of the streaming, the MUM configures the SP by ini-
tializing, connecting and starting a server on the node

that stores the multimedia presentation, one or more
Proxies and a Client.
Nomadic session movement. After a specified time, the
user requires the nomadic session handoff to another
node in the set, moving then to that terminal. In re-
sponse MUM initializes a Client on the target node and
carries the session movement off following the proto-
col introduced in 4.2. This closes the experiment.

5.3. Experimental Results and Discussion

Table 1 reports the average times required to complete
the two processes described above.

Table 1. Average times for service configu-
ration and nomadic session movement

Operation Required time (msec)
Service Configuration N x 366 + 456
Nomadic Session Movement 1011

As one can expect, the average time for initializing the
distributed system is longer than the time required for
the session movement. This is due to the fact that the
first operation involves several ACs (corresponding to
N nodes), while the latter only two. The collected
times include the overhead spent for GUI creation, that
is not negligible for a video streaming application.
Table 2 and 3 report the experimental performance
measured with a finer granularity.

Table 2. Service configuration

Operation
Time
msec

Notes

Video Frame
Configuration
(local)

179
Time for the creation of the Video Frame
that is the frame where the video is
rendered.

RTP Session
Configuration
(distributed)

N x 366

Time for the configuration of the RTP
Session over the distributed system. In
particular this time takes into account the
initialization time of all the components
along the path, and the time to connect
them all and begin the streaming.

JMF Player
Initialization
time
(local)

121

Time for the initialization of the JMF
player. The Player initialization begins
only when the Client has received the
stream.

Video Frame
Activation
(local)

72

Time for the activation of the video
frame, in particular here the panel ob-
tained by the JMF Player is added to the
video frame.

Table 2 refers to service configuration. Most of the
time is spent for configuration of RTP sessions. Hence
the results mainly depend on the time required by JMF
libraries to instantiate RTP session and the component
used for streaming (namely the Processor), as shown
clearly by the testing results.

Table 3 reports average times referred to nomadic
session movement. Similarly to the service configura-
tion case, most of the time is spent in the configuration
of RTP sessions. Nonetheless, we stress that the time
in this case is shorter because the nomadic session
movement requires only to reconfigure RTP sessions
between the terminal node running the Client and the
Proxy, while the rest of the SP remains the same.

Table 3. Nomadic session movement

Operation
Time
msec

Notes

Plan Visitor Agent
Migration
(distributed)

179 Time for PVA migration.

Video Frame Con-
figuration
(local)

179
Time for the creation of the Video
Frame that is the frame where the
video is rendered.

RTP Session Con-
figuration
(distributed)

341

Time for the activation of the Client
on the target node and reconfigure
the RTP Session between the Client
and the Proxy.

JMF Player Initiali-
zation time
(local)

121
Time for the initialization of the JMF
player on the target node.

Video Frame Acti-
vation
(local)

72

Time for the activation of the video
frame, in particular here the panel
obtained by the JMF Player is added
to the video frame.

We have tested MUM for SP of different lengths. At
the increasing of the node/components number, the
service configuration time grows linearly and depends
on the node number while the nomadic session move-
ment maintains almost constant. This is due to the fact
that the middleware reorganizes by adopting exclu-
sively local strategies. Most of the time is caused by
JMF libraries to create and initialize Processors, Play-
ers and to establish the RTP session, while the over-
head introduced by the execution of MUM itself seems
to be acceptable.

In conclusion, the obtained times are promising: an
interval lower than 2 seconds is good for session mi-
gration if nomadic session mobility is considered
within most common applicative scenarios. Indeed,
these results are particularly appealing for soft real-
time service provisioning such as VoD distribution at
the currently usual Internet transmission rate. In fact,
we can observe that the nomadic session movement
time is comparable with the time usually required for
switching between terminals.

6. Conclusions and Future Work

The paper has presented an MA-based middleware for
supporting configuration and session movement man-
agement operations in ubiquitous environments. The

integration of the MA and the client/server paradigms
in MUM has demonstrated how to achieve a good bal-
ance between middleware dynamicity and service de-
velopment simplicity. In addition, the first experimen-
tal evaluations show that the configuration and session
migration management operations can be performed at
the application level with overhead and response times
that are compatible even with the strict requirements of
VoD distribution.

These encouraging results are stimulating our fur-
ther investigation and middleware extension. On-going
research activities include the development of different
strategies for both the initial choice of the VoD source
and for the SP runtime reconfiguration. In addition, we
are completing the testing and the integration of the
MUM session mobility module for users who roam
between different access network localities during ser-
vice provisioning. Finally, experiments have given
important feedbacks and future work will include also
the re-engineering of JMF-based MUM parts, trying to
identify and remove the bottlenecks in the library exe-
cution in order to improve the middleware perform-
ance.

Acknowledgements

We thank Prof. Klara Nahrsted at the University of
Illinois at Urbana Champaign for encouragement in
this research. The work is partially supported by the
Italian MIUR within the FIRB WEB-MINDS Project
and by the Italian CNR within the Strategic IS-
MANET Project.

References

[1] P. Bellavista, A. Corradi, C. Stefanelli, “The Ubiqui-
tous Provisioning of Internet Services to Portable De-
vices”, IEEE Pervasive Computing, Vol. 1, No. 3,
2002.

[2] D.L. Tennenhouse et al., “A Survey of Active Net-
works Research”, IEEE Communications, Vol. 35, No.
1, 1997.

[3] P. Bellavista, A. Corradi, “How to Support Internet-
based Distribution of Video on Demand to Portable
Devices”, IEEE 7th Int. Symp. on Computers and
Communications (ISCC'02), 2002.

[4] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli,
“Dynamic Binding in Mobile Applications: a Middle-
ware Approach”, IEEE Internet Computing, Vol. 7,
No. 2, 2003.

[5] R. Oppliger, “Security at the Internet Layer”, IEEE
Computer, Vol. 31, No. 9, 1998.

[6] SOMA, Secure and Open Mobile Agent, Home Page
available at: http://www.lia.deis.unibo.it/Research/SO
MA/.

[7] K. Geihs, “Middleware Challenges Ahead”, IEEE
Computer, Vol. 34, No 6, 2001.

[8] K. Nahrstedt, D. Wichadakul, X. Gu, D. Xu (2001),
“2Kq+: An Integrated Approach of QoS Compilation
and Reconfigurable, Component-Based Run-Time
Middleware for Unified QoS Management Frame-
work”, IFIP/ACM Int. Conf. on Distributed Systems
Platforms (Middleware 2001), 2001.

[9] K. Nahrstedt, D. Xu, D. Wichadakul, B. Li, “QoS-
aware Middleware for Ubiquitous and Heterogeneous
Environments”, IEEE Communications, Vol. 39, No.
11, 2001.

[10] K. Takashio, G. Soeda, H. Tokuda, “A Mobile Agent
Framework for Follow-me Applications in Ubiquitous
Computing Environment”, IEEE Distributed Comput-
ing Systems Workshop, 2001.

[11] A. Kupper, A.S. Park, “Realizing Nomadic Communi-
cation with Mobile Agents: Strategies and Their
Evaluation”, TINA Telecommunications Information
Networking Architecture, 1999.

[12] F. Kon, R.H. Campbell, K. Nahrstedt, “Using Dynamic
Configuration to Manage a Scalable Distribution Sys-
tem”, Elsevier Computer Communication, 2000.

[13] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile Agent
Middleware for Mobile Computing”, IEEE Computer,
Vol. 34, No. 3, 2001.

[14] A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding
Code Mobility”, IEEE Transactions on Software Engi-
neering, Vol. 24, No. 5, 1998.

[15] P. Bellavista, A. Corradi, C. Stefanelli, “Java for On-
line Distributed Monitoring of Heterogeneous Systems
and Services”, Oxford University Press The Computer
Journal, Vol. 45, No. 6, 2002.

[16] P. Bellavista, A. Corradi, “Mobile Middleware Solu-
tions for the Adaptive Management of Multimedia QoS
to Wireless Portable Devices”, IEEE Workshop on Ob-
ject-oriented Real-time Dependable Systems, 2003.

[17] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli,
“Context-aware Middleware for Resource Management
in the Wireless Internet”, IEEE Transactions on Soft-
ware Engineering, Vol. 29, No. 12, 2003.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, 1995.

[19] G. Cabri, L. Leonardi, F. Zambonelli, “Weak and
Strong Mobility in Mobile Agent Applications”, Conf.
and Exhibition on The Practical Application of Java,
2000.

[20] Java Media Framework, Home Page available at:
http://java.sun.com/products/java-media/jmf/.

	MAIN MENU
	PREVIOUS MENU

	Print

	footer: 0-7803-8623-X/04/$20.00 ©2004 IEEE
	01: 498
	02: 499
	03: 500
	04: 501
	05: 502
	06: 503
	07: 504
	08: 505

