WISENEP: A Network Processor for Wireless
Sensor Networks

André Mota!, Leonardo B. Oliveira2, Georgia P. Safe!, Felipe F. Rochal, Ramon Riserio!,

1

Antonio A. F. Loureiro!, Claudionor J.N. Coelho Jr.}, Hao Chi Wong1 and Eduardo Nakamura!
! Federal University of Minas Gerais (UFMG), Brazil
2 Supported by FAPESP grant 2005/00557-9, University of Campinas (UNICAMP), Brazil
Email:{andmota,georgiap,felipefr,rrdl,loureiro,coelho,hcwong } @dcc.ufmg.br, leob@ic.unicamp.br

Abstract— Wireless sensor networks are ad hoc networks com-
prised mainly of small sensor nodes with limited resources and
one or more base stations, which are much more powerful laptop-
class nodes that connect the sensor nodes to the rest of the world.
The advent of this tecnology over the last decade enables large-
scale deployment of such sensors. On the other hand, this poses
the challenging of how the great amount of information generated
by these sensor networks will be handled at the base station.
In this paper, we propose a network processor architecture
tailored specifically to handling information at sensor network
base stations. Our approach optimize information processing
by implementing tasks in hardware. We show that the novel
architecture is one order of magnitude faster than an architecture
based on traditional RISC processor.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large num-
ber of distributed communicating resource-constrained devices
deployed to accomplishing monitoring and control goal [1],
[2], [3]. These networks have the potential to be applied in
a variety of areas such as industry, agriculture, environmental
control, scientific, and consumer systems. An important point
in applications foreseen for WSNss is the availability of relevant
data for monitoring system connected to these networks.

When compared with other types of networks, WSNs
present some distinguishing characteristics in terms of scale,
communication pattern, resource level and mobility. E.g, they
are typically orders of magnitude larger [4], [5] than other
netwoks and the network traffic flow is asymmetric — mainly
from sensor nodes to base stations. As a consequence, base
stations are responsible for handling a large amount of data.
Based on recent advances in WSN tecnology, we argue that, in
near future, base stations will must have built-in computational
abilities to be capable of dealing with the collected data in
large-scale WSNGs.

In this work we present WISENEP, a WIreless SEnsor
NEtwork Processor, whose architecture is tailored specifically
to handling information at base stations. WISENEP is intended
to replace conventional processors in base stations and it can
bring new levels of performance in information processing.
Even though much work has been done in the context of
information processing in WSNs , to our knowlege, this is the
first attempt at optmizing this task at the base station. Results
show that the novel architecture is at least 10 times faster than
an architecture based on traditional RISC processor.

This paper is organized as follows. Section II presents some
of the related work. Section IIl describes the architecture
of the network processor proposed in this work. Section IV
presents evaluation analytically and by means of simulation.
Finally, Section V draws some conclusions and discusses
future directions.

II. RELATED WORK

WSNs are used for monitoring purposes, providing infor-
mation about the area being monitored to the rest of the
system and thus most of the work are related, in some way,
to information processing.

Among the studies specifically targeted to processing in-
formation, Chu et al. [6] introduce a general information
architecture for designing distributed inference algorithms in
WSNs. The architecture comprises a graphical information
representation with processing mechanisms guided by sensor
evidence and provides a global view of the set of computations
occurring in the system

In [7], Ganesan et al. describe DIMENSIONS, a system
that provides a unified view of data handling in sensor net-
works. DIMENSIONS incorporates long-term storage, multi-
resolution data access and exploits spatio-temporal correlations
in sensor data.

To the best of our knowledge, our solution is the first
attempt to design a specific hardware architecture to optimize
information processing at base stations.

III. PROPOSED ARCHITECTURE

The processor proposed in this work is supposed to be the
main processing unit of a WSN base station. It continuously
receives data packets from the network and processes their
content. The result can be either sent to the WSN client or
used to manage the network nodes. We imagine the sensed
area mapped into a grid, where each grid square represents
the measured value of that respective region and the entire
grid give us an ’image’ of the sensed area. In this case, the
base station should perform the following tasks: maintain bi-
dimensional matrices representing network measured variables
- one matrix for each variable; decode the bit stream received
from the network interface into the proper packet’s fields;
update the matrices on each received packet data; and perform
computations on these matrices and define proper actions.



WISENEP is a processor architecture designed to perform
these functions in a very efficient way.

WISENEP design can be better understood if seen as three
main blocks. Figure 1 helps visualizing them. They are:

1) A Packet Classifier, responsible for decoding the bit
stream received from the network. This packet classifier
is no different from packet classifiers proposed for com-
mon network processors. It receives a bit stream from
the network interface on its input ports and provides the
decoded packet fields on the output ports.

2) The Packet Processor, a parallel processor designed
specifically to compute WSN data. It maintains the
bi-dimensional matrices, each matrix representing one
measured variable grid view. It has hardware blocks
to determine the location on the matrix of a WSN
node and to store the received data on that location.
It also has hardware blocks to process these matrices
data efficiently (e.g., interpolation and edge detection
algorithms). Due to its parallel design, the processing of
all different measurements on the same packet can be
done at the same time - for example, if a packet has
measurements about wind speed, temperature and rela-
tive humidity the storage of each one on the respective
matrices can be done in parallel.

3) A Host Processor, a general RISC processor responsible
for common processing tasks. It has a direct connection
with the Packet Processor memory. It is intended to take
decisions based on the summarized data provided by
the Packet Processor, to send commands to the Packet
Processor asking for specific tasks, to send commands
to the WSN nodes (like shutting down some nodes to
preserve network energy) and to handle commands from
the WSN client.

The packet classifier handles only bit streams and does
that very fast. The Packet Processor handles WSN data very
efficiently, since it is hardware optimized for that task, but the
tradeoff is that it will not handle general task as efficiently
as a state of the art RISC processor. So, the Host Processor
complements the first two blocks, allowing them to be very
specific and specialized but still letting our architecture handle
general tasks well.

From now on, we will detail the architecture of the Packet
Processor, since the architecture of a Packet Classifier and a
RISC Host Processor are well know in the literature.

Figure 2 shows the Packet Processor architecture. There are
two main elements to be understood: Microengines and ID
Lookup.

« A microengine is a specific purpose processor with an
instruction set and architecture designed for WSN data
processing. Microengines are responsible for storing the
packet’s data on matrices structures and for performing
computations on theses matrices. Each one has one in-
dependent memory to store its data. There can be one
or many of them on our architecture; using more than
one provides parallelism on data handling. Each should
run a different code, allowing them to handle different
measurement data of the same packet in parallel. On our

examples and illustrations we are assuming a project with
3 microengines.

e The ID Lookup is simply a hardware lookup table re-
sponsible for converting the node’s ID information into
X and Y coordinates.

Base Station

Packets

1
:
i
Packet |
i
i

Host Packets
Processor Processor

Fig. 1. Architecture Overview

Packets Packets

Host
Processor

Packet ID
Classifier Lookup

Packet
Processor RAM |

Fig. 2. Packet Processor Architecture

The principles of our archictecture will be made clear next,
when we explain the flow of information inside WISENEP.
The reader can follow this better by looking at figure 2.
Suppose that a packet from network node 1 containing three
different measurements (e.g., wind speed, temperature and
relative humidity) arrives at the base station. First, the Packet
Classifier will decompose the bit stream in four different
fields (node ID and the three measurements). Then, these four
fields will go into the Packet Processor, entering first the ID
Lookup block. The ID Lookup will lookup node 1 position
and will provide the four original fields plus the node’s X
and Y position. Then, this information will be passed to the
three microengines. The code on each microengine instructs
it to store one of the measurements (e.g., microengine 1
handles wind speed, microengine 2 handles temperature and
microengine 3 handles relative humidity). So, as packets are
received, the Packet Processor will maintain a grid view of the
three measurements on three different matrices in real-time.
Occasionally, the Host Processor may want those informations
summarized. For instance it may want to find the regions on
the grid view where there is high contrast. So, it sends a
specific request to the Packet Processor. This request may be
an Edge Detection command, for example. Each microengine
will then perform edge detection on its matrix. Finally, the
Host Processor can read the resulting matrices representing
the edges and take apropriate action. Note that the Packet



Processor handles events. An event may be a Host Processor
command, a Timer Event generated by an external clock or a
network packet.

We will now detail the microengine internals. This explana-
tion can be followed referring to figure 3. A microengine has a
ROM (or FLASH memory) with specific code to handle each
kind of event (network packet reception, clock timer events,
host processor commands). Each microengine is also attached
to an independent RAM memory. The RAM is used to store
the grid view of the network measurements and to process
them. A simple circuit between the microengine and the RAM
allows the first to access the memory as a bi-dimensional
matrix automatically. On the input of each microengine there
is an Event Queue. It serves as a buffer of the received events,
allowing the event incoming rate to became superior than the
event processing rate for a short period of time. Note that, on
the long run, the overall event incoming rate must be equal or
less than the processing rate, or else the buffer will run out
of space. The Event Queue assigns a different number to each
kind of event so that, when the Event Processor handles each
event, its respective number specifies which ROM code will
be executed.

| Event Queue :
Events i Event :
: P! Processor
| |
i ROM i i ADAeaattgcesi
S Wicroenglne T S R
Fig. 3. Microengine Details

The Event Processor is the core of a microengine, so we will
explain it more fully. The Event Processor will continuously
dequeue an event, execute the associated code and look for
the next event. Its datapath is specifically optimized to handle
measurements coming from the network! and store them on
the grid view. It also has hardware blocks implementing
matrices operations. Note that, once the grid view provides an
’image’ of the network measurements, it is interesting to use
image processing algorithms on it. So, we envisioned hardware
execution blocks performing Interpolation, Edge Detection and
Thickening algorithms on the grid view matrices. We opted
to implement those functions in hardware because hardware
implementation of those algorithms can be one order of
magnitude more efficient that software implementation. The
Event Processor fetches from ROM the instructions specifying
what it must do. The programmer of the microengine has
a set of data processing instructions to use to construct an
event handling logic. All memory instructions’ specifies a
memory location using X and Y coordinates, instead of a
one-dimensional continuous addressing. There are also specific
instructions to do image processing and there are general
purpose instructions to do arithmetic, logical and branch
operations. To specify the end of the event handling, there is a

Itemporally stored on the Event Queue
2Load and Store instructions

Next intruction, to instruct the Event Processor to unqueue the
next event. The event number of the next event fetched from
the queue will specify which code on ROM will handle the
event data - after a Next instruction, the Program Counter of
the Event Processor automatically points to the proper ROM
address. Figure 4 shows the datapath designed to perform all
those functions.

IV. PERFORMANCE EVALUATION

Performance evaluation of WISENEP was conducted ac-
cording to two methodologies: analytical model study and
processor simulation. In both we compare the performance
of WISENEP against a RISC processor, since a base station
would be equiped with a RISC processor. We believe that using
two different approaches to evaluate performance gains, both
getting to similar conclusions, strongly validates our results.
In that way, the two methodologies are complementary.

In the following, we first present the analytical model study,
its methodology, benchmarks and results. Then we present the
WISENEP functional simulation, its benchmarks and results.

A. Analytical Model

1) Methodology: Our goal is to quantitatively compare the
relative execution time that each architecture takes to perform
the WSN network management operations. To achieve this
goal, we have defined a set of WSN applications benchmarks
and created execution models for these benchmarks. Relying
upon these execution models, we counted the number of
memory and ALU operations > needed in each architecture
and used these results as a proxy to the total execution time.

Our execution models considers each basic operation taking
a time unit. An basic operation is a memory access or a
ALU operation - because they are the critical paths on a
regular processor. A execution model is a directed graph,
where the nodes represent basic operations and the edges show
the processing flow. Sequential operations are represented as a
sequence of nodes and parallel operations are represented with
many paths starting from a node. The longest path from the
beginning of the graph to the latest node denotes the number
of basic operations executed sequentially, and, therefore, the
number of time units required. Figure 5 illustrates these
concepts.

One basic assumption about the RISC performance model
is that the instruction scheduling is optimal and instruction
cache hit rate is 100%. This implies that the processor is
capable of dispatching one instruction per cycle. As far as the
proposed applications are concerned, the current state of the
art in RISC technology [8], [9], [10] allows current processors
to approximate these assumptions. Operating System overhead
is not considered in our formulation. Nevertheless, our model
establishes an upper limit to the performance of the RISC
architecture.

2) Benchmarks: We designed a set of a typical tasks
that together define a WSN application. We are assuming a
application similar to the one described in the previous section.
Table I shows the tasks needed to provide that application.

3arithmetic and logic operations



CcRTLID

porow | |

re
NEXT

Fig. 4. Datapath design

OPERATION
OPERATION
OPERATION

‘ Total execution time: 4 time units

OPERATION OPERATION

[ 1 2

Fig. 5. Example of an execution model graph

[ Task [
Data Packet Processing

Description |

Receives packet and writes node’s mea-
surements to each plane

Grid Processing
Conditional Interpolation | Interpolation (33 convolution) of unmea-

sured grid regions

Sobel Edge Detection (3 X3 convolution)

Threshold followed by thickening (3x3

convolution)

TABLE I
DESCRIPTION OF TASKS USED FOR BENCHMARKING

Edge Detection
Binary Thickening

Incoming data packet processing is the simplest and the
most common operation. At any given time, data packets may
arrive at the base station. Grid processing tasks, however,
are performed from time to time, in order to summarize the
collected data. The Host Processor uses the summarized data
to take appropriate actions.

3) Execution Models:

a) Data Packet Processing:: There are three basic steps
any implementation must perform on incoming packets. First,
the packet bit stream must be analyzed and decoded. Then,
the processor needs to lookup the geographic position of any
given node. Usually, it has an internal lookup table associating

Eir R
Fez RW
cown| FLAGS

K

,P *~ ‘

BANK ]
AU
conp 1

FLAGS_OUT

M
Pc U
X

P ALu_ouT

o
HoLo H
cTRL

PA ™ T T CLEAR PLANE

Al ADDR
5| TRANS
LATION

s
W
e ‘ ADDR

{_oaram =P

ADDR DATAIN DATA_oUT.

RW[—
DATA MEM

each node ID with their known (X,Y) coordinates. Finally, all
data in the packet must be written on the apropriate matrix.

Note that we focused our analysis on packet content pro-
cessing, not network communication processing. The rea-
son is that solutions for pure network processing are well
known [11]. We are assuming that network communication
processing does not became a bottleneck.

We consider here that each packet contains the node ID plus
an arbitrary number of measurements (for example, a packet
could contain node ID plus measurements about wind speed,
temperature and relative humidity - summing three different
kinds of measurements). From now on, we well refer to the
number of different kinds of measurements simply as 7.

Figure 6 shows the basic units of execution of the WISENEP
architecture. In the proposed processor, each matrix store
operation (MEM_WRITE cycle) can occur in parallel, up
to the limit of the number of microengines avaliable. Also,
execution of the three necessary steps for processing incoming
packets can be overlapped - while one packet content is
begin processed on MEM_WRITE cycle, the next one when
is already on the MEM_READ cycle. Thus, WISENET can
deliver a rate of one new packet per unit of time, assuming
that there is at least one engine for each plane. If there are not
enough microengines (e.g., the incoming packet may contain
five types of measured information but the processor has only
three microengines), the number of units of time to process
each packet is the ratio between the number of planes and the
number of engines, rounded up to the nearest integer.

In Figure 7, we can see that the same tasks are all performed
sequentially on RISC processors. A RISC processor needs
to read each packet field, translate node ID to X and Y
coordinates and finally write each kind of measurement on
its matrix. So, a it would take 2n + 4 unit of time to execute
this operation.

Note that ID Lookup phase takes 3 memory reads in a RISC
processor, instead of just one as in WISENEP. This is because
WISENEP ID Lookup hardware is especially designed for this



task, so 3 independent memory banks can be used. On the
other hand, a general propose RISC processor can access only
one memory position at a time.

Read packets fields Write in matrices

(n+1) x . e
MEM_READ i
|

ID lookup

Fig. 6. Execution model for receiving data packets on WISENEP

Read packets fields ID lookup Write in matrices

(n+1) x
MEM_READ

Fig. 7. Execution model for receiving data packets on RISC

Since RISC handles one packet in 2n + 4 units of time and
WISENEP handles an average of one packet per unit of time,
we can see that WISENEP is in general 2n + 4 times faster
than a RISC processor in Data Packet Processing. For example,
assuming a packet with 3 different kinds of measurements,
we could have a speedup factor of 10 on the most common
operation.

b) Grid Processing:: Figures 8 and 9 shows the exe-
cution model for edge detection on both architectures. They
represent the necessary steps to perform the Sobel Edge
Detection algorithm on each architecture. The = and y on the
Figures, as well on the equations ahead, denotes the horizontal
and vertical size of the grid view, in terms of number of grid
points. The lozenges on these diagrams represent a loop of
x, y and n steps, respectively. We will not explain how the
execution model graphs were derived from Sobel algorithm in
order to not make the argument too long. Readers who wants
more information about Sobel algorithm can refer to [12].

Analyzing those execution models, we can see that a RISC
processor must work on each grid view sequentially, whereas
WISENEP will process each grid simultaneously using its
parallel microengines. There is also another benefit of using
a customized architecture for grid processing: faster matrix
operations. Processing a grid view usually consists of many in-
dependent operations on a m xm matrix. Sobel edge detection,
in this particular case, performs 7 different multiplications
on 3x3 matrices. Especially designed hardware can calculate
these 7 multiplications in parallel*.

4These are simple multiplications (factors of 0, 1, 2, -1 and -2) that
can be done with simple combinational logic. We are not proposing 7 full
multiplicators in parallel.

Read 3x3 matrix

Mulply by [Dx| and [Dy|

Wiie edge

Fig. 8. Execution model for edge detection on WISENEP

Wiite edge

Fig. 9.

Execution model for edge detection on RISC

Considering that all grid views can be processed in parallel,
the time needed to process Sobel edge detection on WISENEP
is (in units of time):

y(6 + 10z)

In a RISC processor, on the other hand, the same computation
is performed in:

n x y(6 + 24z)

Since z should be much greater than 10 in a normal grid view,
10z would be much greater than 6 (so ~ 24x). Therefore, the
speedup can be summarized as:

nxy(6+24x) nx24ry

y(6+10x) ~  10zy

For example, assuming three different grid views, the perfor-
mance gain of WISENEP would be 7 times.

Analytical modeling of other grid operations is done simi-
larly. Table II shows the results for each grid operation.

n x 2.4

Grid Execution Execution Speedup (ap-
Operation time in | time in RISC proximately)
WISENEP
Conditional In- | y(6 + 5x) nxy(6+30z) | nx6
terpolation
Edge Detection | y(6 + 10x) nXxy(6+24z) | nx24
Binary Thick- | y(6 + 6x) nxy(6+1lz) | n x 1.8
ening
TABLE 11

EXECUTION TIME AND SPEEDUP FOR EACH GRID OPERATION

4) Analysis: In comparison with a RISC processor,
WISENEP speedups data packet processing, the most common
task, by a factor of 10. Grid processing, a not so common
task but very time-consuming, is speeded up about 9 times.
Grid processing speedup is the combined speedup of Edge



Detection, Binary Thickening and Conditional Interpolation
operations. Figure 10 shows the execution time for each bench-
mark on both architectures. To calculate these numbers, we are
considering n = 3 (three different kinds of measurements). In
this particular case, these results mean that for data packet
processing and grid processing, WISENEP is about 9 to 10
times more efficient than a RISC processor.

Execution time
(thousands of units of time)

CWSNP
BRISC

10,4

Edge Detection ‘74 3

Binary Thickening

Conditi 53
Interpolation 92,7

Data Packet | 1 unit
Processing | 10 units

Note: Considering n=3 and a 32x32 grid

Fig. 10. Benchmarks’ execution time for each processor

B. Processor Simulation

In order to simulate WISENEP architecture, a functional
simulator was implemented in C++ language. A functional
simulator divides the processor into blocks that will exist in a
real implementation. Therefore, the simulation must produce
results similar to results of the program running on the actual
processor. The total number of clocks necessary to execute the
benchmarks is a natural output of a functional simulator.

WISENEP’s performance was compared against the per-
formance of a RISC processor. The RISC application was
implemented in the C language and executed in a SPARC
ULTRA-5 (360MHz) machine running in a single user mode,
i.e., only a small set of essential kernel processes are left
running. This application was instrumented in order to log
the amount of CPU time consumed by the application what,
in turn, was used for estimating the number of clock cycles
elapsed.

1) WISENEP Simulation Methodology: In order to con-
struct an accurate simulator, we designed a entire processor
datapath and control logic. To make sure the feasibility of a
real world implementation, this design is almost at hardware
implementation level.

The simulator was built using a hardware simulation frame-
work that provided simulation core functions, like basic hard-
ware blocks, clock generation, block interconnection features
and wire signal propagation. The framework has a library of
pre-defined hardware blocks, such as ALU, Registers, Mux’s,
Logical Gates, RAM and ROM Memory and others. More
complex blocks - for example, edge detection logic - were
constructed using Finite State Machines in conjunction with
simple combinational logic. In this manner, this framework
gives a low level idea as how it would be a real hardware
implementation of our design.

Each of these blocks has a set of inputs and outputs. To
construct the WISENEP simulator, we connected the inputs
and outputs of the blocks according to our datapath design.
The final result is a cycle accurate hardware simulator that not
only shows the feasibility of a real world implementation but
gives us precise performance results in terms of clock cycles,
as well.

Note, however, that the framework does not simulate gate
propagation delay and in turn we cannot determine the min-
imum clock period. On the other hand, the critical path of
our design is no longer than a typical RISC so, considering
the same underlining technology, this allows us to assume that
clock frequencies for WISENEP and RISC processors will be
very similar. Under these circumstances, the number of clock
cycles needed for carrying out a task is a very good proxy for
comparing WISENEP and RISC processors performance.

2) Benchmarks: An application has been envisioned in
order to be implemented on both architectures (RISC and
WISENEP). Imagine a large area mapped into a 32 x 32
grid where each sensor corresponds to a grid point and they
are collecting four data types (e.g., temperature, pressure,
humidity and luminosity).

The tasks were chosen to be part of the benchmark: data
packet processing and edge detection grid operation. Data
packets containing the four values measured by each sensor
will arrive uninterruptedly and the simulators will just store
these values in four different matrices. Besides that, from time
to time, a timer event will arrive, so that the edge detection
function will be started for each one of the four grid views. A
new matrix containing the result of the edge detection function
will be generated for each kind of data.

In order to study the performance gains of the proposed
network processor, we varied the workload in terms of two
parameters: the amount of event timers and number of data
types being monitored (i.e., which arrive into the packet,
simultaneously).

3) Simulation Results: The initial results will be presented
by means of graph curves representing the number of clock
ticks elapsed, where we vary the number of different measure-
ments. Each graph contains two curves: one for RISC data and
another one for WISENEP data.

1 Note: results for 2000 packets received

-o- WISENEP
60 4 % RISC

Execution Time
(clock ticks)
3

2 3
Measurements Processed

Fig. 11. Execution time comparison varying number of sensed variables,
considering only data packets



300 4
Note: results for 2000 timer events
250 4
200 +

150 -

Execution Time
(thousands of clock ticks)

-o- WISENEP
-#RISC

0 T T T |
1 2 3 4

Measurements Processed

100 -

50 4

Fig. 12.  Execution time comparison varying number of sensed variables,
considering only timer events

Note that not only WISENEP is more efficient, but also
it scales more gracefully. When we varied the workload in
terms of number of different kind of measurements, WISENEP
performs better than RISC while receiving both timer event
and data packets —Figures 12 and IV-B.3, respectively.

In addition, while RISC architecture presents a linear growth
when increasing the number of sensed variables, WISENEP
maintains the number of clock ticks constant. As mentioned
in Section IV-A.3, this is so because RISC processes each
measure sequentially. WISENEP, on the other hand, is able to
distribute workload among its microengines.

In Figure 13(a), it is presented the execution time for
processing one data packet with 3 different kinds of measure-
ments. Note that WISENEP is 60 times more efficient than
RISC, approximately. In the same way, Figure 13(b) shows
that WISENEP runs Sobel edge detection 8 times faster than
RISC. Note that some of this can be attributed to the overhead
generated by the execution environment. Nevertheless, this
value gives an idea of how much WISENEP is efficient.

The simulation results presented here are coherent with the
analytical results. Both showed that performance could be
improved by one order of magnitude by using the proposed
architecture, especially in large scale networks.

Execution Time
(clock ticks)
Execution Time
(clock ticks)

WISENEP RISC WISENEP RISC

(a) Execution time for processing
one data packet with 3 sensed
variables

(b) Execution time for processing
edge detection for 3 planes

Fig. 13. Efficiency comparison between WISENEP and RISC architectures

V. CONCLUSIONS

In this paper we presented a novel architecture for a WSN
base station processor designed to be able to handle large
amounts of sensor data very fast. We can summarize the main
designs decisions in three points: First, the processor datapath

was optimized to handle the most common task - data packet
processing. Second, the use of explicit parallelism, by means
of multiple microengines and independent RAM memories, al-
lows simultaneous processing of multiple packet fields. Third,
the implantation of image processing algorithms in hardware
allows the grid view to be processed very efficiently.

By tailoring the processor design to the specific require-
ments of WSN data processing tasks, we achieved significant
performance gains over the reference solution - a base station
with a RISC processor. Our results, using two different ap-
proaches, show an improvement of one order of magniture in
speed over a regular RISC processor. These results will enable
new kinds of applications or new levels of functionality in
situations where the base station must process a global view
of the measurements made by the sensors.

WISENEP combines the flexibility of a RISC processor
with the speed of an Application Specific Integrated Circuit
(ASIC). It can process general purpose instructions (although
less efficiently than a RISC processor) and it has a datapath
specifically designed to handle WSN data packets. However,
WISENEP will not be efficient for processing tasks other than
spatial sensor data mapped into a bi or tri-dimensional grid.
WSNs that do not have those characteristics will not benefit
from WISENEP.

Further work includes implementing WISENEP in a FPGA
and then validating the concept with respect to processor area.
A physical implementation will allow us to compare power
consumption, cost of the proposed solution and the actual
speed in relation to a RISC processor. .

REFERENCES

[1] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Mobile
Computing and Networking, Seattle, WA USA, 1999, pp. 263-270.
[Online]. Available: citeseer.nj.nec.com/estrin99next.html

[2] L FE Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey
on Sensor Networks,” IEEE Communications, vol. 40, no. 8, pp. 102—
114, 2002.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in Proceedings
of the ninth international conference on Architectural support for
programming languages and operating systems. ~ACM Press, 2000,
pp. 93-104.

[4] V.Mhatre and C. Rosenberg, “Homogeneous vs. heterogeneous clustered
sensor networks: A comparative study,” in /EEE International Confer-
ence on Communications (ICC 2004), Paris, France, June 2004.

[5] H. Zhang and A. Arora, “Gs3: scalable self-configuration and self-
healing in wireless sensor networks,” Comput. Networks, vol. 43, no. 4,
pp. 459480, 2003.

[6] M. Chu, S. K. Mitter, and F. Zhao, “An information architecture for
distributed inference on ad hoc sensor networks,” in Forty-first Annual
Allerton Conference on Communication, Control, and Computing, Mon-
ticello, USA, 2003, oct.

[7]1 D. Ganesan, D. Estrin, and J. Heidemann, “Dimensions: why do we
need a new data handling architecture for sensor networks?” SIGCOMM
Comput. Commun. Rev., vol. 33, no. 1, pp. 143-148, 2003.

[8] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative
Approach, 3rd ed. Prentice Hall, 2003.

[91 W. Stallings, Computer Organization and Architecture: Designing for
Performance, 4th ed. Prentice Hall, 1996.

[10] H. S. Stone, High-Performance Computer Architecture; third edition.
Addison-Wesley, 1993.

[11] D.E.Comer, Network Systems Design using Network Processors.
tice Hall, 2003.

[12] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison-
Wesley, 1992.

Pren-



