
Sorting Large Records On A Cell Broadband
Engine*

Shibdas Bandyopadhyay and Sartaj Sahni
Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL 32611
shibdas@ufl.edu, sahni@cise.ufl.edu

Abstract— We consider the sorting of a large number of
multifield records on the Cell Broadband engine. We show that
our method, which generates runs using a 2-way merge and then
merges these runs using a 4-way merge, outperforms previously
proposed sort methods that use either comb sort or bitonic sort
for run generation followed by a 2-way odd-even merging of
runs. Interestingly, best performance is achieved by usingscalar
memory copy instructions rather than vector instructions.

Index Terms— Cell broadband engine, sorting multifield
records, merge sort.

I. I NTRODUCTION

The Cell Broadband Engine (CBE) is a heterogeneous
multicore architecture developed by IBM, Sony, and Toshiba.
A CBE (Figure 1) consists of a Power PC (PPU) core, eight
Synergistic Processing Elements or Units (SPEs or SPUs),
and associated memory transfer mechanisms [7]. The SPUs
are connected in a ring topology and each SPU has its own
local store. However, SPUs have no local cache and no branch
prediction logic. Data may be moved between an SPUs local
store and central memory via a DMA transfer, which is
handled by a Memory Flow Control (MFC). Since the MFC
runs independent of the SPUs, data transfer can be done
concurrently with computation.

1: Architecture of the Cell Broadband Engine [6]

* This research was supported, in part, by the National Science Foundation
under grant 0829916 The authors acknowledge Georgia Institute of Technol-
ogy and its Sony-Toshiba-IBM Center of Competence for the use of their Cell
Broadband Engine Resource.

Sorting on a CBE has been considered earlier in [1], [5],
[9], [13]. The algorithm of Sharma et al. [13] uses the master-
slave model that was also used by Won and Sahni [14]. In this
model, the SPUs act as slaves to the PPU. Each SPU sorts a
memory load of data and the PPU merges the sorted memory
loads received from the SPUs. The remaining papers use a
hierarchical model in which the merging is done also by the
SPUs. In this paper, we focus on the hierarchical model. The
CBE sort algorithms of [1], [5], [9], [13] are designed to sort
numbers and make extensive use of the CBE’s SIMD vector
instructions. Inoue et al. [9] describe how their number sorting
algorithm may be adpated to sort multifield records. The focus
of this paper is sorting a large number of multifield records.

The CBE number sorting algorithms of [1], [5], [9] follow
the general two phase paradigm for an external sort [8]. In the
first phase sorted sequences called runs are generated using
the SPUs as independent processors. In the second phase,
called run merging, the runs generated in the first phase are
merged together into a single run. AA-sort, which is the
CBE sort algorithm proposed in [9], uses an adaptation of
comb sort for the run generation phase. The complexity of
comb sort, which was originally proposed by Knuth [10] and
rediscovered by Dobosiewicz [3] and Box and Lacey [2], is
O(n2) [3]. The second phase of AA-sort is a SIMD adaptation
of odd-even merge [10] and a standard 2-way merge of
runs. CellSort, which is the CBE sort algorithm proposed in
[5], generates runs using an adaptation of bitonic sort (e.g.,
[10]) whose complexity insO(n log2 n). Run merging is done
using a bitonic merge. Bandyopadhyay and Sahni [1] develop
SPU adaptations of brick, shaker, and merge sorts. Extensive
experiments conducted by them reveal that their SPU merge
sort adaptation out performs their SPU brick and shaker sort
adaptations as well as the SPU adaptations of comb sort [9]
and bitonic sort [5]. So, merge sort is the best algorithm for
the run generating phase, at least when we are sorting numbers
rather than multifield records.

Inoue et al. [9] extend their number sorting algorithm to
sort records; each record has a key and one or more other
fields. They consider two cases. In the first, the keys of all
records are stored in one array,K, and the remaining fields are
stored in another arrayO. In this case, the code for AA sort is
augmented with instructions to move corresponding elements
of O whenever elements ofK are moved, ensuring thatK[i]
andO[i] always define a record. In the second scheme, each

record is followed by its other fields. This layout is considered
only for the case when each of the other fields of a record
occupy 32 bits. Now, each 128-bit vector is comprised of two
records (2 32-bit keys and their corresponding other fields).
When two records are compared using an SIMD compare
instruction, 4 pairs of 32-bit compares are done. Two of these
involve keys and two involve data. The results of the data
compare are replaced by the results of the corresponding key
compares so as to ensure that the ensuing key move also
results in a move of the associated other fields. In this second
layout, sort efficiency declines as each vector compare really
compares only 2 pairs of keys (rather than 4 pairs) and there
is the added overhead of replacing the result of data compares
with that of key compares.

As indicated earlier, our focus in this paper is sorting
multifield records. We consider both the layouts considered
by Inoue et al. [9] as well as the case when the other fields of
a record occupy more than 32 bits. Our main contribution
is the development of a 4-way run merging algorithm for
the CBE. Using this 4-way run merging algorithm we are
able to sort multifield records faster than using a 2-way run
merging algorithm as proposed in [9]. We begin in Section II
by describing SPU vector and memory operations used in the
remainder of this paper. Then in section III we describe
more carefully the two different record layouts used in [9]
and describe also how algorithms to sort numbers may be
adapted to sort multifield records in these two layouts. In
section ?? we describe the SIMD version of our 4-way merge
algorithm and in Section?? we describe the scalar version of
this 4-way merge algorithm. Experimental results comparing
various algorithms to sort multifield records are presentedin
Section V.

II. SPU VECTOR AND MEMORY OPERATIONS

We describe the key SIMD functions that operate on a vector
of 4 numbers in this section. These functions are used in
the development of our sorting algorithms. In the following,
v1, v2, min, max, and temp are vectors, each comprised
of 4 numbers andp, p1, andp2 are bit patterns. Also,dest

(destination) andsrc (source) are addresses in the local store
of an SPU andbufferA is a buffer in local store while
streamA is a data stream in main memory. Function names
that begin withspu are standard C/C++ Cell SPU intrinsics.
Our description of these functions is tailored to the sorting
application of this paper.

1) spu shuffle(v1, v2, p) · · · This function returns a vec-
tor comprised of a subset of the 8 numbers inv1 and
v2. The returned subset is determined by the bit pattern
p. Let W , X , Y , andZ denote the 4 numbers (left to
right) of v1 and let A, B, C, and D denote those of
v2. The bit patternp = XCCW , for example, returns a
vector comprised of the second number inv1 followed
by two copies of the third number ofv2 followed by
the first number inv1. In the following, we assume that
constant patterns such as XYZD have been pre-defined.

2) spu slqwbyte(v1, n) · · · Returns a vector obtained by
shifting the bytes ofv1 m bytes to the left, wherem is
the number represented by the 5 least significant bits of
n. The left shift is done with zero fill. So, the rightmost
m bytes of the returned vector are 0.

3) spu cmpgt(v1, v2) · · · A 128-bit vector representing the
pairwise comparison of the 4 numbers ofv1 with those
of v2 is returned. If an element ofv1 is greater than the
corresponding element ofv2, the corresponding 32 bits
of the returned vector are 1; otherwise, these bits are 0.

4) spu select(v1, v2, p) · · · Returns a vector whoseith bit
comes fromv1 (v2) when theith bit of p is 0 (1).

5) memcpy(dest, src, size) copies thesize number of
bytes from the local store location beginning atsrc to
dest.

6) dmaIn(bufferA, streamA) This function triggers a
DMA transfer of the next buffer load of data from
streamA in main memory intobufferA in the local
store. This is done asynchronously and concurrently with
SPU execution.

7) dmaOut(bufferA, streamA) This function is similar
to dmaIn except that a buffer load of data is transferred
asynchronously frombufferA in the local store to
streamA in main memory.

III. R ECORD LAYOUT AND SORTING

A record R is comprised of a keyk and m other fields
f1, f2, · · · , fm. For simplicity, we assume that the key and each
other field occupies 32 bits. Hence, a 128-bit CBE vector may
hold up to 4 of these 32-bit values. Although the development
in this paper relies heavily on storing 4 keys in a vector (hence
on each key occupying 32 bits), the size of the other fields isn’t
very significant. Letki be the key of recordRi and letfij ,
1 ≤ j ≤ m be this record’s other fields. With our simplifying
assumption of uniform size fields, we may view then records
to be sorted as a two-dimensional arrayfieldsArray[][] with
fieldsArray[i][0] = ki and fieldsArray[i][j] = fij , 1 ≤

j ≤ m, 1 ≤ i ≤ n. When this array is mapped to memory in
column-major order, we get the first layout considered in [9].
We call this layout theByField layout as, in this layout, then
keys come first. Next we have then values for the first field of
the records followed by then second fields, and so on. When
the fields array is mapped to memory in row-major order, we
get the second layout considered in [9]. This layout, which
is a more common layout for records, is called theByRecord
layout as, in this layout, all the fields ofR1 come first, then
we have all fields ofR2 and so on. When the sort begins with
data in theByField (ByRecord) layout, the result of the sort
must also be in theByField (ByRecord) layout.

There are two high-level strategies to sort multifield records.
In the first, we strip the keys from the records and createn

tuples of the form(ki, i). We then sort the tuples by their
first component. The second component of the tuples in the
sorted sequence defines a permutation of the record indexes
that corresponds to the sorted order for the initial records. The
records are rearranged into this permutation by either copying

from fieldsArray to new space or inplace using a cycle
chasing algorithm as described for a table sort in [8]. This
strategy has the advantage of requiring only a linear number
of record moves. So, if the size of each record iss and if the
time to sort the tuples isO(n log n), the entire sort of then
records can be completed inO(n log n+ns) time. The second
high-level strategy is to move all the fields of a record each
time its key is moved by the sort algorithm. In this case, if the
time to sort the keys alone isO(n log n), the time to sort the
records isO(ns log n). For even relatively smalls, the first
strategy outperforms the second when the records are stored
in uniform access memory. However, since reordering records
according to a prescribed permutation with a linear number of
moves makes random accesses to memory, the second scheme
outperforms the first (unlesss is very large) when the records
to be rearranged are in relatively slow memory such as disk
or the main memory of the CBE. For this reason, we focus,
in this paper, on using the second strategy. That is, our sort
algorithm moves all the fields of a record whenever its key is
moved.

Two SIMD vector operations used frequently in number
sorting algorithms arefindmin andshuffle. Thefindmin

operation compares corresponding elements in two vectors and
returns a vectormin that contains, for each compared pair, the
smaller. For example, when the two vectors being compared
are (4, 6, 2, 9) and (1, 8, 5, 3), themin is (1, 6, 2, 3). Suppose
that vi andvj are vectors that, respectively, contain the keys
for recordsRi:i+3 and Rj:j+3. Figure 2 shows how we may
move the records with the smaller keys to a block of memory
beginning atminRecords.

pattern = spu cmpgt(vi, vj);

minRecords = fields select(vi, vj, pattern);

2: Thefindmin operation for records

When theByField layout is used,fields select takes the
form given in Figure 3.

for(p = 1; p <= m; p++) {

minRecords[p] = spu select(fieldsArray[i][p],

fieldsArray[j][p], pattern);

}

3: fields select operation inByField layout

Notice that in the byF ield layout, the elements
fieldsArray[i : i + 3][p] are contiguous and define a
4-element vector. However, in theByRecord layout, these
elements are not contiguous and a different strategy (Figure 4)
must be employed. The functionmemcpy(dest, src, size)
moves size number of bytes from the local store location
beginning atsrc to the local store location beginning atdest;
recSize is the length of a record including its key (i.e., it is
the number of bytes taken by a row offieldsArray).

The shuffle operation defined byspu shuffle for the
case of sorting numbers may be extended to the case of

for(p = 0; p < 4; p++) {

memcpy(minRecords + p * recSize, (pattern[p] == 1)

? fieldsArray[i+p] : fieldsArray[j+p], recSize);

}

4: fields select operation inByRecord layout

multifield records using the code of Figure 5 for thebyF ield

layout and that of Figure 6 for theByRecord layout. Both
codes are for the case when the shuffle pattern isWY AC.
Other shuffle patterns are done in a similar way.

for(p = 0; p <= m; p++) {

resultRecords[p] = spu shuffle(fieldsArray[i][p],

fieldsArray[j][p], WYAC);

}

5: Shuffling two records inByField layout

memcpy(resultRecords, arrayFields[i], recSize);

memcpy(resultrecords + recSize, arrayFields[i + 2],

recSize);

memcpy(resultFields + 2 * recSize, arrayFields[j],

recSize);

memcpy(resultFields + 3 * recSize, arrayFields[j +

2], recSize);

6: Shuffling two records inByRecord layout

We observe that when theByField layout is used the
findMin andshuffle operations performO(m) vector oper-
ations and that when theByRecord layout is used, a constant
number (4) ofmemcpy operations are done. However, the
time for eachmemcpy operation increases withm.

IV. 4-WAY MERGE

In Section III, we saw the adaptations needed to the run
generation algorithms of [1], [5], [9] so that these may be used
to generate runs for multifield records rather than for numbers.
In the run merging phase, each of the SPUs independently
merges a different set of runs. So, one need develop only a
merge algorithm for a single SPU. Inoue et al. [9] propose a
single SPU merging algorithm that merges runs in pairs (i.e., a
2-way merge) using an adaptation of odd-even merge. It takes
3 spu cmpgt instructions, 6spu shuffle and 6spu select

instructions to merge two SPU vectors using this scheme. The
run merging strategy of [9] may be adapted to the case of
multifield records using the methods of Section III. When we
are sorting numbers, the SPU processing time (computation
time) exceeds the time spent moving data between the main
memory and the local SPU memories (IO time) and it is
possible to hide virtually all of the IO time using double
buffering and asynchronous DMA transfers. Since the use of
a higher-order merge in the run merging phase reduces IO
time and has little impact on computation time [8], there is no
advantage to considering a higher-order merge when sorting

numbers. However, when sorting multifield records, the IO
time increases with the size of a record and for suitably large
records, this IO time will exceed the computation time and
so cannot be effectively hidden using a 2-way merge and
double buffering. So, for multifield records, there is merit
to developing a higher-order merge. We propose two 4-way
merge algorithms. One is a scalar algorithm and the other a
vectorized SIMD algorithm. Both algorithms are based on the
high-level strategy shown in Figure 7.

7: 4-way merge

Our 4-way merge strategy involves performing 3 2-way
merges in a single SPU using two buffers (main and alt)
for each of the 4 input streams A, B, C, and D as well as
2 buffers for the output stream O. An additional buffer is
used for the output (E and F, respectively) of each of the
two left 2-way merge nodes of Figure 7. So, we employ a
total 12 buffers. Runs A and B are pairwise merged using the
top left 2-way merge node while runs C and D are pairwise
merged using the bottom left 2-way merge node. The former
2-way merge generates the intermediate run E while the latter
generates the intermediate run F. The intermediate runs E and
F are merged by the right 2-way merge node to produce the
output run O, which is written back to main memory. Run
generation is done one block or buffer load at a time. Double
buffering is employed for the input of A, B, C, and D from
main memory and the output of O to main memory. By using
double buffering and asynchronous DMA transfers to and from
main memory, we are able to overlap much of the IO time with
computation time.

A. Scalar 4-way Merge

Figure 8 gives the pseudocode for our scalar 4-way merge
algorithm.

For simplicity, algorithm4wayMerge assumes that we
have an integral number of blocks of data in each run. So,
if each of the runs A, B, C, and D is (say) 10 blocks long,
the output run O will ben = 40 blocks long.4wayMerge

generates these outputn blocks one block at a time. Even
blocks are accumulated in one of the output buffers and odd
blocks in the other. When an output buffer becomes full,
we write the block to memory using an asynchronous DMA
transfer (dmaOut) and continue output run generation using
the other outbut buffer. So, other than when the first output

Algorithm 4wayMerge(A, B, C, D, O, n)

{// Merge runs/streams A, B, C, and D to produce O

with

n blocks of size bSize

// bufferA is a buffer for A

initiate a dmaIn for bufferA, bufferB, bufferC,

and bufferD;

for (i = 0; i < n; i++) {

for (j = 0; j < bSize; j++) {

do block i if(bufferE is empty)

mergeEF(A, B, E);

if(bufferF is empty)

mergeEF(C, D, F);

move smaller record from front of bufferE

and bufferF to bufferO}

dmaOut(bufferO, O);

switch the roles of the output buffers;

}

}

8: 4-way merge

block is being generated and the last being written to main
memory, one of the output blocks is being written to main
memory while the other one is being filled with records for
the next block. At the end of each iteration of the outerfor
loop, we switch the roles of the two output buffers–the one that
was being written to main memory becomes the buffer to place
records for the next block and the one that was being filled is
written out. Of course, this switch may entail some delay as
we must wait for the ongoing (if any)dmaOut to complete
before we use this buffer for the records of the next block.
When generating a block of the output run, we merge from the
buffersbufferE andbufferF to the output bufferbufferO

that is currently designated for this purpose. The number of
records in a full buffer (i.e., the block size) isbSize. In case
either bufferE or bufferF is empty, the generation of the
output block is suspended and we proceed to fill the empty
buffer using the methodmergeEF , which merges from either
input streams A and B tobufferE or from streams C and
D to bufferF . The algorithmmergeEF merges for either
the input streams A and B tobufferE or from E and F

to bufferF . It uses double buffering on the streams A, B,
C, and D and ensures that there is always an activedmaIn

for these four input streams. Since the pseudocode is similar
to that for 4wayMerge, we do not provide this pseudocode
here. Records are moved between buffers using thememcpy

instruction when thebyRecord layout is used and moved one
field at a time when the layout isByField..

B. SIMD 4-way Merge

The SIMD version differs from the scalar version only in
the way each of the three 2-way merges comprising a 4-way
merge works. These 2-way merges move 4 records at a time
from input buffers to the output buffer. This is done using an
adaptation of the odd-even merge scheme of Inoue et al. [9]

for merging numbers to the case of merging multifield records.
Figure 9 gives the pseudocode for this adaptation.

Algorithm oddEvenMerge(v1, v2)

{// Merge records whose fields are in v1 and v2

vector temp1, temp2, temp3, temp4;

fields temp1Fields[], temp2Fields[];

fields temp3Fields[], temp4Fields[];

pattern = spu cmpgt(v1, v2);

temp1 = spu select(v1, v2, pattern);

temp2 = spu select(v2, v1, pattern);

temp1Fields = fields select(v1Fields, v2Fields,

pattern);

temp2Fields = fields select(v2Fields, v1Fields,

pattern);

// Stage 2

temp3 = spu slqwbyte(temp1, 8);

pattern = spu cmpgt(temp3, temp2);

pattern = spu shuffle(pattern, vZero, WXAC);

temp1 = spu select(temp3, temp2, pattern);

temp4 = spu select(temp2, temp3, pattern);

temp2 = spu shuffle(temp1, temp4, WACY);

temp3 = spu shuffle(temp1, temp4, ZXBD);

temp3Fields = fields rotate(temp1Fields, 8);

temp1Fields = fields select(temp3Fields,

temp2Fields, pattern);

temp4Fields = fields select(temp2Fields,

temp3Fields, pattern);

temp2Fields = fields shuffle(temp1Fields,

temp4Fields, WACY);

temp3Fields = fields shuffle(temp1Fields,

temp4Fields, ZXBD);

// Stage 3

pattern = spu cmpgt(temp2, temp3);

pattern = spu shuffle(pattern, vZero, WXYA);

temp1 = spu select(temp2, temp3, pattern);

temp4 = spu select(temp3, temp2, pattern);

temp1Fields = fields select(temp2Fields,

temp3Fields, pattern);

temp4Fields = fields select(temp3Fields,

temp2Fields, pattern);

// Stage 3

v1 = spu shuffle(temp1, temp4, ZWAX);

v2 = spu shuffle(temp1, temp4, BYCD);

v1Fields = fields shuffle(temp1Fields,

temp4Fields, ZWAX);

v2Fields = fields shuffle(temp1Fields,

temp4Fields, BYCD);

}

9: SIMD 2-way merge of 2 vectorsv1 andv2

In Algorithm oddEvenMerge, v1 andv2 are two vectors
each containing the keys of the next 4 records in the input
buffers for the two streams being merged. It is easy to see
that the next four records in the merged output are a subset
of these 8 records and in fact are the 4 records (of these 8)

with the smallest keys. AlgorithmoddEvenMerge determines
these 4 smallest records and moves these to the output buffer.

XXXXShibdas, pl adapt algorithm to new terminology and
add fieldsrotate to section 2 XXXXXXXX

V. EXPERIMENTAL RESULTS

We programmed several multifield record sorting algorithms
using Cell BE SDK 3.1. Specifically, the following algorithms
were coded and evaluated:

1) 2-way AA Sort ... this is the multifield record sorting
algorithm of Inoue et al. [9]. This uses a comb sort
variant for run generation and 2-way odd-even merge
for run merging.

2) 4-way AA Sort ... this uses a comb sort variant for run
generation as in [9] and our 4-way odd-even merge for
run merging (Section IV-B).

3) 2-way Bitonic Sort ... this is an adaptation of the Cell-
Sort algorithm of Gedik et al. [5] to multifield records
(Section III). It uses bitonic sort for run generation and
bitonic merge for run merging.

4) 4-way Bitonic Sort ... this uses bitonic sort for tun
generation as in [5] and our 4-way odd-even merge for
run merging (Section IV-B).

5) 2-way Merge Sort ... this uses an adaptation of the
SPU merge sort algorithm of Shibdas and Sahni [1] to
multifield records (Section III) for run generation and
the 2-way odd-even merge of [9] for run merging.

6) 4-way Merge Sort ... this uses an adaptation of the
SPU merge sort algorithm of Shibdas and Sahni [1] to
multifield records (Section III) for run generation and
our 4-way odd-even merge for run merging (Section IV-
B).

7) 2-way Scalar Merge Sort ... this uses an adaptation of the
SPU merge sort algorithm of Shibdas and Sahni [1] to
multifield records (Section III) for run generation. Run
merging is done using a 2-way scalar merging algorithm
derived from the 4-way scalar merging algorithm of
Section IV-A by eliminating the bottom left and the right
2-way merge nodes. for run merging (Section IV-A).

8) 4-way Scalar Merge Sort ... this uses an adaptation of
the SPU merge sort algorithm of Shibdas and Sahni [1]
to multifield records (Section III) for run generation and
our 4-way scalar merge for run merging (Section IV-A).

We experimented with the above 8 multifield sorting al-
gorithms using randomly generated input sequences. In our
experiments, the number of 32-bit fields per record varied
from 5 to 15 (in addition to the key field) and the number of
records varied from 4K to 1M. Also, we tried both layouts–
ByField andByRecord. For each combination of number of
fields, number of records, and layout type, the time to sort 10
random sequences was obtained. The standard deviation in the
observed run times was small and we report only the average
times.

A. Run Times For ByField Layout

Figures 14 through 13 give the average run times for our 8
sorting algorithms using theByField layout and Figures 18
through 21 compare the average run times for the 2-way and
4-way versions of each of our sort algorithms for the case
when the number of records to be sorted is 1M. For all our
data, the 4-way version outperformed the 2-way version. For
1M records with 5 32-bit fields (in addition to a 32-bit key),
the 4-way versions of AA Sort, Bitonic Sort, Merge Sort, and
Scalar Merge Sort, respectively, took a%, b%, c%, and d%
less time than taken by their 2-way counterparts and these
percentages for 15 fields were e%, f%, g%, and h%.

10: 2-way AA-Sort (ByField)

11: 2-way Bitonic Sort (ByField)

12: 2-way Merge Sort (ByField)

13: 2-way Scalar Merge Sort (ByField)

14: 4-way AA-Sort (ByField)

Figure 22 shows the run times for the 4 4-way sort algo-
rithms for 1M records. As can be seen, 4-way Bitonic Sort is
the slowest, followed by 4-way AA Sort, followed by 4-way
Merge Sort; 4-way Scalar Merge Sort was the fastest. In fact,
across all our data sets, 4-way Bitonic Sort took between 30%
and 35% more time than taken by 4-way AA Sort, which in
turn took between 10% and 15% more time than taken by
4-way Merge Sort. The fastest 4-way sort algorithm, 4-way
Scalar Merge Sort took, respectively, between a% and b%,
c% and d%, e% and f% less time than taken by 4-way AA
Sort, 4-way Bitonic Sort, and 4-way Merge Sort.

B. Run Times For ByRecord Layout

XXXXAdd similar material hereXXXXXXX

15: 4-way Bitonic Sort (ByField)

16: 4-way Merge Sort (ByField)

17: 4-way Scalar Merge Sort (ByField)

18: 2-way and 4-way Merge Sort (ByField), 1M records

C. Cross Layout Comparison

Although in a real application one may not be able to choose
the layout format for the data to be sorted, it is worthwhile
to compare the relative performance of the 8 sort methods
using the better layout for each. This means that we use
the ByField layout for AA Sort and Bitonic Sort and the
ByRecord layout for Merge Sort and Scalar Merge Sort.
Figure 24 gives the run times for the 4-way versions using

19: 2-way and 4-way Bitonic sort (ByField), 1M records

20: 2-way and 4-way Merge Sort (ByField), 1M records

21: 2-way and 4-way Scalar Merge Sort (ByField), 1M
records

22: 4-way sorts (ByField), 1M records

23: 2-way and 4-way Merge Sort (ByRecord)

these formats for the case of 1M records. Although Figure 24
is only for the case of 1M records, 4-way Scalar Merge Sort
was the fastest for all of our data sets. For 5 32-bit fields (in
addition to the key field) 4-way Scalar Merge SortByRecord)
ran a% faster than 4-way Bitonic Sort (ByField), b% faster
than 4-way AA Sort (ByField), and c% faster than 4-way
Merge Sort (ByRecord). When the number of fields was 5,
these percentages were

XXXX why is the 15 field data missing?XXXX

VI. CONCLUSION

We have shown how to adapt number sorts to sort multifield
records on the Cell Broadband Engine. We also have devel-
oped two 4-way merge algorithms for the run merging phase.
One of these is a scalar version and the other is an SIMD
version. Our experiments indicate that the 4-way Scalar Merge

24: All Sorting algorithms in different layouts

Sort developed in this paper is the fastest method (from among
those tested) to sort multifield records on the CBE.

REFERENCES

[1] Bandyopadhyay, S. and Sahni, S., Sorting on a Cell Broadband Engine
SPU, IEEE International Symposium on Computers and Communica-
tions (ISCC), 2009.

[2] Box, R. and Lacey, S., A fast, easy sort.Byte, 4, 1991, 315-318.
[3] Dobosiewicz, W., An efficient variation of bubble sort,Information

Processing Letters, 11, 1980, 5-6.
[4] Drozdek, A., Worst case for Comb Sort,Informatyka Teoretyczna i

Stosowana, 5, 9, 2005, 23-27.
[5] Gedik, B., Bordawekar, R., and Yu,P., CellSort: High performance

sorting on the Cell processor,VLDB, 2007, 1286-1297.
[6] A.C. Chow, G.C. Fossum, and D.A. Brokenshire, A Programming

Example: Large FFT on the Cell Broadband Engine.
[7] H. Hofstee, Power efficient processor architecture and the Cell Processor,

Proc. 11the International Symposium on High Performance Computer
Architecture, 2005.

[8] Horowitz, E., Sahni, S., and Mehta, D., Fundamentals of data structures
in C++, Second Edition, Silicon Press, 2007.

[9] Inoue, H., Moriyama, T., Komatsu, H., and Nakatani, T., AA-sort:
A new parallel sorting algorithm for multi-core SIMD processors,
16th International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2007.

[10] Knuth, D., The Art of Computer Programming: Sorting and Searching,
Volume 3, Second Edition, Addison Wesley, 1998.

[11] Lemke, P., The performance of randomized Shellsort-like network
sorting algorithms, SCAMP working paper P18/94, Institutefor Defense
Analysis, Princeton, NJ, 1994.

[12] Sedgewick, R., Analysis of Shellsort and related algorithms, 4th Euro-
pean Symposium on Algorithms, 1996.

[13] Sharma, D., Thapar, V., Ammar, R., Rajasekaran, S., andAhmed,
M., Efficient sorting algorithms for the Cell Broadband Engine, IEEE
International Symposium on Computers and Communications (ISCC),
2008.

[14] Won, Y. and Sahni, S., Hypercube-to-host sorting,Jr. of Supercomputing,
3, 41-61, 1989.

