Sorting Large Records On A Cell Broadband
Engine*

Shibdas Bandyopadhyay and Sartaj Sahni
Department of Computer and Information Science and Engimge
University of Florida, Gainesville, FL 32611

shibdas@ufl.edu, sahni@cise.ufl.edu

Abstract—We consider the sorting of a large number of Sorting on a CBE has been considered earlier in [1], [5],
multifield records on the Cell Broadband engine. We show that [9], [13]. The algorithm of Sharma et al. [13] uses the master
our method, which generates runs using a 2-way merge and then g|a,e model that was also used by Won and Sahni [14]. In this
merges these runs using a 4-way merge, outperforms previolys
proposed sort methods that use either comb sort or bitonic sb model, the SPUs act as slaves to the PPU. Each SPU sorts a
for run generation followed by a 2-way odd-even merging of Mmemory load of data and the PPU merges the sorted memory
runs. Interestingly, best performance is achieved by usingcalar loads received from the SPUs. The remaining papers use a
memory copy instructions rather than vector instructions. hierarchical model in which the merging is done also by the
reclggjesx r:grén:;oie” broadband engine, sorting mulifield gpys. In this paper, we focus on the hierarchical model. The

' ' CBE sort algorithms of [1], [5], [9], [13] are designed to sor
numbers and make extensive use of the CBE’s SIMD vector
instructions. Inoue et al. [9] describe how their numbetisgr

The Cell Broadband Engine (CBE) is a heterogeneoaforithm may be adpated to sort multifield records. The $ocu
multicore architecture developed by IBM, Sony, and Toshibaf this paper is sorting a large number of multifield records.

A CBE (Figure 1) consists of a Power PC (PPU) core, eight The CBE number sorting algorithms of [1], [5], [9] follow
Synergistic Processing Elements or Units (SPEs or SPUt)e general two phase paradigm for an external sort [8].én th
and associated memory transfer mechanisms [7]. The SHiust phase sorted sequences called runs are generated using
are connected in a ring topology and each SPU has its othe SPUs as independent processors. In the second phase,
local store. However, SPUs have no local cache and no brawafied run merging, the runs generated in the first phase are
prediction logic. Data may be moved between an SPUs locakrged together into a single run. AA-sort, which is the
store and central memory via a DMA transfer, which i€BE sort algorithm proposed in [9], uses an adaptation of
runs independent of the SPUs, data transfer can be d@enb sort, which was originally proposed by Knuth [10] and
concurrently with computation. rediscovered by Dobosiewicz [3] and Box and Lacey [2], is
O(n?) [3]. The second phase of AA-sort is a SIMD adaptation
7 P | P oo o P runs. CellSort, which i; the CBE sort_ algorith_m proposed in
ﬁ‘ E [5], generates runs using an adglptanon of blto_nlc_sort.,(e.g
ET ? ? ‘ _: :. T ? - [10]) whose complexity in®)(nlog” n). Run merging is done
| EIB {up to 96Bicyclo) | SPU adaptations of brick, shaker, and merge sorts. Ex&nsiv
o | | 1 ”..-m H H experiments conducted by them reveal that their SPU merge
sort adaptation out performs their SPU brick and shaker sort
and bitonic sort [5]. So, merge sort is the best algorithm for
the run generating phase, at least when we are sorting nember
rather than multifield records.
Ll sort records; each record has a key and one or more other
fields. They consider two cases. In the first, the keys of all
1: Architecture of the Cell Broadband Engine [6] records are stored in one arrdy, and the remaining fields are

* This research was supported, in part, by the National Seigfoundation 5,,gmented with instructions to move corresponding elesnent
under grant 0829916 The authors acknowledge Georgiautestif Technol- . .
ogy and its Sony-Toshiba-IBM Center of Competence for treeafgheir Cell of O whenever elements of” are moved, ensuring thdf[l]

handled by a Memory Flow Control (MFC). Since the MF@omb sort for the run generation phase. The complexity of
of odd-even merge [10] and a standard 2-way merge of
seicyer} using a bitonic merge. Bandyopadhyay and Sahni [1] develop
adaptations as well as the SPU adaptations of comb sort [9]
Inoue et al. [9] extend their number sorting algorithm to
stored in another arra@. In this case, the code for AA sort is
Broadband Engine Resource. and O[i] always define a record. In the second scheme, each

|. INTRODUCTION

PPU

record is followed by its other fields. This layout is consgte 2) spu_slqwbyte(vl,n) --- Returns a vector obtained by
only for the case when each of the other fields of a record shifting the bytes o)1 m bytes to the left, wheren is
occupy 32 bits. Now, each 128-bit vector is comprised of two the number represented by the 5 least significant bits of
records (2 32-bit keys and their corresponding other fields) n. The left shift is done with zero fill. So, the rightmost
When two records are compared using an SIMD compare m bytes of the returned vector are 0.
instruction, 4 pairs of 32-bit compares are done. Two ofehes 3) spu_cmpgt(vl,v2) - -- A 128-bit vector representing the
involve keys and two involve data. The results of the data pairwise comparison of the 4 numbers:af with those
compare are replaced by the results of the corresponding key of v2 is returned. If an element afl is greater than the
compares so as to ensure that the ensuing key move also corresponding element ef2, the corresponding 32 bits
results in a move of the associated other fields. In this skcon of the returned vector are 1; otherwise, these bits are 0.
layout, sort efficiency declines as each vector compardyreal 4) spu_select(vl,v2,p) --- Returns a vector whosi¢h bit
compares only 2 pairs of keys (rather than 4 pairs) and there comes fromw1 (v2) when theith bit of p is 0 (1).
is the added overhead of replacing the result of data corapare5) memcpy(dest, src, size) copies thesize number of
with that of key compares. bytes from the local store location beginningsat to

As indicated earlier, our focus in this paper is sorting dest.
multifield records. We consider both the layouts considered6) dmaln(bufferA,streamA) This function triggers a
by Inoue et al. [9] as well as the case when the other fields of DMA transfer of the next buffer load of data from
a record occupy more than 32 bits. Our main contribution streamA in main memory intobuf ferA in the local
is the development of a 4-way run merging algorithm for store. This is done asynchronously and concurrently with
the CBE. Using this 4-way run merging algorithm we are SPU execution.
able to sort multifield records faster than using a 2-way run7) dmaOut(buf ferA, streamA) This function is similar

merging algorithm as proposed in [9]. We begin in Section Il to dmaln except that a buffer load of data is transferred
by describing SPU vector and memory operations used in the asynchronously frombuf ferA in the local store to
remainder of this paper. Then in section Ill we describe streamA in main memory.

more carefully the two different record layouts used in [9]
and describe also how algorithms to sort numbers may be
adapted to sort multifield records in these two layouts. In A record R is comprised of a key: andm other fields
section ?? we describe the SIMD version of our 4-way mergée, f2, - - -, fm. FOr simplicity, we assume that the key and each
algorithm and in Sectio?? we describe the scalar version ofother field occupies 32 bits. Hence, a 128-bit CBE vector may
this 4-way merge algorithm. Experimental results comgarirhold up to 4 of these 32-bit values. Although the development
various algorithms to sort multifield records are presered in this paper relies heavily on storing 4 keys in a vector ¢gen
Section V. on each key occupying 32 bits), the size of the other fields isn
very significant. Letk; be the key of record?; and let f;;,
1. SPU VECTOR AND MEMORY OPERATIONS 1 < 7 < m be this record’s other fields. With our simplifying

)) assumption of uniform size fields, we may view theecords
We describe the key SIMD functions that operate on a vect®f e sorted as a two-dimensional arrgiglds Array]][] with

of 4 numbers in this section. These functions are used } ; _ : 4 —

the development of our sorting algorithms. In the followin ﬁzliﬂjAfoZ@[% W:éna?hﬁéf;ilriifligrggggﬂd tofrgér;ofy in

vl, v2, min, maz, andtemp are vectors, each COmpr'seiolumn-major order, we get the first layout considered in [9]

of 4 numbers ang, pl, andp2 are bit patterns. Alsodest e call this layout theByField layout as, in this layout, the

(destination) andsrc (source) are addresses in the local stoligays come first. Next we have thevalues for the first field of

of an SPU andbufferA is a buffer in local store while the records followed by the second fields, and so on. When

streamA is a data stream in main memory. Function namege fields array is mapped to memory in row-major order, we

that begin withspu are standard C/C++ Cell SPU |ntr|nS|csget the second layout considered in [9]. This layout, which

Our description of these functions is tailored to the s@rting 53 more common layout for records, is called By&Record

application of this paper. layout as, in this layout, all the fields dt; come first, then

1) spu_shuf fle(vl,v2,p) --- This function returns a vec- we have all fields of?, and so on. When the sort begins with

tor comprised of a subset of the 8 numbersvinand data in theByField (ByRecord) layout, the result of the sort
v2. The returned subset is determined by the bit pattenmust also be in th®yField (ByRecord) layout.
p. Let W, X, Y, andZ denote the 4 numbers (left to There are two high-level strategies to sort multifield relsor
right) of v1 and letA, B, C, and D denote those of In the first, we strip the keys from the records and create
v2. The bit patterrp = XCCW, for example, returns a tuples of the form(k;,i). We then sort the tuples by their
vector comprised of the second numbemwinfollowed first component. The second component of the tuples in the
by two copies of the third number af2 followed by sorted sequence defines a permutation of the record indexes
the first number iny1. In the following, we assume thatthat corresponds to the sorted order for the initial recoftie
constant patterns such as XYZD have been pre-defineelcords are rearranged into this permutation by eitheriogpy

IIl. RECORDLAYOUT AND SORTING

. : ; for(p = 0; p < 4; p++) {
from fieldsArray to new space or inplace using a cycle . .

. _nencpy(m nRecords + p * recSize, (pattern[p] == 1)
chasing algorithm as described for a table sort in [8]. This . . .) .

- . ? fieldsArray[i+p] : fieldsArray[j+p], recSize);
strategy has the advantage of requiring only a linear numb}er
of record moves. So, if the size of each record snd if the
time to sort the tuples i®(nlogn), the entire sort of the: 4: fields_select operation inByRecord layout
records can be completed @(n log n+ns) time. The second
high-level strategy is to move all the fields of a record each
time its key is moved by the sort algorithm. In this case, & thmultifield records using the code of Figure 5 for theField
time to sort the keys alone i9(nlogn), the time to sort the layout and that of Figure 6 for th&yRecord layout. Both
records isO(nslogn). For even relatively smalk, the first codes are for the case when the shuffle patteriis AC.
strategy outperforms the second when the records are stogdbier shuffle patterns are done in a similar way.
in uniform access memory. However, since reordering record
; ; ; ; ; for(p =0; p <=m p++) {
according to a prescribed permutation with a linear numiber o _ _
resul t Records[p] = spushuffle(fieldsArray[i][p],
moves makes random accesses to memory, the second scheme _
. . fieldsArray[j]l[p]l, WAQ;

outperforms the first (unlessis very large) when the records
to be rearranged are in relatively slow memory such as disk
or the main memory of the CBE. For this reason, we focus, 5: Shuffling two records inBy Field layout
in this paper, on using the second strategy. That is, our sort

algorithm moves all the fields of a record whenever its key is
moved mencpy(resul t Records, arrayFields[i], recSize);

é];em:py(resultrecords + recSize, arrayFields[i + 2],
recSize);
éﬂem:py(resul tFields + 2 * recSize, arrayFields[j],

Two SIMD vector operations used frequently in numb
sorting algorithms argindmin andshuf fle. The findmin
operation compares corresponding elements in two vecthat's :
returns a vectomin that contains, for each compared pair, the®¢S' 2 . . _ _
smaller. For example, when the two vectors being compar&rcPy(resultFields + 3 * recSize, arrayFields[j +
are (4,6, 2,9)and (1, 8, 5, 3), thein is (1, 6, 2, 3). Suppose 2 recSize);
thatv; andv; are vectors that, respectively, contain the keys

for recordsR;.;3 and R;.;13. Figure 2 shows how we may 6: Shuffling two records iByRecord layout
move the records with the smaller keys to a block of memory
beginning atminRecords. We observe that when th@yField layout is used the

findMin andshuf fle operations perform)(m) vector oper-
ations and that when thBy Record layout is used, a constant
number (4) ofmemcpy operations are done. However, the
2: The findmin operation for records time for eachmemcpy operation increases with.

IV. 4-WAY MERGE

In Section Ill, we saw the adaptations needed to the run
generation algorithms of [1], [5], [9] so that these may bedus
to generate runs for multifield records rather than for numbe
mi nRecords[p] = spu.sel ect (fiel dsArray[i][p]. In the run merging phase, each of the SPUs independently
fieldsArray[j][p], pattern): merges a different set of runs. So, one need develop only a
} merge algorithm for a single SPU. Inoue et al. [9] propose a
o single SPU merging algorithm that merges runs in pairs @.e.
3: fields_select operation inByField layout 2-way merge) using an adaptation of odd-even merge. It takes
3 spu_cmpgt instructions, 6spu_shuf fle and 6 spu_select
Notice that in the byField layout, the elements instructions to merge two SPU vectors using this scheme. The
fieldsArrayli : i + 3][p] are contiguous and define arun merging strategy of [9] may be adapted to the case of
4-element vector. However, in thByRecord layout, these multifield records using the methods of Section Ill. When we
elements are not contiguous and a different strategy (Eigur are sorting numbers, the SPU processing time (computation
must be employed. The functiomemcpy(dest, src, size) time) exceeds the time spent moving data between the main
moves size number of bytes from the local store locatiormemory and the local SPU memories (IO time) and it is
beginning atsrc to the local store location beginning @tst; possible to hide virtually all of the 10 time using double
recSize is the length of a record including its key (i.e., it isbuffering and asynchronous DMA transfers. Since the use of
the number of bytes taken by a row ffeldsArray). a higher-order merge in the run merging phase reduces 10
The shuf fle operation defined bypu_shuf fle for the time and has little impact on computation time [8], thereas n
case of sorting numbers may be extended to the caseadfantage to considering a higher-order merge when sorting

pattern = spu.cnpgt (v;, v;);
m nRecords = fields.select(v;, v;, pattern);

When theByField layout is usedfields_select takes the
form given in Figure 3.

for(p =1 p <=m p++) {

. . gorithm 4wayMerge(A, B, C, D, O n)
numbers. However, when sorting multifield records, the |)/ Merge runs/streams A B C and D to produce O

time increases with the size of a record and for suitablydarg. th
records, this 10 time will exceed the computation time an
SO cannot be_ effectively hlddgr_1 using a 2-way merge a|_’1d {1 bufferAis a buffer for A
double buffering. So, for multifield records, there is merit initiate a dmaln for bufferA, bufferB. bufferC
to developing a higher-order merge. We propose two 4-way buf forD: ' ’ '
merge algorithms. One is a scalar algorithm and the other a for (i _ 0 i < i+

vectorized SIMD algorithm. Both algorithms are based on the for (i _ - < bsi ze: j+4) {

high-level strategy shown in Figure 7. do bl ock i [f(bufferE is empty)

nergeEF(A, B, E);

= if(bufferF is enpty)

S5 nmergeEF(C, D, F);

B ‘f\ nove snaller record fromfront of bufferE
) and bufferF to bufferO}
2-Wa - dnmaCut (bufferQ O);

' switch the roles of the output buffers;
Main | Alt [}

Main | Alt |-~ 8: 4-way merge

n bl ocks of size bSize

7: 4-way merge
block is being generated and the last being written to main
Our 4-way merge strategy involves performing 3 2-wagnemory, one of the output blocks is being written to main

merges in a single SPU using two buffers (main and alt)emory while the other one is being filled with records for
for each of the 4 input streams A, B, C, and D as well dge next block. At the end of each iteration of the outar
2 buffers for the output stream O. An additional buffer isoop, we switch the roles of the two output buffers—the ora th
used for the output (E and F, respectively) of each of thwas being written to main memory becomes the buffer to place
two left 2-way merge nodes of Figure 7. So, we employ mcords for the next block and the one that was being filled is
total 12 buffers. Runs A and B are pairwise merged using thitten out. Of course, this switch may entail some delay as
top left 2-way merge node while runs C and D are pairwisge must wait for the ongoing (if anyjmaOut to complete
merged using the bottom left 2-way merge node. The formeefore we use this buffer for the records of the next block.
2-way merge generates the intermediate run E while ther lat®hen generating a block of the output run, we merge from the
generates the intermediate run F. The intermediate runglE dwffersou f fer E andbuf ferF' to the output buffebu f ferO
F are merged by the right 2-way merge node to produce tif&t is currently designated for this purpose. The number of
output run O, which is written back to main memory. Rumecords in a full buffer (i.e., the block size) i$'ize. In case
generation is done one block or buffer load at a time. Doul#étherbuf ferE or buf ferF' is empty, the generation of the
buffering is employed for the input of A, B, C, and D fromoutput block is suspended and we proceed to fill the empty
main memory and the output of O to main memory. By usinlguffer using the methotherge E'F', which merges from either
double buffering and asynchronous DMA transfers to and froimput streams A and B téuf ferE or from streams C and
main memory, we are able to overlap much of the 10 time with to buf ferF. The algorithmmergeEF merges for either

computation time. the input streams A and B touf ferE or from E and F
to buf ferF. It uses double buffering on the streams A, B,
A Scalar 4-way Merge C, and D and ensures that there is always an activeln
Figure 8 gives the pseudocode for our scalar 4-way merfyg these four input streams. Since the pseudocode is simila
algorithm. to that for4wayMerge, we do not provide this pseudocode

For simplicity, algorithm4wayMerge assumes that we here. Records are moved between buffers usingithecpy
have an integral number of blocks of data in each run. Sastruction when théy Record layout is used and moved one
if each of the runs A, B, C, and D is (say) 10 blocks longdield at a time when the layout iBy Field..
the output run O will ben = 40 blocks long4wayM erge
generates these output blocks one block at a time. EvenB: SMD 4-way Merge
blocks are accumulated in one of the output buffers and oddThe SIMD version differs from the scalar version only in
blocks in the other. When an output buffer becomes fullhe way each of the three 2-way merges comprising a 4-way
we write the block to memory using an asynchronous DM#erge works. These 2-way merges move 4 records at a time
transfer ¢maOut) and continue output run generation usingrom input buffers to the output buffer. This is done using an
the other outbut buffer. So, other than when the first outpatiaptation of the odd-even merge scheme of Inoue et al. [9]

for merging numbers to the case of merging multifield recordsith the smallest keys. Algorithmdd Even M erge determines

Figure 9 gives the pseudocode for this adaptation.

Al gori thm oddEvenMer ge(vl, v2)

{/' Merge records whose fields are in vl and v2

vector tenpl, tenp2, tenp3, tenp4;
fields tenplFields[], tenp2Fields[];
fields tenp3Fields[], tenp4Fields[];
pattern = spu_cnpgt (vl, v2);

tenpl = spuselect(vl, v2, pattern);
tenp2 = spusel ect(v2, vl, pattern);

tenplFields = fields_sel ect(v1lFields, v2Fields,

pattern);

tenp2Fi el ds = fields_sel ect(v2Fi elds, viFields,

pattern);
/] Stage 2
tenp3 = spussl gwbyte(tenpl, 8);
pattern = spu_cnpgt (tenp3, tenp2);
pattern = spushuffle(pattern, vZero, WAC);
tenpl = spussel ect(tenp3, tenp2, pattern);
tenp4 = spussel ect(tenp2, tenp3, pattern);
tenp2 = spushuffle(tenpl, tenmp4, WACY);
tenp3 = spushuffle(tenpl, tenp4, ZXBD);
tenp3Fields = fieldsrotate(tenplFields, 8);
tenplFields = fiel ds_sel ect(tenp3Fields,
tenp2Fi el ds, pattern);
tenp4dFi el ds = fiel ds_sel ect (tenp2Fi el ds,
temp3Fi el ds, pattern);
tenp2Fi el ds = fieldsshuffle(tenplFields,
t enp4Fi el ds, WACY);
tenp3Fields = fieldsshuffle(tenplFields,
t enp4Fi el ds, ZXBD);
/'l Stage 3
pattern = spu_cnpgt (tenp2, tenp3);
pattern = spushuffle(pattern, vZero, WKYA);
tenpl = spussel ect(tenp2, tenp3, pattern);
tenp4 = spussel ect(tenp3, tenp2, pattern);
tenplFi el ds = fiel ds_sel ect (tenp2Fields,
temp3Fi el ds, pattern);
tenp4dFi el ds = fields_sel ect (tenp3Fi el ds,
tenp2Fi el ds, pattern);
/] Stage 3
vl = spushuffle(tenpl, tenp4, ZWAX);
v2 = spushuffle(tenpl, tenp4, BYCD);
vlFields = fields_shuffle(tenplFields,
t enp4Fi el ds, ZWAX);
v2Fields = fields_shuffle(tenplFields,
t enp4Fi el ds, BYCD);
}

9: SIMD 2-way merge of 2 vectorsl andv2

these 4 smallest records and moves these to the output.buffer

XXXXShibdas, pl adapt algorithm to new terminology and
add fieldsrotate to section 2 XXXXXXXX

V. EXPERIMENTAL RESULTS

We programmed several multifield record sorting algorithms
using Cell BE SDK 3.1. Specifically, the following algoritism
were coded and evaluated:

1) 2-way AA Sort ... this is the multifield record sorting
algorithm of Inoue et al. [9]. This uses a comb sort
variant for run generation and 2-way odd-even merge
for run merging.

2) 4-way AA Sort ... this uses a comb sort variant for run
generation as in [9] and our 4-way odd-even merge for
run merging (Section IV-B).

3) 2-way Bitonic Sort ... this is an adaptation of the Cell-
Sort algorithm of Gedik et al. [5] to multifield records
(Section Ill). It uses bitonic sort for run generation and
bitonic merge for run merging.

4) 4-way Bitonic Sort ... this uses bitonic sort for tun
generation as in [5] and our 4-way odd-even merge for
run merging (Section IV-B).

5) 2-way Merge Sort ... this uses an adaptation of the
SPU merge sort algorithm of Shibdas and Sahni [1] to
multifield records (Section 1ll) for run generation and
the 2-way odd-even merge of [9] for run merging.

6) 4-way Merge Sort ... this uses an adaptation of the
SPU merge sort algorithm of Shibdas and Sahni [1] to
multifield records (Section Ill) for run generation and
our 4-way odd-even merge for run merging (Section IV-
B).

7) 2-way Scalar Merge Sort ... this uses an adaptation of the
SPU merge sort algorithm of Shibdas and Sahni [1] to
multifield records (Section IIl) for run generation. Run
merging is done using a 2-way scalar merging algorithm
derived from the 4-way scalar merging algorithm of
Section IV-A by eliminating the bottom left and the right
2-way merge nodes. for run merging (Section IV-A).

8) 4-way Scalar Merge Sort ... this uses an adaptation of
the SPU merge sort algorithm of Shibdas and Sahni [1]
to multifield records (Section IIl) for run generation and
our 4-way scalar merge for run merging (Section IV-A).

We experimented with the above 8 multifield sorting al-
gorithms using randomly generated input sequences. In our
experiments, the number of 32-bit fields per record varied
from 5 to 15 (in addition to the key field) and the number of
records varied from 4K to 1M. Also, we tried both layouts—

In Algorithm odd EvenMerge, v1 andv2 are two vectors ByField and By Record. For each combination of number of
each containing the keys of the next 4 records in the inpii¢lds, number of records, and layout type, the time to sort 10
buffers for the two streams being merged. It is easy to seandom sequences was obtained. The standard deviatioa in th
that the next four records in the merged output are a subsbserved run times was small and we report only the average
of these 8 records and in fact are the 4 records (of theseti@)es.

A. Run Times For ByF'ield Layout e
Figures 14 through 13 give the average run times for our 1200000 7 -

sorting algorithms using th&y Field layout and Figures 18 | § oo -

through 21 compare the average run times for the 2-way a ; 509000

4-way versions of each of our sort algorithms for the cag £ soceo

when the number of records to be sorted is 1M. For all ol _a 400000 {

data, the 4-way version outperformed the 2-way version. F & 000 |~ sortan

1M records with 5 32-bit fields (in addition to a 32-bit key) o = — sas2
the 4-way versions of AA Sort, Bitonic Sort, Merge Sort, an ¢ o
Scalar Merge Sort, respectively, took a%, b%, c%, and d "oy,

less time than taken by their 2-way counterparts and the #Fields

percentages for 15 fields were e%, %, g%, and h%.

Records

4096

10: 2-way AA-Sort By Field)

700000 T"'/

S
500000

11: 2-way Bitonic Sort By Field) o 1\,
agooos j ;/- S
300000 .

200000 -

Execution time (micro sec)

12: 2-way Merge SortRBy Field)

1048576

262144

0 | — = 65536
R = ¥ 16384

Records

4096

13: 2-way Scalar Merge SorB{y Field) B g

Fields

—_— 16: 4-way Merge SortRyField)

800000 'I
700000 +
= 17: 4-way Scalar Merge SorBy Field)

500000
400000+

300000

Execution time {micro sec)

200000 L~ '. 1048576 S0R000
100000 l w2128 g - 800000 .
IRE 65536 g % 700000 #
5 16384 § £ so0000
4096 ‘E’ 500000 /
ToEoa g £ 400000 e
T _/ —— 2-way AASart
e ‘: 2000 ——4-way AA Sort
§ 200000
d
100000
14: 4-way AA-Sort ByField) g
5 6 7 8 9 10 11 12 13 14 15
Figure 22 shows the run times for the 4 4-way sort algo- #Fields

rithms for 1M records. As can be seen, 4-way Bitonic Sort is
the slowest, followed by 4-way AA Sort, followed by 4-way 18: 2-way and 4-way Merge SorB(Field), 1M records
Merge Sort; 4-way Scalar Merge Sort was the fastest. In fact,

across all our data sets, 4-way Bitonic Sort took between 30%

and 35% more time than taken by 4-way AA Sort, which g, Cross Layout Comparison

turn took between 10% and 15% more time than taken by i o

4-way Merge Sort. The fastest 4-way sort algorithm, 4-wa Although in a real application one may not bg gble to choqse
Scalar Merge Sort took, respectively, between a% and b€ layout format for the data to be sorted, it is worthwhile
c% and d%, e% and % less time than taken by 4-way Al compare the relative performance of the 8 sort methods

Sort, 4-way Bitonic Sort, and 4-way Merge Sort. using the better layout for each. This means that we use
the ByF'ield layout for AA Sort and Bitonic Sort and the
B. Run Times For ByRecord Layout ByRecord layout for Merge Sort and Scalar Merge Sort.

XXXXAdd similar material here XXXXXXX Figure 24 gives the run times for the 4-way versions using

1400000 1200000
1000000

800000 /

600000 / ‘(-:— S
/ ’/"""_' Bitonic Sort

400000 ‘/f —— Merge Sort (ByField)

1200000

1000000 ///
800000

600000 / — 2-way bitonic Sort
—— 4-way Bitonic Sort

400000

Execution time {micro sec)

= Merge Sort (By Record)

200000

Execution time {micro sec)

0

200000

5 6 ¥ 8 9 40 31 12 313 14

Br—7 T + T T T T T T T i #Fields
5 6 7 B8 9 10 11 12 13 14 15

Fields

24: All Sorting algorithms in different layouts

19: 2-way and 4-way Bitonic sortHy Field), 1M records

Sort developed in this paper is the fastest method (from gmon

those tested) to sort multifield records on the CBE.
20: 2-way and 4-way Merge SorB(/F'icld), 1M records

REFERENCES
. . [1] Bandyopadhyay, S. and Sahni, S., Sorting on a Cell BraadtEngine
21: 2-way and 4-way Scalar Merge SodByField), 1M SPU, IEEE International Symposium on Computers and Communica-
records tions (ISCC), 2009.

[2] Box, R. and Lacey, S., A fast, easy sdByte, 4, 1991, 315-318.
[3] Dobosiewicz, W., An efficient variation of bubble sorformation

S A . Processing Letters, 11, 1980, 5-6.
22: 4-way sortsBszeld), 1M records [4] Drozdek, A., Worst case for Comb Sornformatyka Teoretyczna i

Sosowana, 5, 9, 2005, 23-27.

555600 [5] Gedik, B., Bordawekar, R., and Yu,P., CellSort: High fpemance
sorting on the Cell processovLDB, 2007, 1286-1297.
_ 300000 [6] A.C. Chow, G.C. Fossum, and D.A. Brokenshire, A Prograngnm
g S é Example: Large FFT on the Cell Broadband Engine.
£ [7] H.Hofstee, Power efficient processor architecture &eddell Processor,
E 00000 Proc. 11the International Symposium on High Performance Computer
F —— 2-way Merge Sort Architecture, 2005.
R {hyRecre) [8] Horowitz, E., Sahni, S., and Mehta, D., Fundamentalsaiadstructures
T 100000 —4-way Merge Sort (By in C++, Second Edition, Silicon Press, 2007.
5 Recou) [9] Inoue, H., Moriyama, T., Komatsu, H., and Nakatani, T.A-8ort:
20000 A new parallel sorting algorithm for multi-core SIMD proscess,

16th International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2007.

[10] Knuth, D., The Art of Computer Programming: Sorting and Searching,

ek Volume 3, Second Edition, Addison Wesley, 1998.
[11] Lemke, P., The performance of randomized Shellske-Inetwork
sorting algorithms, SCAMP working paper P18/94, InstitieDefense

23: 2-way and 4-way Merge SorB{ Record) Analysis, Princeton, NJ, 1994.
[12] Sedgewick, R., Analysis of Shellsort and related atpars, 4th Euro-
pean Symposium on Algorithms, 1996.

. £13] Sharma, D., Thapar, V., Ammar, R., Rajasekaran, S., Ahched,
these formats for the case of 1M records. Although Figure 24" ., Efficient sorting algorithms for the Cell Broadband Emgil EEE
is only for the case of 1M records, 4-way Scalar Merge Sort International Symposium on Computers and Communications (ISCC),

was Fhe fastest for .aII of our data sets. For 5 32-bit fields ([514] \2,\(/);1]8"\{' and Sahni, S., Hypercube-to-host sortiigof Spercomputing,
addition to the key field) 4-way Scalar Merge S8 Record) 3. 41-61, 1989.

ran a% faster than 4-way Bitonic SotB{Field), b% faster

than 4-way AA Sort ByField), and c% faster than 4-way

Merge Sort ByRecord). When the number of fields was 5,

these percentages were

XXXX why is the 15 field data missing?XXXX

Q

5 & 7 8 5 40 11 12 I3 14 15

VI. CONCLUSION

We have shown how to adapt number sorts to sort multifield
records on the Cell Broadband Engine. We also have devel-
oped two 4-way merge algorithms for the run merging phase.
One of these is a scalar version and the other is an SIMD
version. Our experiments indicate that the 4-way Scalaigeler

