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Abstract—In this paper, we propose an obfusca-
tion/deobfuscation based technique to detect the presence
of possible SQL Injection Attacks (SQLIA) in a query
before submitting it to a DBMS. This technique combines
static and dynamic analysis. In the static phase, the queries
in the application are replaced by queries in obfuscated
form. The main idea behind obfuscation is to isolate all the
atomic formulas from other control elements of the query.
During the dynamic phase, the user inputs are merged into
the obfuscated atomic formulas, and the dynamic verifier
analysis the presence of possible SQLIA at atomic formula
level. Finally, a deobfuscation step is performed to recover
the original query before submitting it to the DBMS.

Keywords-SQL Injection Attack; Obfuscation; Deobfus-
cation;

I. Introduction

The recent surge in the growth of the Internet results
in the offering of a wide range of web-based services,
such as online stores, e-commerce, social network ser-
vices, etc. However, this increasing popularity of web-
based services make them an ideal target for different
attacks. One of the most serious type of attacks against
web applications is the family of the so called SQL in-
jection attacks (SQLIA). In an SQL injection attack, data
provided by the user during run-time are included in
an SQL query in such a way that part of the user’s
input is treated as SQL code. The web applications
which receive input from users and incorporate it into
SQL queries to an underlying database possibly suffers
from SQLIA.

For example, suppose a database contains user
names and passwords, and the underlying application
contains the following code:
query="SELECT * FROM emp WHERE username=‘" +

request.getParameter("username") + "’ AND password=‘" +

request.getParameter("password") + "’;"

This query is used to authenticate the user who
tries to login to the web site, by checking username
and password against data stored in the database.
However, if a malicious user enters the input: “’ OR
‘1’=‘1’--” into the username field, the query string
submitted to the database would be:

SELECT * FROM emp WHERE

username=‘ ’ OR ‘1’=‘1’--’ AND password=‘ ’;

Since the atomic formula ‘1’=‘1’ is a tautology, the
user will bypass the check, and authentication will be
successful.

In [1] authors classify the SQL injection attacks into
different types: i) Injection through user input; ii) In-
jection through cookies; iii) Injection through server
variables; iv) Second-order injection. The character-
ization of attacks is based on goals or intents of
the attacker. The different types of attack intents are:
Identifying injectable parameters, Performing database
finger-printing, Determining database schema, Extract-
ing data, Adding or modifying data, Performing denial
of service, Evading detection, Bypassing authentica-
tion, Executing remote commands, Performing privi-
lege escalation.

In this paper, we propose a novel scheme to detect
the presence of SQLIA, combining static and dynamic
analysis whose main features are: (i) It is based on
obfuscation and deobfuscation of SQL commands, (ii)
SQLIA can easily be detected and has a negligible
run-time overhead because of dynamic verification
is carried out on the obfuscated queries at atomic
formula level and the number of verifications for
possible SQLIA has been reduced by introducing the
notion of secure and vulnerable terms and formulas,
(iii) The obfuscation and deobfuscation techniques are
application-independent and developers need not to
be aware about this.

The proposed scheme has three phases, the first
one is performed statically, while the latter two are
performed dynamically.

1) Obfuscating the legitimate query Q into Q′ at
each hotspot of the application.

2) After merging the user inputs into the obfuscated
query at run-time, the dynamic verifier checks the
obfuscated query at atomic formula level in order
to detect the presence of possible SQLIA.

3) Reconstruction of the original query Q from the
obfuscated query Q′ before submitting it to the
database, if no possible SQLIA was detected.

We denote any SQL command Q by a tuple Q , 〈A, φ〉.
We call the first component A the active part and
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the second component φ the passive part of Q. Any
SQL command Q first identifies an active data set
from the database using the pre-condition φ, and then
performs the appropriate operations on that data set
using the SQL action A. The pre-condition φ appears
in SQL commands as a well-formed formula in first-
order logic. The active data set on which A performs
operations must satisfy the pre-condition φ [2]. The
control part of the SQL queries includes the SQL key-
words such as WHERE, TABLE, SELECT etc. whereas
the data part includes the constants and variables.
We consider two types of variables: application vari-
ables and database variables. The application variables
are defined in the application whereas database vari-
ables represent the table attributes of the underlying
database. Either the active and passive part of the SQL
queries can have data as well as control elements.

In the static analysis phase, the queries in the appli-
cation are replaced by the queries in obfuscated form.
The main idea behind the obfuscation of a query string
is just to avoid the string concatenation operation in
query generation process, which is considered as the
possible root cause of SQLIA [3]. The obfuscation is
carried out by converting the SQL command Q ,
〈A, φ〉 into a form such that the pre-condition φ is
partitioned into two sets Sc and S f , where the former
contains all connectives (AND, OR, NOT) of φ, and the
latter contains all atomic formulas present in φ.

During run-time, the inputs provided by the user
are merged into the atomic formulas in S f of the
obfuscated query. The dynamic verifier, then, verifies
at atomic formula level for the possible existence of
SQLIA. The task of the dynamic verifier is to determine
whether the elements in the set S f of the obfuscated
query are valid atomic formulas or not. Thus the input
of the dynamic verifier is an atomic formula merged
with user input and the output is a boolean value
indicating whether it is a valid atomic formula or not.
If any violation is detected in the verification phase,
the dynamic verifier reports it as a possible SQLIA,
otherwise the run-time converter (which may be part
of the verifier) converts the obfuscated query into
the original form before submitting it to the DBMS.
The overall architecture of our approach is depicted
in Figure 1 where at the beginning we assume that
the user launches a job involving one or more web
applications interacting with the DBMS.

The attractive features of this scheme is that the
static phase removes the traditional string concatena-
tion operations (which is the root cause of possible
SQLIA) used to build all the SQL query strings in the
application and replace them by the obfuscated form
of queries. Since the user inputs are merged into the
atomic formulas in obfuscated form, there is no chance

Figure 1. Architecture of the proposed scheme

to mix-up the malicious input with the other legitimate
control elements of the query string and dynamic ver-
ification at atomic formula level can easily detect the
presence of possible SQLIA. The number of dynamic
verification is reduced by introducing two categories
of terms and formulas: secure and vulnerable ones.
The verification is carried out only over the vulnerable
atomic formulas. Moreover, we can avoid obfuscation
for those queries which have secure pre-conditions.

The structure of the paper is as follows: Section
2 discusses related works in the literature. Section 3
defines the notion of secure and vulnerable terms and
formulas involved in pre-condition φ. Section 4 and 5
describe the obfuscation and deobfuscation techniques.
Section 6 discusses static versus dynamic issues. Sec-
tion 7 concludes the paper.

II. Related Works

In [4], [5], [6], [7] the authors follow a model-based
approach and introduce the tools AMNESIA, SQL-
Guard and SQLCheck respectively. All these schemata
have two phases: static and dynamic. In AMNESIA,
the static phase builds models corresponding to all le-
gitimate queries present in the application by analysing
the program. In its run-time phase, before submitting
the request to database, all dynamically generated
queries are checked against the corresponding model,
and the queries violating the models are identified as
SQLIA. Observe that, the accuracy of the statically-
built model is the measure of the success of AMNESIA.
In SQLGuard and SQLCheck, the model is based on a
set of grammar-rules against which the dynamically
generated queries are checked to detect the possibility
of SQLIA. In both cases, the user inputs are augmented
by some delimiter generated from a private key. Thus
the success of this two schemata are completely de-
pendent on the fact that the attacker is not being able
to discover the private key. In [7] the static model is
based on graph representation of the query.
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McClure and Krüger [8] provides a completely dif-
ferent query development platform by changing the
so-called unregulated query generation process that
uses string concatenation, to a new systematic one.
This solution consists of two parts. The first is an
abstract object model. The second is an executable
which is executed against a database and the output is
a Dynamic Link Library (DLL) containing classes that
are strongly-typed to the database schema. This DLL is
used as a concrete instantiation of the abstract object
model. However, as they provide a completely new
paradigm for query development process which is not
as easy as previous one, the developer need to learn
before its use.

SQLrand [9] is based on the concept of Instruction-
Set Randomization. The SQL standard keywords are
manipulated by appending a random integer to them.
The attacker is not aware about that random integer.
Thus if any malicious user attempting to SQL injection
attack would immediately be thwarted as the injective
codes in the randomized query are treated as non-
keywords.

In [10] Valeur et al. propose a learning-based Intru-
sion Detection System (IDS) to detect SQLIA. The IDS
is trained using a set of typical application queries.
The technique builds statistical models of the typical
queries and then monitors the application at run-
time to identify the queries that do not match the
model. However, the fundamental limitation is that
the success of such system completely depends on the
quality of the training set used. Poor training set would
result large number of false positive and false negative.

Scott and Sharp, in their work [11] propose a solu-
tion to provide an application level security including
SQLIA for web-based applications. They use a security
policy description language (SPDL) to specify a set of
validation constraints and transformation rules to be
applied to application parameters as they flow from
the web page to the application server. The compiled
SPDL codes are kept on a security gateway which acts
as application level firewall. However, the developers
are completely responsible for this. They have to know
not only which data needs to be filtered, but also what
patterns and filters need to apply to data.

Many testing techniques [12], [13], [14] have been
proposed to test whether the web applications are
vulnerable to SQLIA. In [12] the proposed technique
is based on black-box approach, whereas, [13], [14]
describe white-box approach.

In [15], [16], [3], [17], authors provide taint-based ap-
proach to SQLIA: static analysis is used to check taint
flows against preconditions for sensitive functions. The
analysis detects the points in which preconditions have
not been met and can suggest filters and sanitization

functions that can be automatically added to the ap-
plication to satisfy these preconditions.

Among the most recent works, [18] is a defensive
coding practices to prevent SQLIA. It describes in-
put validation (whitelist, blacklist) and encoding tech-
niques (Sanitize input) to ensure the safety of input.
It also introduces a hybrid strategy combining them.
The defensive approach suffers from the false positive
or false negative problems. Defensive coding is prone
to human error and is not as rigorously and completely
applied as automated techniques.

III. Secure and Vulnerable Terms and Formulas

In this section, we define the terms and formulas in
first-order logic, and we introduce the notion of secure
and vulnerable terms with regards to different attacks.

Definition 1: (Terms) The set of terms of a first-order
language L is the set of strings of symbols formed
according to the following rules:
• All the variable symbols x1, x2, x3, ... and all the

constant symbols ci in L are terms.
• If fn is an n-ary function symbol in L and t1, t2, ..., tn

are terms, then fn(t1, t2, ..., tn) is a term.
Definition 2: (Atomic Formula) An atomic formula is

a string of symbols of the form Rn(t1, t2, ..., tn) ∈ {true,
f alse}, where Rn is a relation symbol of arity n of the
language and t1, t2, ..., tn are terms.

If the language contains the equality relation, then
any string of the form t1 = t2, where t1, t2 are terms, is
also an atomic formula.

Definition 3: (Well-formed Formula) The set of for-
mulas of a language L is the set of strings of symbols
formed according to the following rules:
• All atomic formulas are Well-formed Formulas

(wffs).
• If φ and ψ are formulas and xi is a variable

symbol, then so are ¬φ,φ ∧ ψ,φ ∨ ψ,φ → ψ,φ ↔
φ,∀xiφ,∃xiφ.

Now we define the notion of secure and vulnerable
terms, atomic formulas and well-formed formulas. Let
Cφ and Vφ denote the set of constants and variables,
respectively, appearing in the pre-condition φ. Let Csec
and Vsec are set of secure constants and variables
respectively whereas, Vvul stands for the set of public
variables which are vulnerable to different attacks.
Observe that, since constants and database variables
are provided by the developers, we assume them
as secure. Application variables may or may not be
secure depending on whether they are used as public
variables directly or influenced by other vulnerable
variables indirectly. Therefore,

Cφ ⊆ Csec and Vφ ⊆ Vsec ∪ Vvul
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Let Tsec, AFsec and WFFsec represent the set of secure
terms, atomic formulas and well-formed formulas,
whereas Tvul, AFvul and WFFvul represent the set of
vulnerable terms, atomic formulas and well-formed
formulas respectively. We can define inference rules for
terms, atomic and well-formed formulas being secure
and vulnerable as shown in Table I.

Observe that the rules in Table I are not closed under
logical equivalence, i.e. φ1 ∈ WFFsec and φ2 ≡ φ1 do
not imply that φ2 ∈ WFFsec. For instance, let x ∈ Vvul,
y ∈ Vsec and c ∈ Csec, we have: (y = c) ∈ WFFsec while
(x = x)∧(y = c) ∈WFFvul even though the two formulas
are equivalent. This is due to the fact that (x = x) is a
potential gateway for SQLIA.

c∈Csec
c∈Tsec

v∈Vsec
v∈Tsec

v∈Vvul
v∈Tvul

∀ti∈Tsec, i=1,...,n
f (t1,...,tn)∈Tsec

∃ti∈Tvul, i=1,...,n
f (t1,...,tn)∈Tvul

∀ti∈Tsec, i=1,...,n
Rn(t1,...,tn)∈AFsec

∃ti∈Tvul, i=1,...,n
Rn(t1,...,tn)∈AFvul

t1∈Tsec t2∈Tsec
(t1=t2)∈AFsec

t1∈Tvul
(t1=t2)∈AFvul

t2∈Tvul
(t1=t2)∈AFvul

a∈AFsec
a∈WFFsec

a∈AFvul
a∈WFFvul

w∈WFFsec
¬w∈WFFsec

w∈WFFvul
¬w∈WFFvul

w∈WFFsec
(ϑ x) w∈WFFsec

w∈WFFvul
(ϑ x) w∈WFFvul

w1∈WFFvul
(w1θ w2)∈WFFvul

w2∈WFFvul
(w1θ w2)∈WFFvul

w1∈WFFsec w2∈WFFsec
(w1θ w2)∈WFFsec

Table I
Inference rules for terms, atomic and well-formed formulas

being secure and vulnerable, where ϑ ∈ {∀,∃} and θ ∈ {∧,∨,→,↔}
and x is a bound variable

For the sake of simplicity, in the rest of the paper we
consider the following assumptions:

1) The passive part φ of the SQL command is a
function of user input, whereas the active part
is not.

2) The developer-provided part of SQL command
is reliable, whereas the user-provided part is not
trusted and vulnerable to SQLIA.

3) Users are not permitted to provide any control
elements of query. They are only allowed to
provide the data elements to the SQL command.

Observe that the assumptions above do not yield to
severe limitations, and are reasonable in practice.

IV. Obfuscation of SQL Commands

In this section, we discuss the obfuscation scheme.
We first illustrate it on a simple example, and then we
present the actual algorithm.

Suppose, φ1, φ2, ..., φn represent a set of atomic pred-
icate formulas involved in a pre-condition φ of a SQL
command Q. For example, let the following formula
represent a pre-condition φ which contains the atomic
formulas φ1, φ2, ..., φ7:
φ = (φ1 AND φ2 OR φ3)AND(φ4 OR (NOTφ5)) OR φ6 AND φ7

For the simplicity of representation, we denote AND,
OR, NOT by ×,+ and ! respectively. Thus,

φ = (φ1 × φ2 + φ3) × (φ4 + (!φ5)) + φ6 × φ7

Since the connectives are unary or binary, the parse
tree of φ represents a binary tree as shown in Figure
2. The obfuscation of the original query Q is obtained

Figure 2. The parse-tree of the example pre-condition φ

by converting the pre-condition φ in such a form in
which it is separated into two distinct partitions. The
first partition contains all the connectives (×,+, !) of φ
whereas, the second partition contains all the atomic
formulas φ1, ..., φn of φ.

Observe that if we convert φ into some prefix or
postfix form considering ×,+, ! as operators and φi,
i=1,...,n as operands, still there is a mixing of connec-
tives and formulas. For example, if we convert the
above formula φ into prefix form we get: + × + ×
φ1φ2φ3 + φ4!φ5 × φ6φ7. Since only a fraction of the
connectives (×,+, !) of φ has been separated, still there
is a chance of possible SQLIA.

To remove this problem and to obtain two exclusive
partitions of connectives and atomic formulas, we
adopt a different technique consisting of the following
steps:

Assign a unique label to each of the connectives (×,+, !)
and atomic formulas φi, i=1,..,n in φ, and partition the
connectives and atomic formulas into two different sets.

The task of assigning unique label is performed as
follows: We start assigning a bit to each node in the
parse tree as follows: assign 0 to the root node. If
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any internal node has single child, assign NULL to
that child node. Otherwise, the left and right child
of the node are assigned with 0 and 1 respectively.
Continue this process until all the nodes of the parse
tree has been assigned by bits. The bit-assigned binary
parse tree of the formula φ of our example is shown
in Figure 3. We know that each node in a tree has

Figure 3. The bit-assigned parse-tree of the example pre-condition
φ

a unique path from the root to that node. To get a
unique label for a node v, traverse the path from root
to the node v in the tree. Collect all the bits of the
nodes appearing in that path and concatenate them in
the direction of traversing. This gives a unique binary
string which is used as a unique label. For example,
in the bit-assigned parse tree of Figure 3, the unique
label for φ4 is 0010, and for φ5 is 0011 (equivalently,
0011NULL). This unique labels allow to reconstruct the
original query from the obfuscated form (as described
later).

We convert the above pre-condition φ into a new
form in which each token is represented by a tuple
〈c, lc〉 or 〈 f , l f 〉, where c ∈ {×,+, !} and f ∈ {φi | i = 1, ..,n}.
The unique labels lc and l f obtained from the bit-
assigned parse tree, are associated with c and f
respectively. The converted φ results into:
(〈φ1, 00000〉 〈×, 0000〉 〈φ2, 00001〉 〈+, 000〉 〈φ3, 0001〉) 〈×, 00〉
(〈φ4, 0010〉 〈+, 001〉 (〈!, 0011〉 〈φ5, 0011〉)) 〈+, 0〉 〈φ6, 010〉
〈×, 01〉 〈φ7, 011〉

Now we are in position to construct two distinct
sets Sc and S f taking all the connectives into one and
all the atomic formulas into the other respectively.
Thus,

Sc = {〈×, 0000〉, 〈+, 000〉, 〈×, 00〉, 〈+, 001〉, 〈!, 0011〉, 〈+, 0〉,
〈×, 01〉}

S f = {〈φ1, 00000〉, 〈φ2, 00001〉, 〈φ3, 0001〉, 〈φ4, 0010〉, 〈φ5, 0011〉,
〈φ6, 010〉, 〈φ7, 011〉}

These two sets Sc and S f represent the obfuscated
pre-condition. So, the obfuscated SQL command can

be written as: Q′ = 〈A, [Sc,S f ]〉.
It is worthwhile to mention that the order of the

elements in the two partitions Sc and S f are not rele-
vant at all. At run-time, inputs given by the users are
merged into the atomic formulas in S f . Since S f is a
set of atomic formulas and user inputs are part of the
elements in S f at run-time, there is a strong chance for
the attacker to change the number of elements (atomic
formulas) in S f . But their target can not be successful
anymore because of the fixed number of connectives
present in the set Sc. We can see in the next section
that, any change in the number of atomic formulas in
S f would yield the failure of the deobfuscation phase.

The dynamic verifier will verify the atomic formulas
for the possible SQLIA after getting run-time inputs.
The input of the dynamic verifier is an atomic formula
merged with user input and the output is a boolean
value indicating whether it is a valid atomic formula
or not. To reduce the number of verifications, we
categorize each atomic formula in S f based on whether
it belongs to AFsec or AFvul and tag them accordingly
at the end of the static phase. During the dynamic
phase, only the atomic formulas which are tagged
as vulnerable will be checked for possible SQLIA.
Also note that for any query Q , 〈A, φ〉, we do not
obfuscate it if φ ∈ WFFsec. In case of nested queries,
the obfuscation-verification-deobfuscation procedure is
performed from the inner-most query to the outer-most
query.

We are now in position to formalize the algorithm
performing this obfuscation part, as shown in Figure
4.

V. Deobfuscation of SQL Commands

We already mentioned that deobfuscation is done
only when no SQLIA has been detected by dynamic
atomic formula level verifier. Of course, if the original
query is kept, then there is no need of deobfusca-
tion. If this is not the case, the following technique
reconstructs the original query Q , 〈A, φ〉 from the
obfuscated query Q′ , 〈A, [Sc,S f ]〉.

To restore φ from Sc and S f (hence, from Q′ to Q) in
the dynamic phase before submitting it to the database
engine, the following steps are performed repeatedly
until Sc is empty:

Step 1:Identify the predicate formulas in S f whose
label matches with the label of the connectives
in Sc i.e. ∃〈c, lc〉 ∈ Sc,∃〈 f , l f 〉 ∈ S f : |lc| = |l f |
and lc ⊗ l f = 0. ⊗ represents bit-wise XOR
operation. Apply the unary connective c on
the corresponding matched formula f to get
resulting formula fr. Replace 〈 f , l f 〉 by 〈 fr, lc〉
in S f . Remove 〈c, lc〉 from Sc.
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Algorithm 1: Obfuscate Query
Input: Original Query String Q , 〈A, φ〉
Output: Obfuscated Query Q′ , 〈A, [Sc, S f ]〉
1. Check whether φ ∈ WFFsec or not. If not, perform steps
2-8.
2. Generate binary parse tree of the pre-condition φ of Q.
3. Assign root node by 0. If any node has single child,
assign NULL to this child and if any node has two
children, assign left child by 0 and right child by 1,
respectively. Continue this step until all the nodes of the
tree are assigned.
4. Assign each of the atomic formulas and connectives in φ
by a unique label obtained from the parse tree as follows:
for a node v, traverse from root to node v and collect all
bits of the nodes appearing in the path. Concatenate all
those bits in the direction of traversing. This gives a bit
string which is used as the unique label for the node v.
5. After performing step 4, all connectives c and atomic
formulas f of φ will be of the form 〈c, lc〉 and 〈 f , l f 〉, where
lc and l f denote the unique labels assigned to c and f ,
respectively.
6. Partition the connectives 〈c, lc〉 and atomic formulas
〈 f , l f 〉 of φ into two distinct sets Sc and S f , respectively.
7. If for 〈 f , l f 〉 ∈ S f and f ∈ AFsec, tag it as secure i.e.
tag( f ) := sec; otherwise, tag it as vulnerable i.e. tag( f ) := vul.
8. The obfuscated form of the query Q is, therefore,
Q′ , 〈A, [Sc,S f ]〉.

Figure 4. Query Obfuscation Algorithm

Step 2:Identify all the pair of elements
{〈 f1, l1〉, 〈 f2, l2〉} ⊆ S f such that, |l1| = |l2|
and only the last bit of l1 and l2 differs.
Identify the connective 〈c, l〉 ∈ Sc where
|l| = |l1| − 1 = |l2| − 1 and l is equal to the
common part of l1 and l2. Apply the binary
connective c on that pair to obtain the
resulting formula fr. Replace the pair by a
new tuple 〈 fr, l〉 in S f and remove 〈c, l〉 from
Sc.

The formal description of possible SQLIA detection
and deobfuscation algorithm is shown in Figure 5.

We illustrate the deobfuscation technique with the
same example of section 4. Suppose, the obfuscated
query Q′ , 〈A, [Sc,S f ]〉 where Sc and S f are:

Sc = {〈×, 0000〉, 〈+, 000〉, 〈×, 00〉, 〈+, 001〉, 〈!, 0011〉, 〈+, 0〉,
〈×, 01〉}

S f = {〈φ1, 00000〉, 〈φ2, 00001〉, 〈φ3, 0001〉, 〈φ4, 0010〉, 〈φ5, 0011〉,
〈φ6, 010〉, 〈φ7, 011〉}

We perform the two steps above repeatedly until
the set Sc is empty.

1) In the example, the label of 〈φ5, 0011〉 ∈ S f
matches with the label of 〈!, 0011〉 ∈ Sc. So after
performing step 1 we get:

Algorithm 2: Deobfuscate Query
Input: Obfuscated Query Q′ , 〈A, [Sc,S f ]〉
Output: Claiming for possible SQLIA as true or false;
Original Query String Q , 〈A, φ〉
1. Perform dynamic verification on all atomic formulas
〈 f , l f 〉 ∈ S f ∧ tag( f ) = vul merged with run-time inputs
given by the users, for any possible violation. If violates,
claim:=true else claim:=false.
2. If claim=false, perform step 3-5, until Sc is empty.
3(a). Identify the predicate formulas in S f whose label
matches with the label of the connectives in Sc i.e.
∃〈c, lc〉 ∈ Sc,∃〈 f , l f 〉 ∈ S f : |lc| = |l f | and lc ⊗ l f = 0. ⊗
represents bit-wise XOR operation.
3(b). Apply the unary connective c on the corresponding
matched formula f to get resulting formula fr. Replace
〈 f , l f 〉 by 〈 fr, lc〉 in S f . Remove 〈c, lc〉 from Sc.
4(a). Identify all the pair of elements {〈 f1, l1〉, 〈 f2, l2〉} ⊆ S f
such that, |l1| = |l2| and only the last bit of l1 and l2 differs.
4(b). Identify the connective 〈c, l〉 ∈ Sc where
|l| = |l1| − 1 = |l2| − 1 and l is equal to the common
part of l1 and l2. Apply the binary connective c on that
pair to obtain the resulting formula fr. Replace the pair
by a new tuple 〈 fr, l〉 in S f and Remove 〈c, l〉 from Sc.
5. If Sc is empty, S f contains the original form of pre-
condition φ and submit Q , 〈A, φ〉 to the DBMS.

Figure 5. Algorithm to Detect possible SQLIA and deobfuscation
of the Query

Sc = {〈×, 0000〉, 〈+, 000〉, 〈×, 00〉, 〈+, 001〉, 〈+, 0〉,
〈×, 01〉}

S f = {〈φ1, 00000〉, 〈φ2, 00001〉, 〈φ3, 0001〉, 〈φ4, 0010〉,
〈(!φ5), 0011〉, 〈φ6, 010〉, 〈φ7, 011〉}

2) Following step 2, we get three pairs whose labels
are equal in length and differs by the last bit only:
{〈φ1, 00000〉, 〈φ2, 00001〉}, {〈φ4, 0010〉, 〈(!φ5), 0011〉}, and
{〈φ6, 010〉, 〈φ7, 011〉}. Since the label of 〈×, 0000〉
equals to the common part of the pair {〈φ1, 00000〉,
〈φ2, 00001〉} and similarly, 〈+, 001〉 and 〈×, 01〉 for the
pairs {〈φ4, 0010〉, 〈(!φ5), 0011〉} and {〈φ6, 010〉, 〈φ7, 011〉}
respectively, after performing step 2, we get,

Sc = {〈+, 000〉, 〈×, 00〉, 〈+, 0〉}
S f = {〈φ1 × φ2, 0000〉, 〈φ3, 0001〉, 〈φ4 + (!φ5), 001〉,
〈φ6 × φ7, 01〉}

3) Since Sc is not empty, we repeat the same until
Sc is empty and finally we obtain,

φ = ((φ1 × φ2 + φ3) × (φ4 + (!φ5)) + φ6 × φ7)

In this way, we can recover the original query Q ,
〈A, φ〉 from the obfuscated query Q′ , 〈A, [Sc,S f ]〉.

Lemma 1: (Time complexity) The time complexity of
obfuscation and deobfuscation of a query are O(n + m)
and O(n2) respectively, where n and m are the num-
ber of atomic formulas and connectives in the pre-
condition φ.

Proof: The time complexity of the obfuscation step
mainly depends on two facts: i) bit-assigned parse
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tree generation and, ii) assigning unique label to each
connectives and atomic formulas of φ.

Let n and m be the number of atomic formulas and
connectives present in the pre-condition φ. All the leaf
nodes of the parse tree are atomic formulas whereas
internal nodes are the connectives.

The generation of parse tree as well as traversing of
it to assign bits and extracting unique labels for each of
the nodes, needs traversing every nodes exactly once.
Hence, the time complexity of the obfuscation is O(n+
m).

Time complexity of the deobfuscation step depends
on two main operations: i) match the labels of unary
connectives with the labels of elements in S f , ii) find
the pairs in S f and binary connectives in Sc with spe-
cific criteria. Let p be the number of unary connectives
in Sc. It is obvious that m−p = n−1. The worst case time
complexity for the first operation is O(np) whereas best
case is O(p2). The time needed to perform the second
operation is O(n2 + nm). Since, n ≥ m and n ≥ p, the
worst-case time complexity for the deobfuscation step
is, therefore, O(n2).

Let us illustrate the overall scheme. Recall the example
of introduction part where an application generates the
following SQL query:
query="SELECT * FROM emp WHERE username=‘" +

request.getParameter("username") + "’ AND password=‘" +

request.getParameter("password") + "’;"

The above query can be represented by the following
components:

A : “SELECT * FROM emp”

φ1 : “username= ‘input1’”

φ2 : “password= ‘input2’”

φ : φ1 AND φ2

Q : 〈A, φ〉

where, input1 and input2 stand for
request.getParameter ("username") and
request.getParameter("password") respectively.

The bit-assigned binary parse tree of φ of this exam-
ple is shown in Figure 6. Thus, the obfuscated query

Figure 6. The bit-assigned parse-tree of the example φ

is: Q′ = 〈 A, [Sc,S f ] 〉 where, Sc = { 〈×, 0〉 } and
S f = { 〈φ1, 00〉, 〈φ2, 01〉 }.

Suppose, the attacker gives the following inputs:
“alice’ OR ‘1’=‘1” and “secret” for input1 and input2
respectively. After merging by these inputs, the atomic
formulas in S f of the obfuscated query would be:

φ1 : “username= ‘alice’ OR ‘1’=‘1’”

φ2 : “password= ‘secret’”

Clearly, the dynamic verification at atomic formula
level says that φ1 is no more indicating a valid atomic
formula. So it can be identified as a possible SQLIA.

VI. Static Vs. Dynamic Issues

Previous works [4], [5], [7] proposed mechanisms to
generate static models that are used to verify against
the queries at dynamic time where the user inputs are
allowed to merge into the original query. However,
theses schemes may yield to false positive in cases
where the users are allowed to provide structural
attributes as input. For instance, suppose that a web
application generates the following SQL query:

query="SELECT * FROM users WHERE id=" +

request.getParameter("id") + ";"

If the web application allows users to provide arbi-
trary arithmetic expression as input, the structure of
the SQL query depends on the expression in the id
field. Since [4], [5], [7] rely on the fixed static model
built at compile time, they yield to a false positive.
However our scheme can treat them as valid atomic
formulas.

Systems like ModSecurity [19] are provided with in-
put validation using defensive coding practices. They
use a white-list/black-list approach to allow/block the
good/bad inputs in order to prevent possible SQLIA.
These systems are application-specific and developers
are responsible to create and maintain white/black-
list for specific applications: this is prone to possible
human error and can cause both false positives and
false negatives. The advantages of our scheme over
defensive coding practices is that the developers need
not to be aware about the obfuscation-deobfuscation,
and completely application independent.

The technique in [9] is based on randomization of
the keywords of all SQL queries in the application
by appending each keyword with a random value. In
practice, it suffers from many aspects. First, a modified
database would require all applications submitting
SQL queries to conform to its new language. Second,
The proxy server which is responsible to check the
syntactic validity of the whole randomized queries
and de-randomize the instruction set for syntactically
valid ones, incurs a significant infrastructure overhead.
Third, this technique completely relies on the fact
that the attacker is unable to discover the random
secret number used to randomize [1]. However, in our
scheme, the dynamic verifier checks only the atomic
formulas appearing in the queries and this run-time
overhead is further minimized by introducing secure
and vulnerable atomic formulas: verification is carried
out over vulnerable atomic formulas only. Further-
more, unlike [9], for the SQL queries that contain
secure passive part, we do not apply obfuscation-
deobfuscation to avoid unnecessary processing.
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VII. Conclusion

The obfuscation/deobfuscation approach presented
in this paper can be seen as a valid alternative to the
techniques discussed in section 2. It has the following
advantages: the verification for the presence of possible
SQLIA is performed at atomic formula level and only
on those atomic formulas which are tagged as vulnera-
ble; the scheme avoids the root cause (string concatena-
tion operation) of SQLIA in traditional dynamic query
generation; the developer can enjoy the traditional ap-
plication development techniques and need not to be
aware about the obfuscation/deobfuscation techniques.
Unlike most of the existing methods, this scheme does
not depend on the static models or the private key. It
depends only on the accuracy of the dynamic verifier
at atomic formula level. We are currently working on
the extension of this work in order to deal with cases
where the SQL statements are known only at run-time,
like in the case of Java Servlets.
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