
Multipattern String Matching On A GPU
Xinyan Zha and Sartaj Sahni

Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611
Email: {xzha, sahni}@cise.ufl.edu

Abstract—We develop GPU adaptations of the Aho-Corasick
string matching algorithm for the two cases GPU-to-GPU and
host-to-host. For the GPU-to-GPU case, we consider several
refinements to a base GPU implementation and measure the
performance gain from each refinement. For the host-to-host
case, we analyze two strategies to communicate between the host
and the GPU and show that one is optimal with respect to run
time while the other requires less device memory. Experiments
conducted on an NVIDIA Tesla GT200 GPU that has 240 cores
running off of a Xeon 2.8GHz quad-core host CPU show that,
for the GPU-to-GPU case, our Aho-Corasick GPU adaptation
achieves a speedup between 8.5 and 9.5 relative to a single-
thread CPU implementation and between 2.4 and 3.2 relative to
the best multithreaded implementation. For the host-to-host case,
the GPU AC code achieves a speedup of 3.1 relative to a single-
threaded CPU implementation. However, the GPU is unable
to deliver any speedup relative to the best multithreaded code
running on the quad-core host. In fact, the measured speedups
for the latter case ranged between 0.74 and 0.83.

Keywords: Multipattern string matching, Aho-Corasick,
GPU, CUDA.

I. I NTRODUCTION

In multipattern string matching, we are to report all occur-
rences of a given set or dictionary of patterns in a target string.
Multipattern string matching arises in a number of applications
including network intrusion detection, digital forensics, busi-
ness analytics, and natural language processing. For example,
the popular open-source network intrusion detection system
Snort [13] has a dictionary of several thousand patterns that are
matched against the contents of Internet packets and the open-
source file carver Scalpel [9] searches for all occurrences of
headers and footers from a dictionary of about 40 header/footer
pairs in disks that are many gigabytes in size. In both appli-
cations, the performance of the multipattern matching engine
is paramount. In the case of Snort, it is necessary to search
for thousands of patterns in relatively small packets at Internet
speed while in the case of Scalpel we need to search for tens
of patterns in hundreds of gigabytes of disk data.

Snort [13] employs the Aho-Corasick [1] multipattern
search method while Scalpel [9] uses the Boyer-Moore single
pattern search algorithm [2]. Since Scalpel uses a single
pattern search algorithm, its run time is linear in the product of
the number of patterns in the pattern dictionary and the length
of the target string in which the search is being done. Snort,on
the other hand, because of its use of an efficient multipattern
search algorithm has a run time that is independent of the

number of patterns in the dictionary and linear in the length
of the target string.

Several researchers have attempted to improve the perfor-
mance of multistring matching applications through the use
of parallelism. For example, Scarpazza et al. [10], [11] port
the deterministic finite automata version of the Aho-Corasick
method to the IBM Cell Broadband Engine (CBE) while Zha et
al. [16] port a compressed form of the non-deterministic finite
automata version of the Aho-Corasick method to the CBE.
Jacob et al. [5] port Snort to a GPU. However, in their port,
they replace the Aho-Corasick search method employed by
Snort with the Knuth-Morris-Pratt [6] single-pattern matching
algorithm. Specifically, they search for 16 different patterns
in a packet in parallel employing 16 GPU cores. Huang et
al. [4] do network intrusion detection on a GPU based on
the multipattern search algorithm of Wu and Manber [15].
Smith et al. [12] use deterministic finite automata and extended
deterministic finite automata to do regular expression matching
on a GPU for intrusion detection applications. Marziale et
al. [7] propose the use of GPUs and massive parallelism
for in-place file carving. However, Zha and Sahni [17] show
that the performance of an in-place file carver is limited
by the time required to read data from the disk rather than
the time required to search for headers and footers (when
a fast multipattern matching algorithm is used). Hence, by
doing asynchronous disk reads, the pattern matching time is
effectively overlapped by the disk read time and the total time
for the in-place carving operation equals that of the disk read
time. Therefore, this application cannot benefit from the use
of a GPU to accelerate pattern matching.

Our focus in this paper is accelerating the Aho-Corasick
multipattern string matching algorithm through the use of a
GPU. In this paper, we address two cases for the placement
of the input and output–GPU-to-GPU (the target string resides
in the device memory and the results are to be left in this
memory) and host-to-host (the target string is in the CPU
memory and the results of the matching are to be left in the
CPU memory). In both cases, we assume that the pattern data
structure is precomputed and stored in the GPU. Although we
researched GPU adaptations of the Boyer-Moore multistring
matching algorithm as well, these adaptations did not perform
as well as our GPU adapatations of the Aho-Corasick algo-
rithm. So, we do not report on the Boyer-Moore adaptations
here.

The remainder of this paper is organized as follows. Sec-

Fig. 1. NVIDIA GT200 Architecture [14]

tion II introduces the NVIDIA Tesla architecture. In Section III
we describe the Aho-Corasick algorithm. Sections IV and V
describe our GPU adaptation for the GPU-to-GPU and host-
to-host cases. Section VI discusses our experimental results
and we conclude in Section VII.

II. T HE NVIDIA T ESLA ARCHITECTURE

Figure 1 gives the architecture of the NVIDIA GT200
Tesla GPU, which is an example of NVIDIA’s general pur-
pose parallel computing architecture CUDA (Compute Unified
Driver Architecture) [3]. This GPU comprises 240 scalar
processors (SP) or cores that are organized into 30 streaming
multiprocessors (SM) each comprised of 8 SPs. Each SM
has 16KB of on-chip shared memory, 16384 32-bit registers,
and constant and texture cache. Each SM supports up to
1024 active threads. There also is 4GB of global or device
memory that is accessible to all 240 SPs. The Tesla, like other
GPUs, operates as a slave processor to an attached host. In
our experimental setup, the host is a 2.8GHz Xeon quad-core
processor with 16GB of memory.

A CUDA program typically is a C program written for
the host. C extensions supported by the CUDA programming
environment allow the host to send and receive data to/from the
GPU’s device memory as well as to invoke C functions (called
kernels) that run on the GPU cores. The GPU programming
model is Single Instruction Multiple Thread (SIMT). When
a kernel is invoked, the user must specify the number of
threads to be invoked. This is done by specifying explicitly
the number of thread blocks and the number of threads per
block. CUDA further organizes the threads of a block into
warps of 32 threads each, each block of threads is assigned
to a single SM, and thread warps are executed synchronously
on SMs. While thread divergence within a warp is permitted,
when the threads of a warp diverge, the divergent paths are
executed serially until they converge.

A CUDA kernel may access different types of memory with
each having different capacity, latency and caching properties.
We summarize the memory hierarchy below.

• Device memory: 4GB of device memory are available.
This memory can be read and written directly by all
threads. However, device memory access entails a high
latency (400 to 600 clock cycles). The thread scheduler

attempts to hide this latency by scheduling arithmetics
that are ready to be performed while waiting for the
access to device memory to complete [3]. Device memory
is not cached.

• Constant memory: Constant memory is read-only mem-
ory space that is shared by all threads. Constant memory
is cached and is limited to 64KB.

• Shared memory: Each SM has 16KB of shared memory.
Shared memory is divided into 16 banks of 32-bit words.
When there are no bank conflicts, the threads of a warp
can access shared memory as fast as they can access
registers [3].

• Texture memory: Texture memory, like constant memory,
is read-only memory space that is accessible to all threads
using device functions called texture fetches. Texture
memory is initialized at the host side and is read at the
device side. Texture memory is cached.

• Pinned memory (also known as Page-Locked Host Mem-
ory): This is part of the host memory. Data transfer
between pinned and device memory is faster than between
pageable host memory and device memory. Also, this
data transfer can be done concurrent with kernel execu-
tion. However, since allocating part of the host memory
as pinned “reduces the amount of physical memory
available to the operating system for paging, allocating
too much page-locked memory reduces overall system
performance” [3].

III. T HE AHO-CORASICK ALGORITHM

There are two versions–nondeterministic and deterministic–
of the Aho-Corasick (AC) [1] multipattern matching algo-
rithm. We use the deterministic version in our work as it makes
half as many state transitions as made by the non-deterministic
version. In the deterministic version (DFA), each state hasa
transition pointer for every character in the alphabet as well as
a list of matched patterns. Aho and Corasick [1] show how to
compute the transition pointers. The number of state transitions
made by a DFA when searching for matches in a string of
lengthn is n.

Figure 2 gives the Aho-Corasick DFA for the patterns ab-
caabb, abcaabbcc, acb, acbccabb, ccabb, bccabc, and bbccabca
drawn from the 3-letter alphabet{a,b,c}

IV. GPU-TO-GPU

A. Strategy

The input to the multipattern matcher is a character array
input and the output is an arrayoutput of states. Both arrays
reside in device memory.output[i] gives the state of the AC
DFA following the processing ofinput[i]. Since every state of
the AC DFA contains a list of patterns that are matched when
this state is reached,output[i] enables us to determine all
matching patterns that end at input characteri. If we assume
that the number of states in the AC DFA is no more than
65536, a state can be encoded using two bytes and the size of
the output array is twice that of the input array.

Fig. 2. Example Aho-Corasick DFA

n number of characters in string to be searched
maxL length of longest pattern
Sblock number of input characters for

which a thread block computes output
B number of blocks =n/Sblock
T number of threads in a thread block
Sthread number of input characters for

which a thread computes output =Sblock/T
tWord Sthread/4
TW total work = effective string length processed

Fig. 3. GPU-to-GPU notation

Our computational strategy is to partition the output array
into blocks of sizeSblock (Figure 3 summarizes the notation
used in this section). The blocks are numbered (indexed) 0
throughn/Sblock, wheren is the number of output values to be
computed. Note thatn equals the number of input characters
as well.output[i∗Sblock : (i+1)∗Sblock−1] comprises theith
output block. To compute theith output block, it is sufficient
for us to use AC oninput[b ∗ Sblock −maxL+ 1 : (b+ 1) ∗
Sblock − 1], wheremaxL is the length of the longest pattern
(for simplicity, we assume that there is a character that is not
the first character of any pattern and setinput[−maxL+ 1 :
−1] equal to this character). So, a block actually processes a
string whose length isSblock+maxL−1 and producesSblock

elements of the output. The number of blocks isB = n/Sblock.
Suppose that an output block is computed usingT threads.

Then, each thread could computeSthread = Sblock/T of
the output values to be computed by the block. So, thread
t (thread indexes begin at 0) of blockb could compute
output[b ∗ Sblock + t ∗ Sthread : b ∗ Sblock + t ∗ Sthread +
Sthread−1]. For this, threadt of block b would need to process
the substringinput[b ∗ Sblock + t ∗ Sthread − maxL + 1 :
b ∗ Sblock + t ∗ Sthread + Sthread − 1]. Figure 4 gives the
pseudocode for aT -thread computation of blocki of the output

Algorithm basic
// compute blockb of the output array
// usingT threads and AC
// following is the code for a single thread, threadt, 0 ≤ t < T
t = thread index;
b = block index;
state = 0; // initial DFA state
outputStartIndex = b ∗ Sblock + t ∗ Sthread;
inputStartIndex = outputStartIndex−maxL+ 1;

// processinput[inputStartIndex : outputStartIndex− 1]
for (int i = inputStartIndex; i < outputStartIndex;
i++)

state = nextState(state, input[i]);

//compute output
for (int i = outputStartIndex; i < outputStartIndex +
Sthread; i++)

output[i] = state = nextState(state, input[i]);
end;

Fig. 4. Overall GPU-to-GPU strategy using AC

using the AC DFA. The variables used are self-explanatory and
the correctness of the pseudocode follows from the preceding
discussion.

The AC DFA resides in texture memory because texture
memory is cached and is sufficiently large to accommodate
the DFA. While shared and constant memories will result in
better performance, neither is large enough to accommodate
the DFA. Note that each state of a DFA hasA transitions,
whereA is the alphabet size. For ASCII,A = 256. Assuming
that the total number of states is fewer than 65536, each state
transition of a DFA takes 2 bytes. So, a DFA withd states
requires512d bytes. In the 16KB shared memory that our
Tesla has, we can store at best a 32-state DFA. The constant
memory on the Tesla is 64KB. So, this can handle, at best, a
128-state DFA.

A nice feature of Algorithmbasic is that all T threads
that work on a single block can execute in lock-step fashion
as there is no divergence in the execution paths of these
T threads. This makes it possible for an SM of a GPU to
efficiently compute an output block usingT threads. With
30 SMs, we can compute 30 output blocks at a time. The
pseudocode of Figure 4 does, however, have deficiencies that
are expected to result in non-optimal performance on a GPU.
These deficiencies are listed below.

Deficiency D1: Since the input array resides in device
memory, every reference to the arrayinput requires a device
memory transaction (in this case a read). There are two sources
of inefficiency when the read accesses toinput are actually
made on the Tesla GPU–(a) Our Tesla GPU performs device-
memory transactions for a half-warp (16) of threads at a time.
The available bandwidth for a single transaction is 128 bytes.
Each thread of our code reads 1 byte. So, a half warp reads
16 bytes. Hence, barring any other limitation of our GPU, our

code will utilize 1/8th the available bandwidth between device
memory and an SM. (b) The Tesla is able to coalesce the de-
vice memory transactions from several threads of a half warp
into a single transaction. However, coalescing occurs only
when the device-memory accesses of two or more threads in a
half-warp lie in the same 128-byte segment of device memory.
When Sthread > 128, the values ofinputStartIndex for
consecutive threads in a half-warp (note that two threadst1
and t2 are in the same half warp iff⌊t1/16⌋ = ⌊t2/16⌋)
are more than 128 bytes apart. Consequently, for any given
value of the loop indexi, the read accesses made to the
array input by the threads of a half warp lie in different
128-byte segments and so no coalescing occurs. Although the
pseudocode is written to enable all threads to simultaneously
access the needed input character from device memory, an
actual implementation on the Tesla GPU will serialize these
accesses and, in fact, every read from device memory will
transmit exactly 1 byte to an SM resulting in a 1/128 utilization
of the available bandwidth.

Deficiency D2:The writes to the arrayoutput suffer from
deficiencies similar to those identified for the reads from the
array input. Assuming that our DFA has no more than216 =
65536 states, each state can be encoded using 2 bytes. So, a
half-warp writes 64 bytes when the available bandwidth for a
half warp is 128 bytes. Further, no coalescing takes place asno
two threads of a half warp write to the same 128-byte segment.
Hence, the writes get serialized and the utilized bandwidthis
2 bytes, which is 1/64th of the available bandwidth.

Analysis of Total Work

Using the GPU-to-GPU strategy of Figure 4, we essentially
do multipattern searches onB ∗T strings of lengthSthread +
maxL − 1 each. With a linear complexity for multipattern
search, the total work,TW , is roughly equivalent to that done
by a sequential algorithm working on an input string of length

TW = B ∗ T (Sthread +maxL− 1)

=
n

Sblock

∗ T ∗ (
Sblock

T
+maxL− 1)

= n ∗ (1 +
1

Sthread

∗ (maxL− 1))

So, our GPU-to-GPU strategy incurs an overhead of
1

Sthread

∗ (maxL− 1) ∗ 100% in terms of the effective length
of the string that is to be searched.

B. Addressing the Deficiencies

1) Deficiency D1–Reading from device memory:A simple
way to improve the utilization of available bandwidth between
the device memory and an SM, is to have each thread input 16
characters at a time, process these 16 characters, and writethe
output values for these 16 characters to device memory. For
this, we will need to cast the input array from its native data
type unsigned char to the data typeuint4 as below:

uint4 *inputUint4 = (uint4 *) input;

// define space in shared memory to store the input data
shared unsigned charsInput[Sblock +maxL− 1];

// typecast to uint4
uint4 ∗sInputUint4 = (uint4 ∗)sInput;

// read as uint4s, assumeSblock and maxL − 1 are
divisible by 16
int numToRead = (Sblock +maxL− 1)/16;
int next = b ∗ Sblock/16− (maxL− 1)/16 + t;

// T threads collectively input a block
for (int i = t; i < numToRead; i+ = T, next+ = T)

sInputUint4[i] = inputUint4[next];

Fig. 5. T threads collectively read a block and save in shared memory

A variable var of type uint4 is comprised of 4 unsigned
4-byte integersvar.x, var.y, var.z, and var.w. The
statement

uint4 in4 = inputUint4[i];

reads the 16 bytesinput[16*i:16*i+15] and stores
these in the variablein4, which is assigned space in shared
memory. Since the Tesla is able to read up to 128 bits (16
bytes) at a time for each thread, this simple change increases
bandwidth utilization for the reading of the input data from
1/128 of capacity to 1/8 of capacity! However, this increase
in bandwidth utilization comes with some cost. To extract the
characters fromin4 so they may be processed one at a time
by our algorithm, we need to do a shift and mask operation
on the 4 components ofin4. We shall see later that this cost
may be avoided by doing a recast tounsigned char.

Since a Tesla thread cannot read more than 128 bits at a
time, the only way to improve bandwidth utilization further
is to coalesce the accesses of multiple threads in a half warp.
To get full bandwidth utilization at least 8 threads in a half
warp will need to readuint4s that lie in the same 128-
byte segment. However, the data to be processed by different
threads do not lie in the same segment. To get around this prob-
lem, threads cooperatively read all the data needed to process
a block, store this data in shared memory, and finally read
and process the data from shared memory. In the pseudocode
of Figure 5,T threads cooperatively read the input data for
block b. This pseudocode, which is for threadt operating on
block b, assumes thatSblock andmaxL − 1 are divisible by
16 so that a whole number ofuint4s are to be read and
each read begins at the start of auint4 boundary (assuming
that input[−maxL + 1] begins at auint4 boundary). In
each iteration (except possibly the last one),T threads read a
consecutive set ofT uint4s from device memory to shared
memory and eachuint4 is 16 input characters.

In each iteration (except possibly the last one) of thefor
loop, a half warp reads 16 adjacentuint4s for a total of 256
adjacent bytes. Ifinput[−maxL+1] is at a 128-byte boundary

of device memory,Sblock is a multiple of 128, andT is a
multiple of 8, then these 256 bytes fall in 2 128-byte segments
and can be read with two memory transactions. So, bandwidth
utilization is 100%. Although 100% utilization is also obtained
usinguint2s (now each thread reads 8 bytes at a time rather
than 16 and a half warp reads 128 bytes in a single memory
transaction), the observed performance is slightly betterwhen
a half warp reads 256 bytes in 2 memory transactions.

Once we have read the data needed to process a block into
shared memory, each thread may generate its share of the out-
put array as in Algorithmbasic but with the reads being done
from shared memory. Threadt will need sInput[t ∗ Sthread :
(t+1)∗Sthread+maxL−2] or sInputUint4[t∗Sthread/16 :
(t+ 1) ∗ Sthread/16 + ⌈(maxL− 1)/16⌉ − 1], depending on
whether a thread reads the input data from shared memory as
characters or asuint4s. When the latter is done, we need
to do shifts and masks to extract the characters from the 4
unsigned integer components of auint4.

Although the input scheme of Figure 5 succeeds in reading
in the data utilizing 100% of the bandwidth between device
memory and an SM, there is potential for shared-memory bank
conflicts when the threads read the data from shared memory.
Shared memory is partitioned into 16 banks. Theith 32-bit
word of shared memory is in banki mod 16. For maximum
performance the threads of a half warp should access data
from different banks. Suppose thatSthread = 224 andsInput
begins at a 32-bit word boundary. LettWord = Sthread/4
(tWord = 224/4 = 56 for our example) denote the number of
32-bit words processed by a thread exclusive of the additional
maxL−1 characters needed to properly handle the boundary.
In the first iteration of the data processing loop, threadt needs
sInput[t∗Sthread], 0 ≤ t < T . So, the words accessed by the
threads in the half warp0 ≤ t < 16 aret∗tWord, 0 ≤ t < 16
and these fall into banks(t∗tWord) mod 16, 0 ≤ t < 16. For
our example,tWord = 56 and(t∗56) mod 16 = 0 whent is
even and(t∗56) mod 16 = 8 whent is odd. Since each bank
is accessed 8 times by the half warp, the reads by a half warp
are serialized to 8 shared memory accesses. Further, since on
each iteration, each thread steps right by one character, the
bank conflicts remain on every iteration of the process loop.
We observe that whenevertWord is even, at least threads0
and8 access the same bank (bank 0) on each iteration of the
process loop. Theorem 1 shows that whentWord is odd, there
are no shared-memory bank conflicts.

Theorem 1:When tWord is odd, (i ∗ tWord) mod 16 6=
(jk) mod 16, 0 ≤ i < j < 16.

Proof: The proof is by contradiction. Assume there exist
i andj such that0 ≤ i < j < 16 and(i ∗ tWord) mod 16 =
(j ∗ tWord) mod 16. For this to be true, there must exist
nonnegative integersa, b, and c, a < c, 0 ≤ b < 16 such
that i ∗ tWord = 16a + b and j ∗ tWord = 16c + b. So,
(j−i)∗tWord = 16(c−a). SincetWord is odd andc−a > 0,
j − i must be divisible by 16. However,j − i < 16 and so
cannot be divisible by 16. This contradiction implies that our
assumption is invalid and the theorem is proved.

It should be noted that even whentWord is odd, the
input for every block begins at a 128-byte segment of device
memory (assuming that for the first block begins at a 128-
byte segment) providedT is a multiple of 32. To see this,
observe thatSblock = 4 ∗ T ∗ tWord, which is a multiple of
128 wheneverT is a multiple of 32. As noted earlier, since
the Tesla schedules threads in warps of size 32, we normally
would chooseT to be a multiple of 32.

2) Deficiency D2–Writing to device memory:We could
use the same strategy used to overcome deficiency D1 to
improve bandwidth utilization when writing the results to
device memory. This would require us to first have each
thread write the results it computes to shared memory and
then have all threads collectively write the computed results
from shared memory to device memory usinguint4s. Since
the results take twice the space taken by the input, such a
strategy would necessitate a reduction inSblock by two-thirds.
This reduction in block size increases the total work overhead
significantly. We can avoid this increase in total work overhead
by doing the following: (a) First, each thread processes thefirst
maxL− 1 characters it is to process. The processing of these
characters generates no output and so we need no memory
to store output. (b) Next, each thread reads the remaining
Sthread characters of input data it needs from shared memory
to registers. For this, we declare a register array of unsigned
integers and typecastsInput to unsigned integer. Since, the
T threads have a total of 16,384 registers, we have sufficient
registers providedSblock ≤ 4∗16384 = 64K (in reality, Sblock

would need to be slightly smaller than 64K as registers are
needed to store other values such as loop variables). Since
total register memory exceeds the size of shared memory, we
always have enough register space to save the input data that
is in shared memory. UnlessSblock ≤ 4864, we cannot store
all the results in shared memory. However, to do 128-byte
write transactions to device memory, we need only sets of
64 adjacent results (recall that each result is 2 bytes). So,
the shared memory needed to store the results is128T bytes.
Since we are contemplatingT = 64, we need only 8K of
shared memory to store the results from the processing of
64 characters per thread. Once each thread has processed 64
characters and stored these in shared memory, we may write
the results to device memory. The total number of outputs
generated by a thread isSthread = 4 ∗ tWord. These outputs
take a total of8 ∗ tWord bytes. So, whentWord is odd (as
required by Theorem 1), the output generated by a thread is
a non-integral number ofuint4s (recall that eachuint4 is
16 bytes). Hence, the output for some of the threads does not
begin at the start of auint4 boundary of the device array
output and we cannot write the results to device memory
as uint4s. Rather, we need to write asuint2s (a thread
generates an integral numbertWord of uint2s). With each
thread writing auint2, it takes 16 threads to write 128
bytes of output from that thread. So,T threads can write the
output generated from the processing of 64 characters/thread
in 16 rounds ofuint2 writes. One difficulty is that, as noted
earlier, whentWord is odd, even though the segment of device

memory to which the output from a thread is to be written
begins at auint2 boundary, it does not begin at auint4
boundary. This means also that this segment does not begin
at a 128-byte boundary (note that every 128-byte boundary
is also auint4 boundary). So, even though a half-warp
of 16 threads is writing to 128 bytes of contiguous device
memory, these 128-bytes may not fall within a single 128-byte
segment. When this happens, the write is done as two memory
transactions. The described procedure to handle 64 characters
of input per thread is repeated⌈Sthread/64⌉ times to complete
the processing of the entire input block. In caseSthread is not
divisible by 64, each thread produces fewer than 64 results in
the last round. For example, whenSthread = 228, we have a
total of 4 rounds. In each of the first three rounds, each thread
processes 64 input characters and produces 64 results. In the
last round, each thread processes 36 characters and produces
36 results. In the last round, groups of threads either write
to contiguous device memory segments of size 64 or 8 bytes
and some of these segments may span 2 128-byte segments
of device memory.

As we can see, using an oddtWord is required to avoid
shared-memory bank conflicts but using an oddtWord (actu-
ally using atWord value that is not a multiple of 16) results in
suboptimal writes of the results to device memory. To optimize
writes to device memory, we need to use atWord value that
is a multiple of 16. Since the Tesla executes threads on an
SM in warps of size 32,T would normally be a multiple of
32. Further, to hide memory latency, it is recommended that
T be at least 64. WithT = 64 and a 16KB shared memory,
Sthread can be at most16 ∗ 1024/64 = 256 and sotWord
can be at most 64. However, since a small amount of shared
memory is needed for other purposes,tWord < 64. The
largest value possible fortWord that is a multiple of 16 is
therefore 48. The total work,TW , when tWord = 48 and
maxL = 17 is n ∗ (1+ 1

4∗48
∗ 16) = 0.083n. Compared to the

casetWord = 57, the total work overhead increases from 7%
to 8.3%. Whether we are better off usingtWord = 48, which
results in optimized writes to device memory but shared-
memory bank conflicts and larger work overhead, or with
tWord = 57, which has no shared-memory bank conflicts and
lower work overhead but suboptimal writes to device memory,
can be determined experimentally.

V. HOST-TO-HOST

Since the Tesla GPU supports asynchronous transfer of data
between device memory and pinned host memory, it is possible
to overlap the time spent in data transfer to and from the
device with the time spent by the GPU in computing the
results. However, since there is only 1 I/O channel between
the host and the GPU, time spent writing to the GPU cannot
be overlapped with the time spent reading from the GPU.
There are at least two ways to accomplish the overlap of I/O
between host and device and GPU computation. In Strategy A
(Figure 6), which is given in [3], we have three loops. The first
loop asynchronously writes the input data to device memory
in segments, the second processes each segment on the GPU,

for (int i = 0; i < numOfSegments; i++)
Asynchronously write segmenti from host to device using

streami;

for (int i = 0; i < numOfSegments; i++)
Process segmenti on the GPU using streami;

for (int i = 0; i < numOfSegments; i++)
Asynchronously read segmenti results from device using

streami;

Fig. 6. Host-to-host strategy A

Write segment 0 from host to device buffer IN0;
for (int i = 1; i < numOfSegments; i++)
{

Asynchronously write segmenti from host to device
buffer IN1;

Process segmenti− 1 on the GPU using IN0 and OUT0;
Wait for all read/write/compute to complete;
Asynchronously read segmenti− 1 results from OUT0;
Swap roles of IN0 and IN1;
Swap roles of OUT0 and OUT1;

}
Process the last segment on the GPU using IN0 and OUT0;
Read last segment’s results from OUT0;

Fig. 7. Host-to-host strategy B

and third reads the results for each segment back from device
memory asynchronously. To ensure that the processing of a
segment does not begin before the asynchronous transfer of
that segments data from host to device completes and also that
the reading of the results for a segment begins only after the
completion of the processing of the segment, CUDA provides
the concept of a stream. Within a stream, tasks are done in
sequence. With reference to Figure 6, the number of streams
equals the number of segments and the tasks in theith stream
are: write segmenti to device memory, process segmenti,
read the results for segmenti from device memory. To get the
correct results, each segment sent to the device memory must
include the additionalmaxL − 1 characters needed to detect
matches that cross segment boundaries.

For strategy A to work, we must have sufficient device
memory to accommodate the input data for all segments
as well as the results from all segments. Figure 7 gives
an alternative strategy that requires only sufficient device
memory for 2 segments (2 input buffers IN0 and IN1 and
two output buffers OUT0 and OUT1). We could, of course,
couple strategies A and B to obtain a hybrid strategy.

We have analyzed the relative time performance of these
two host-to-host strategies in [8]. Due to space limitations, we
only summarize the results of this analysis here.

1) Strategy A gurantees the minimum possible completion

time while stratgey B does not. However, as noted
earlier, strategy A requires more device memory than
required by strategy B.

2) The completion time when strategy B is used is at most
13.33% more than when strategy A is used and this
bound is tight.

3) If the GPU system is enhanced to have two I/O chan-
nels between the host and the GPU and the CPU has
a dual port memory that supports simultaneous reads
and writes, strategy A remains optimal and B remains
suboptimal; the completion time using strategy B is at
most 33% more than when strategy A is used and this
bound is tight; and the stated enhancement of the GPU
system results in at most a 50% reduction in completion
time (this bound also is tight).

VI. EXPERIMENTAL RESULTS

A. GPU-to-GPU

For all versions of our GPU-to-GPU CUDA code, we set
maxL = 17, T = 64, and Sblock = 14592. Consequently,
Sthread = Sblock/T = 228 and tWord = Sthread/4 = 57.
Note that sincetWord is odd, we will not have shared-
memory bank conflicts (Theorem 1). We note that since our
code is written using a 1-dimensional grid of blocks and since
a grid dimension is required to be< 65536 [3], our GPU-to-
GPU code can handle at most 65535 blocks. With the chosen
block size,n must be less than 912MB. For largern, we can
rewrite the code using a two-dimensional indexing scheme for
blocks.

For our experiments, we used a pattern dictionary from [9]
that has 33 patterns. The target search strings were extracted
from a disk image and we usedn = 10MB, 100MB, and
904MB.

1) Aho-Corasick Algorithm:We evaluated the performance
of the following versions of our GPU-to-GPU AC algorithm:

AC0 This is Algorithm basic (Figure 4) with the DFA
stored in device memory.

AC1 This differs from AC0 only in that the DFA is stored
in texture memory.

AC2 The AC1 code is enhanced so that each thread reads
16 characters at a time from device memory rather
than 1. This reading is done using a variable of type
unint4. The read data is stored in shared memory.
The processing of the read data is done by reading
it one character at a time from shared memory and
writing the resulting state to device memory directly.

AC3 The AC2 code is further enhanced so that threads
cooperatively read data from device memory to
shared memory as in Figure 5. time. The read data
is processed as in AC2.

AC4 This is the AC3 code with deficiency D2 eliminated
using a register array to save the input and coopera-
tive writes as described in Section IV-B2.

We experimented with a variant of AC3 in which data was
read from shared memory asuints, the encoded 4 characters

TABLE I
RUN TIME FOR AC VERSIONS

Optimization Step 10MB 100MB 904MB
AC0 22.92ms 227.12ms 2158.31ms
AC1 11.85ms 118.14ms 1106.75ms
AC2 8.19ms 80.34ms 747.73ms
AC3 5.57ms 53.33ms 434.03ms
AC4 2.88ms 26.48ms 248.71ms

0

1

2

3

4

5

6

7

8

9

10

AC0 AC1 AC2 AC3 AC4

10MB

100MB

904MB

Fig. 8. Graphical representation of speedup relative to AC0

in a uint were extracted using shifts and masks, and DFA
transitions done on these 4 characters. This variant took about
1% to 2% more time than AC3 and is not reported on further.
Also, we considered variants of AC4 in whichtWord = 48
and 56 and these, respectively, took approximately 14.78% and
7.8% more time that AC4. We do not report on these variants
further either.

Table I gives the run time for each of our AC versions.
As can be seen, the run time decreases noticeably with each
enhancement made to the code. Table II gives the speedup
attained by each version relative to AC0 and Figure 8 is a
plot of this speedup. Simply relocating the DFA from device
memory to texture memory as is done in AC1 results in a
speedup of almost 2. Performing all of the enhancements
yields a speedup of almost 8 whenn = 10MB and almost
9 whenn = 904MB.

2) Comparison with Multicore Computing on Host:For
benchmarking purposes, we programmed also a multithreaded
version of the AC algorithm and ran it on the quad-core Xeon
host that our GPU is attached to. The multithreaded version
replicated the AC DFA so that each thread had its own copy
to work with. Forn = 10MB and 100MB we obtained best
performance using 8 threads while forn = 500MB and 904MB
best performance was obtained using 4 threads. The 8-threads

TABLE II
SPEEDUP OFAC1, AC2, AC3,AND AC4 RELATIVE TO AC0

Optimization Step 10MB 100MB 904MB
AC0 1 1 1
AC1 1.93 1.92 1.95
AC2 2.80 2.83 2.89
AC3 4.11 4.26 4.97
AC4 7.71 8.58 8.68

TABLE III
RUN TIME FOR MULTITHREADED AC ON QUAD-CORE HOST

number of threads 10MB speedup 100MB speedup
1 24.48ms 1 243.47ms 1
2 13.52ms 1.81 125.52ms 1.94
4 11.28ms 2.17 68.74ms 3.54
8 9.18ms 2.67 67.77ms 3.59
16 10.64ms 2.30 68.07ms 3.58
number of threads 500MB speedup 904MB speedup
1 1237.64ms 1 2369.85ms 1
2 617.44ms 2.00 1206.21ms 1.96
4 319.23ms 3.88 604.54ms 3.92
8 367.32ms 3.37 677.16ms 3.50
16 356.48ms 3.47 620.99ms 3.82

code delivered a speedup of 2.67 and 3.59, respectively, forn
= 10MB and 100MB relative to the single-threaded code. For
n = 500MB and 904MB, the speedup achieved by the 4-thread
code was, respectively, 3.88 and 3.92, which is very close to
the maximum speedup of 4 that a quad-core can deliver.

AC4 offers speedups of 8.5, 9.2, and 9.5 relative to the
single-thread CPU code forn = 10MB, 100MB, and 904MB,
respectively. The speedups relative to the best multithreaded
quad-core codes were, respectively, 3.2, 2.6, and 2.4, respec-
tively.

B. Host-to-Host

We used AC3 with the parameters stated in Section VI-A
to process each segment of data on the GPU. The target
string to be searched was partitioned into equal size segments.
As a result, the time to write a segment to device memory
was (approximately) the same for all segments as was the
time to process each segment in the GPU and to read the
results back to host memory. From our analysis [8], we know
that host-to-host strategy A will give optimal performance
while, for the selected parameters, strategy B will not give
optimal performance. So, we experimented only with strategy
A. Table IV gives the time taken whenn = 500MB and
904MB using a different number of segments. This figure
also gives the speedup obtained by host-to-host strategy A
relative to doing the multipattern search on the quad-core host
using 4 threads (note that 4 threads give the fastest quad-
core performance for the chosen values ofn). Although the
GPU delivers no speedup relative to our quad-core host, the
speedup could be quite substantial when the GPU is a slave
of a much slower host. In fact, when operating as a slave
of a single-core host running at the same clock-rate as our
Xeon host, the CPU times would be about the same as for our
single-threaded version and the GPU host-to-host code would
deliver a speedup of 3.1 whenn = 904MB and 500MB and
the number of segments is 1.

VII. C ONCLUSION

We focus on multistring pattern matching using a GPU.
AC adaptations for the host-to-host and GPU-to-GPU cases
were considered. For the host-to-host case we suggest two
strategies to communicate data between the host and GPU

and showed that while strategy A was optimal with respect to
run time (under suitable assumptions), strategy B requiredlees
device memory (when the number of segments is more than
2). Experiments show that the GPU-to-GPU adaptation of AC
achieves speedups between 8.5 and 9.5 relative to a single-
thread CPU code and speedups between 2.4 and 3.2 relative
to a multithreaded code that uses all cores of our quad-core
host. For the host-to-host case, the GPU adaptation achieves
a speedup of 3.1 relative to a single-thread code running on
the host. However, for this case, a multithreaded code running
on the quad core is faster. Of course, performance relative to
the host is quite dependent on the speed of the host and using
a slower or faster host with fewer or more cores will change
the relative performance values.

REFERENCES

[1] A. Aho and M. Corasick, Efficient string matching: An aid tobiblio-
graphic search, CACM, 18, 6, 1975, 333-340.

[2] R. Boyer and J. Moore, A fast string searching algorithm,CACM, 20,
10, 1977, 262-272.

[3] NVIDIA CUDA manual reference,
http://developer.nvidia.com/object/gpucomputing.html

[4] N. Huang, H. Hung, S.Lai et al, A GPU-based Multiple-pattern Match-
ing Algorithm for Network Intrusion Detection Systems,The 22nd
International COnference on Advanced Information Networking and
Applications, 2008

[5] N. Jacob, C.Brodley, Offloading IDS Computation to the GPU, The 22nd
Annual Computer Security Applications Conference, 2006

[6] D.E.Knuth, J.H. Morris, Jr, and V.R.Pratt,Fast pattern matching in
strings, SIAM J. Computing 6, 323-350, 1977.

[7] L. Marziale, G. Richard III, V. Roussev, Massive Threading: Using GPUs
to increase the performance of digit forensics tools,Science Direct, 2007

[8] http://www.cise.ufl.edu/̃sahni/papers/gpuMatching.pdf
[9] http://www.digitalforensicssolutions.com/Scalpel/

[10] D. Scarpazza, O. Villa, F. Petrini, Peak-Performance DFA-based String
Matching on the Cell Processor,Third IEEE/ACM Intl. Workshop
on System Management Techniques, Processes, and Services,within
IEEE/ACM Intl. Parallel and Distributed Processing Symposium 2007

[11] D. Scarpazza, O.Villa, F.Petrini, Accelerating Real-Time String Search-
ing with Multicore Processors,IEEE Computer Society, 2008.

[12] R. Smith, N. Goyal, J. Ormont et al. Evaluating GPUs for Network
Packet Signature Matching,International Symposium on Performance
Analysis of Systems and Software, 2009.

[13] http://www.snort.org/dl.
[14] NVIDA tesla architecture, http://www.lostcircuits.com/graphics.
[15] S. Wu and U. Manber, Agrep–a fast algorithm for multi-pattern search-

ing, Technical Report, Department of Computer Science, University of
Arizona, 1994.

[16] X. Zha, D. Scarpazza, and S. Sahni, Highly compressed multi-pattern
string matching on the Cell Broadband Engine, University of Florida,
2009.

[17] X. Zha and S. Sahni, Fast in-place file carving for digital forensics,
e-Forensics, LNICST, Springer, 2010.

TABLE IV
RUN TIME FOR STRATEGYA HOST-TO-HOST CODE

segments segment size GPU quadcore speedup
100 9.04MB 816.80ms 604.54ms 0.74
10 90.4MB 785.55ms 604.54ms 0.77
2 452MB 788.63ms 604.54ms 0.77
1 904MB 770.13ms 604.54ms 0.78
50 10MB 412.55ms 319.23ms 0.82
10 50MB 387.78ms 319.23ms 0.82
5 100MB 385.17ms 319.23ms 0.83
1 500MB 396.42ms 319.23ms 0.81

