Multipattern String Matching On A GPU

Xinyan Zha and Sartaj Sahni
Computer and Information Science and Engineering
University of Florida
Gainesville, FL 32611
Email: {xzha, sahnji@cise.ufl.edu

Abstract—We develop GPU adaptations of the Aho-Corasick number of patterns in the dictionary and linear in the length
string matching algorithm for the two cases GPU-to-GPU and of the target string.
host-to-host. For the GPU-to-GPU case, we consider several geyarg| researchers have attempted to improve the perfor-

refinements to a base GPU implementation and measure the f ltistri tchi licati th h th
performance gain from each refinement. For the host-to-host mance of mullistring matching applications throug e use

case, we analyze two strategies to communicate between the hos®f parallelism. For example, Scarpazza et al. [10], [11]t por
and the GPU and show that one is optimal with respect to run the deterministic finite automata version of the Aho-Canlasi

timedwhilg the Othﬁ{/lglqAUi;esl|e$éSTC21(e)\6iC§PfBe?0ryh Exgz(r)iments method to the IBM Cell Broadband Engine (CBE) while Zha et
conducted on an esla that has cores _ inictictding
running off of a Xeon 2.8GHz quad-core host CPU show that, al. [16] port a gompressed form of th? non-deterministiadini
for the GPU-to-GPU case, our Aho-Corasick GPU adaptation automata version of the Aho-Corasick method to the CBE.
achieves a speedup between 8.5 and 9.5 relative to a singleJacob et al. [5] port Snort to a GPU. However, in their port,
thread CPU implementation and between 2.4 and 3.2 relative to they replace the Aho-Corasick search method employed by

the best multithreaded implementation. For the host-to-host cas, Snort with the Knuth-Morris-Pratt [6] single-pattern miziteg

the GPU AC code achieves a speedup of 3.1 relative to a single- ; e ;
threaded CPU implementation. However, the GPU is unable algorithm. Specifically, they search for 16 different patte

to deliver any speedup relative to the best multithreaded code in & packet in para]lel employing :_L6 GPU cores. Huang et
running on the quad-core host. In fact, the measured speedups al- [4] do network intrusion detection on a GPU based on

for the latter case ranged between 0.74 and 0.83. the multipattern search algorithm of Wu and Manber [15].
Keywords: Multipattern string matching, Aho-Corasick,Smith et al. [12] use deterministic finite automata and ekéen
GPU, CUDA. deterministic finite automata to do regular expression hatc

on a GPU for intrusion detection applications. Marziale et

. INTRODUCTION al. [7] propose the use of GPUs and massive parallelism

for in-place file carving. However, Zha and Sahni [17] show

In multipattern string matching, we are to report all occuthat the performance of an in-place file carver is limited
rences of a given set or dictionary of patterns in a targeigstr by the time required to read data from the disk rather than
Multipattern string matching arises in a number of appi@w# the time required to search for headers and footers (when
including network intrusion detection, digital forensi¢sisi- a fast multipattern matching algorithm is used). Hence, by
ness analytics, and natural language processing. For é&amgoing asynchronous disk reads, the pattern matching time is
the popular open-source network intrusion detection systeffectively overlapped by the disk read time and the totakti
Snort [13] has a dictionary of several thousand patterrisiiea for the in-place carving operation equals that of the disidre
matched against the contents of Internet packets and the opéme. Therefore, this application cannot benefit from the us
source file carver Scalpel [9] searches for all occurrenéesaf a GPU to accelerate pattern matching.
headers and footers from a dictionary of about 40 head¢effoo Our focus in this paper is accelerating the Aho-Corasick
pairs in disks that are many gigabytes in size. In both apphaultipattern string matching algorithm through the use of a
cations, the performance of the multipattern matching magiGPU. In this paper, we address two cases for the placement
is paramount. In the case of Snort, it is necessary to seatsfffthe input and output—-GPU-to-GPU (the target string resid
for thousands of patterns in relatively small packets arlmt in the device memory and the results are to be left in this
speed while in the case of Scalpel we need to search for tenemory) and host-to-host (the target string is in the CPU
of patterns in hundreds of gigabytes of disk data. memory and the results of the matching are to be left in the

Snort [13] employs the Aho-Corasick [1] multipatternrCPU memory). In both cases, we assume that the pattern data
search method while Scalpel [9] uses the Boyer-Moore singlgucture is precomputed and stored in the GPU. Although we
pattern search algorithm [2]. Since Scalpel uses a singksearched GPU adaptations of the Boyer-Moore multistring
pattern search algorithm, its run time is linear in the padadii matching algorithm as well, these adaptations did not perfo
the number of patterns in the pattern dictionary and thettengas well as our GPU adapatations of the Aho-Corasick algo-
of the target string in which the search is being done. Soart, rithm. So, we do not report on the Boyer-Moore adaptations
the other hand, because of its use of an efficient multipattdrere.
search algorithm has a run time that is independent of theThe remainder of this paper is organized as follows. Sec-

— attempts to hide this latency by scheduling arithmetics

that are ready to be performed while waiting for the

|M9’|1|Me‘| |M”| access to device memory to complete [3]. Device memory

‘ is not cached. .

| B « Constant memory: Constant memory is read-only mem-
: — 1 S ory space that is shared by all threads. Constant memory
is cached and is limited to 64KB.

o Shared memory: Each SM has 16KB of shared memory.
Shared memory is divided into 16 banks of 32-bit words.
When there are no bank conflicts, the threads of a warp
can access shared memory as fast as they can access
registers [3].

o Texture memory: Texture memory, like constant memory,
is read-only memory space that is accessible to all threads

tion Il introduces the NVIDIA Tesla architecture. In Sedctitl using device functions called texture fetches. Texture

we describe the Aho-Corasick algorithm. Sections IV and V. memory is initialized at the host side and is read at the
describe our GPU adaptation for the GPU-to-GPU and host- device side. Texture memory is cached.

to-host cases. Section VI discusses our experimentaltsesul » Pinned memory (also known as Page-Locked Host Mem-

and we conclude in Section VII. ory): This is part of the host memory. Data transfer

between pinned and device memory is faster than between
Il. THENVIDIAT ESLA ARCHITECTURE pageable host memory and device memory. Also, this
Figure 1 gives the architecture of the NVIDIA GT200 data transfer can be done concurrent with kernel execu-

Tesla GPU, which is an example of NVIDIAs general pur- tion. However, since allocating part of the host memory

pose parallel computing architecture CUDA (Compute Unified as pinned “reduces the amount of physical memory

Driver Architecture) [3]. This GPU comprises 240 scalar available to the operating system for paging, allocating

processors (SP) or cores that are organized into 30 strgamin too much page-locked memory reduces overall system

multiprocessors (SM) each comprised of 8 SPs. Each SM performance” [3].

has 16KB of on-chip shared memory, 16384 32-bit registers,

and constant and texture cache. Each SM supports up to [1l. THE AHO-CORASICK ALGORITHM

1024 active threads. There also is 4GB of global or dev'ceThere are two versions—nondeterministic and determisisti

memory that is accessible to all 240 SPs. The Tesla, Iikerotrbq; the Aho-Corasick (AC) [1] multipattern matching algo-
GPUs, operates as a slave processor to an attached hos}itﬁ'}ln. We use the deterministic version in our work as it nsake

our experimental setup, the host is a 2.8GHz Xeon quad—cqz{%f as many state transitions as made by the non-detetiinis

pr?a\ceé,LsJODrAwnh 16GB tOf F"elrlnofy- c tten f version. In the deterministic version (DFA), each state &as
program typically IS a & program writlen 1or ., gition pointer for every character in the alphabet alé age
the host. C extensions supported by the CUDA programmiry

. t allow the host t 4 and ive data to/frem { dist of matched patterns. Aho and Corasick [1] show how to
environment allow the nost to send and receive data to cpmpute the transition pointers. The number of state tliansi

GPU's device memory as well as to invoke C functions (calle de b . . :
) DFA wh hing f tch t f
kernels) that run on the GPU cores. The GPU programmlpeg{?g;n)gsan when searching for matches in a string ©

model is Single Instruction Multiple Thread (SIMT). When

a kernel is myoked, the user must specify .th_e numb_er_ ggabb, abcaabbcc, acb, acbccabb, ccabb, bccabc, and édoccab
threads to be invoked. This is done by specifying eXpl'C'tl}ﬂrawn from the 3-letter alphabét,b,d

the number of thread blocks and the number of threads per
block. CUDA further organizes the threads of a block into IV. GPU-To-GPU
warps of 32 threads each, each block of threads is assigned
to a single SM, and thread warps are executed synchronouBlyStrategy
on SMs. While thread divergence within a warp is permitted, The input to the multipattern matcher is a character array
when the threads of a warp diverge, the divergent paths argut and the output is an arrayutput of states. Both arrays
executed serially until they converge. reside in device memorywtput|i] gives the state of the AC
A CUDA kernel may access different types of memory witlbFA following the processing afnput[i]. Since every state of
each having different capacity, latency and caching pt@&er the AC DFA contains a list of patterns that are matched when
We summarize the memory hierarchy below. this state is reachedyutput[i] enables us to determine all
« Device memory: 4GB of device memory are availablanatching patterns that end at input charaétdf we assume
This memory can be read and written directly by alhat the number of states in the AC DFA is no more than
threads. However, device memory access entails a high536, a state can be encoded using two bytes and the size of
latency (400 to 600 clock cycles). The thread schedulte output array is twice that of the input array.

TPCO

PCl-Express 2.0 x16

7 1 [

GODR3 |[[GDDR2 | [GDOR3 | [GDDR3 |[GDDR3 |[GODR? |[GODR3 | [GODR3
Memory || Memory || Memory || Memory || Memory || Memory || Memory || Memory
Controlier| | Controlter| | Controlier] | Controlier| [Controtier| | Contratier] | Controller| | Controtler,

Fig. 1. NVIDIA GT200 Architecture [14]

Figure 2 gives the Aho-Corasick DFA for the patterns ab-

Algorithm basic

/I compute blockb of the output array

/[usingT threads and AC

/I following is the code for a single thread, threlad < ¢ < T
t = thread index;

b = block index;

state = 0; // initial DFA state

output StartIndex = b * Spiock + t * Sthread;
inputStartIndexr = outputStartIndexr — maxL + 1;

/I processinput[input StartIndex : outputStartIndexr — 1]
for (int ¢ = inputStartindex; i < outputStartIndez;
i+4)

state = nextState(state, inputli]);

/[compute output

for (int i = outputStartIndex; i < outputStartIndex +
Sthread; T+ +)

Fig. 2. Example Aho-Corasick DFA output[i] = state = nextState(state, input[i]);

end;

n number of characters in string to be searched
maxL length of longest pattern
Shiock number of input characters for
which a thread block computes output
B number of blocks =/Sblock
T number of threads in a thread block
Sinreaa NUMber of input characters for
which a thread computes outputSs;ock /T
tWord Sthread/4
T™W total work = effective string length processed

Fig. 4. Overall GPU-to-GPU strategy using AC

using the AC DFA. The variables used are self-explanatody an
the correctness of the pseudocode follows from the pregedin
discussion.

The AC DFA resides in texture memory because texture
memory is cached and is sufficiently large to accommodate
the DFA. While shared and constant memories will result in
better performance, neither is large enough to accommodate

Fig. 3. GPU-to-GPU notation the DFA. Note that each state of a DFA hdstransitions,
where A is the alphabet size. For ASCIH = 256. Assuming
that the total number of states is fewer than 65536, each stat

Our computational strategy is to partition the output arrayansition of a DFA takes 2 bytes. So, a DFA withstates
into blocks of sizeSy.cr (Figure 3 summarizes the notatiorvequires512d bytes. In the 16KB shared memory that our
used in this section). The blocks are numbered (indexed)T8sla has, we can store at best a 32-state DFA. The constant
throughn/Sy0ck, Wheren is the number of output values to bememory on the Tesla is 64KB. So, this can handle, at best, a
computed. Note that equals the number of input characterd28-state DFA.
as well.output[i*Spiocr : (4 1) *Spiock — 1] cOMprises théth A nice feature of Algorithmbasic is that all T’ threads
output block. To compute théh output block, it is sufficient that work on a single block can execute in lock-step fashion
for us to use AC onnput[b * Spoc, —mazL +1:(b+ 1)+ as there is no divergence in the execution paths of these
Shiock — 1], Wheremaz L is the length of the longest patternT threads. This makes it possible for an SM of a GPU to
(for simplicity, we assume that there is a character thabis refficiently compute an output block usinf threads. With
the first character of any pattern and seput[—mazL +1: 30 SMs, we can compute 30 output blocks at a time. The
—1] equal to this character). So, a block actually processegpseudocode of Figure 4 does, however, have deficiencies that
string whose length 800 +maxL —1 and producesy., are expected to result in non-optimal performance on a GPU.
elements of the output. The number of block®is= n/Sy.ck. These deficiencies are listed below.

Suppose that an output block is computed udihthreads. Deficiency D1: Since the input array resides in device
Then, each thread could comput®,,..a = Swoeck/T Of memory, every reference to the arrayput requires a device
the output values to be computed by the block. So, threatemory transaction (in this case a read). There are two ssurc
t (thread indexes begin at 0) of block could compute of inefficiency when the read accessesitput are actually
output[b * Spiock + t * Sthread : b * Shiock + t * Stnread + ~Made on the Tesla GPU—(a) Our Tesla GPU performs device-
Stnreada—1]. FoOr this, thread of block b would need to process memory transactions for a half-warp (16) of threads at a.time
the substringinput[b * Spiock + t * Stnreaa — maxL + 1 @ The available bandwidth for a single transaction is 128 qyte
b * Shiock + t * Sthread + Stnread — 1]. Figure 4 gives the Each thread of our code reads 1 byte. So, a half warp reads
pseudocode for @-thread computation of blockof the output 16 bytes. Hence, barring any other limitation of our GPU, our

/I define space in shared memory to store the input data

code will utilize 1/8th the available bandwidth betweenidev .
dghared_ unsigned char sInput[Spiock, + maxL — 1];

memory and an SM. (b) The Tesla is able to coalesce the
vice memory transactions from several threads of a half war[
into a single transaction. However, coalescing occurs o
when the device-memory accesses of two or more threads i
half-warp lie in the same 128-byte segment of device memoyy. d inta S d I 1
When Sinreaq > 128, the values ofinputStartIndex for ' e84 as UINIAS, assumsy.c; and max are
consecutive threads in a half-warp (note that two thredds _d|V|3|bIe by 16]
and 12 are in the same half warp ifft1/16] — [r2/16]) Nt numToRead = (S +maxl —1)/16;
are more than 128 bytes apart. Consequently, for any givih 6%t =0 Shioc/16 — (mazl —1)/16 +;
value of the loop indexi, the read accesses made to thﬁ
array input by the threads of a half warp lie in different
128-byte segments and so no coalescing occurs. Although
pseudocode is written to enable all threads to simultarigous
access the needed input character from device memory, an
actual implementation on the Tesla GPU will serialize theserig. 5. T threads collectively read a block and save in shared memory
accesses and, in fact, every read from device memory will
transmit exactly 1 byte to an SM resulting in a 1/128 utilizat
of the available bandwidth. A variable var of type ui nt 4 is comprised of 4 unsigned
Deficiency D2:The writes to the arrayutput suffer from 4-byte integersvar . x, var.y, var.z, andvar.w. The
deficiencies similar to those identified for the reads from ttstatement
array input. Assuming that our DFA has no more thalf = - ; _ : i1
65536 states, each state can be encoded using 2 bytes. S%I,na:[4 ind = inputUntafi];
half-warp writes 64 bytes when the available bandwidth forrg@ads the 16 bytes nput[16«i: 16*i +15] and stores
half warp is 128 bytes. Further, no coalescing takes plac® asthese in the variablé n4, which is assigned space in shared
two threads of a half warp write to the same 128-byte segmentemory. Since the Tesla is able to read up to 128 bits (16
Hence, the writes get serialized and the utilized bandwiglth bytes) at a time for each thread, this simple change incsease

typecast to uint4
t4 xsInputUintd = (uint4 *)sInput;
}ﬁ/ﬁ 14 14

T threads collectively input a block
{?,'é (int i =t; i < numToRead; i+ =T, next+ =1T)
sInputUintd[i] = inputUintd[next];

2 bytes, which is 1/64th of the available bandwidth. bandwidth utilization for the reading of the input data from
_ 1/128 of capacity to 1/8 of capacity! However, this increase
Analysis of Total Work in bandwidth utilization comes with some cost. To extraet th

Using the GPU-to-GPU strategy of Figure 4, we essentialparacters from n4 so they may be processed one at a time
do multipattern searches dii T strings of lengthSyy,..q + PY our algorithm, we need to do a shift and mask operation
maxL — 1 each. With a linear complexity for multipatternon the 4 components ofn4. We shall see later that this cost
search, the total work"W, is roughly equivalent to that donemay be avoided by doing a recastuasi gned char.

by a sequential algorithm working on an input string of léngt Since a Tesla thread cannot read more than 128 bits at a
time, the only way to improve bandwidth utilization further

TW = Bx*T(Sthreaa +marL —1) is to coalesce the accesses of multiple threads in a half.warp
S oc . .y . .
_ n £ T+ (block 0ol — 1) To get fuII bandwidth utl!lzatlon at Ieallst.8 threads in a half
Shlock T warp will need to readui nt 4s that lie in the same 128-
" « (mazL — 1)) byte segment. However, the data to be processed by different

Sthread threads do not lie in the same segment. To get around this prob
lem, threads cooperatively read all the data needed to gsoce
So, our GPU-to-GPU strategy incurs an overhead afblock, store this data in shared memory, and finally read
L4 (mazL — 1) * 100% in terms of the effective length and process the data from shared memory. In the pseudocode
of Figure 5,7 threads cooperatively read the input data for

block b. This pseudocode, which is for threadperating on

B. Addressing the Deficiencies block b, assumes tha$;,.,. andmaxzL — 1 are divisible by

16 so that a whole number afi nt 4s are to be read and

way to improve the utilization of available bandwidth beéme each. read begins at the star't ofiant 4. boundary (assuming
tll"lgt input[—maxL + 1] begins at aui nt 4 boundary). In

the device memory and an SM, is to have each thread input : . 7
: .. each iteration (except possibly the last oriE)threads read a
characters at a time, process these 16 characters, andlverite . . .
. onsecutive set of’ ui nt 4s from device memory to shared
output values for these 16 characters to device memory. For

this, we will need to cast the input array from its native dat@?r:nzgcs r}?efaa:i%t:: n(:xiels thOI;]sF;EIt C?haeralgtsetrs(,).ne of ie
typeunsi gned char to the data typeii nt 4 as below: (PP y)

loop, a half warp reads 16 adjacernitnt 4s for a total of 256
uint4 *inputUint4 = (uint4 *) input; adjacent bytes. Wnput[—maxzL+1] is at a 128-byte boundary

S, \rea N .
of the' string that is to be searched.

1) Deficiency D1-Reading from device memofysimple

of device memory,Sy,cr IS @ multiple of 128, andl’ is a It should be noted that even whemord is odd, the
multiple of 8, then these 256 bytes fall in 2 128-byte segmenihput for every block begins at a 128-byte segment of device
and can be read with two memory transactions. So, bandwidtiemory (assuming that for the first block begins at a 128-
utilization is 100%. Although 100% utilization is also obted byte segment) provided® is a multiple of 32. To see this,
usingui nt 2s (now each thread reads 8 bytes at a time rathaoserve thatSy;,.. = 4 *x T x tWord, which is a multiple of
than 16 and a half warp reads 128 bytes in a single memd®8 whenevefl’ is a multiple of 32. As noted earlier, since
transaction), the observed performance is slightly bettegn the Tesla schedules threads in warps of size 32, we normally
a half warp reads 256 bytes in 2 memory transactions. would choose€l’ to be a multiple of 32.

Once we have read the data needed to process a block intg) Deficiency D2-Writing to device memoryde could
shared memory, each thread may generate its share of the §§& the same strategy used to overcome deficiency D1 to
put array as in Algorithnbasic but with the reads being doneiMprove bandwidth utilization when writing the results to
from shared memory. Threadwill need sInput[t Sihreqd : device memory. This would require us to first have each
(t-+1) % Synread +maz L — 2] of sInputUintd[t« Sypread/16 : thread write the results it computes to shared memory and
(t+ 1) * Sinreaa/16 + [(mazL — 1)/16] — 1], depending on then have all threads collectively write the computed tssul
whether a thread reads the input data from shared memory//@§n shared memory to device memory usingnt 4s. Since
characters or asi nt 4s. When the latter is done, we needn€ results take twice the space taken by the input, such a

to do shifts and masks to extract the characters from theSategy would necessitate a reductiorbi,c. by two-thirds.
unsigned integer components ouiant 4. This reduction in block size increases the total work ovadhe

Althouah the inbut scheme of Fiaure 5 succeeds in readiSi nificantly. We can avoid this increase in total work oesxth
. gh the inp 9 : B doing the following: (a) First, each thread processeditse
in the data utilizing 100% of the bandwidth between devic

memory and an SM, there is potential for shared-memory ba%axL — 1 characters it is to process. The processing of these

conflicts when the threads read the data from shared memé?lﬁ'araCterS generates no output and so we need no memory

Ty. -
Shared memory is partitioned into 16 banks. The 32-bit o'store output. (b) Next, each thread reads the remaining

word of shared memory is in bankmod 16. For maximum Sinreaa Characters of input data it needs from shared memory

performance the threads of a half warp should access dt%areglsters. For this, we declare a register array of ursign

. mntegers and typecast/nput to unsigned integer. Since, the
from different banks. Suppose théi;,,..q = 224 andsInput . -
begins at a 32-bit word boundary. LetWord = Sypreaa/d T threads have a total of 16,384 registers, we have sufficient

- _ egisters providedy;ocr, < 4%16384 = 64K (in reality, Spiock
(tWO.Td = 224/4 = 56 for our example) den_ote the numbgr. 0f/vould need to be slightly smaller than 64K as registers are
32-bit words processed by a thread exclusive of the ad‘Mlonneeded to store other values such as loop variables). Since
mafo 1 c;harapters needed to properlly handle the bounda{g,[al register memory exceeds the size of shared memory, we
In the first iteration of the data processing loop, threageds alwavs h h reai .

ys have enough register space to save the input data that
sInput[t* Sthreadl, 0 < t <T. S0, the words accessed by th?s in shared memory. Unles%,;,.. < 4864, we cannot store

H < < ” . oc — Ll
::g?ﬁ:slg]EZI? i?}?(')ft\;\; e:]rf(Er ttmfoig)arr:é;%[/%ri'?;f 6<F106r all the results in shared memory. However, to do 128-byte
our exampletiWord — 56 and (¢ + 56) mod ,16 Z 0 wheﬁt is write transactions to device memory, we need only sets of

P .- g - 64 adjacent results (recall that each result is 2 bytes). So,
even andt*56) mod 16 = 8 whent is odd. Since each bank

is accessed 8 times by the half warp, the reads by a half Wthe shared memory needed to store the result289" bytes.

o . nce we are contemplating = 64, we need only 8K of
are serialized to 8 shared memory accesses. Further, since 0 .
hared memory to store the results from the processing of

each |tera§|on, each thread steps nght by one character, 221 characters per thread. Once each thread has processed 64
bank conflicts remain on every iteration of the process Ioogh . .
aracters and stored these in shared memory, we may write

We observe that wheneveéWord is even, at least threads .
and8 access the same bank (bank 0) on each iteration of tthee results to device memory. The total number of outputs
generated by a thread &,,coq = 4 x tWord. These outputs

process loop. Theorem 1 shows that whBrord is odd, there take a total of8 « {WWord bytes. So, whenWord is odd (as

are no shared-memory ban!< COHf|ICFS. required by Theorem 1), the output generated by a thread is
Theorem 1:WhentWord is odd, (i x tWord) mod 16 # 4 non-integral number afi nt 4s (recall that eachi nt 4 is

(jk) mod 16, 0 < i < j < 16. 16 bytes). Hence, the output for some of the threads does not
Proof: The proof is by contradiction. Assume there exidbegin at the start of ai nt 4 boundary of the device array
¢ andj such thatd <i < j < 16 and (i x tWord) mod 16 = output and we cannot write the results to device memory

(j * tWord) mod 16. For this to be true, there must exisias ui nt 4s. Rather, we need to write a8 nt 2s (a thread
nonnegative integers, b, ande, a < ¢, 0 < b < 16 such generates an integral numbg# ord of ui nt 2s). With each
thati x tWord = 16a + b and j x tWord = 16¢ + b. So, thread writing aui nt 2, it takes 16 threads to write 128
(j—i)xtWord = 16(c—a). SincetWord is odd andc—a > 0, bytes of output from that thread. S®,threads can write the
j — ¢ must be divisible by 16. Howeve), — i < 16 and so output generated from the processing of 64 characterafthre
cannot be divisible by 16. This contradiction implies that o in 16 rounds ofui nt 2 writes. One difficulty is that, as noted
assumption is invalid and the theorem is proved. m earlier, whenWord is odd, even though the segment of device

(int i =0; i < numO fSegments; i+ +)

memory to which the output from a thread is to be writteﬁ)r . i . .
Asynchronously write segmentfrom host to device using

begins at aui nt 2 boundary, it does not begin atwa nt 4 .
boundary. This means also that this segment does not beﬁtirr?aml’
at a 128-byte boundary (note that every 128-byte bound (r)y

is also aui nt4 boundary). So, even though a half-warg '
of 16 threads is writing to 128 bytes of contiguous device
memory, these 128-bytes may not fall within a single 128by o))
segment. When this happens, the write is done as two memt% (int i =0; i < numOfSegments; i+ +) . .
transactions. The described procedure to handle 64 ckasact Asy?chronously read segmentesuilts from device using
of input per thread is repeatéd;,,...q/64| times to complete stream;

the processing of the entire input block. In cg;.cqq iS NOt

divisible by 64, each thread produces fewer than 64 results i Fig. 6. Host-to-host strategy A

the last round. For example, whefy;,...q = 228, we have a

total of 4 rounds. In each of the first three rounds, each thre@/rite segment O from host to device buffer INO;
processes 64 input characters and produces 64 resultse Inft (int i = 1; i < numO fSegments; i+ +)

last round, each thread processes 36 characters and psodtice

36 results. In the last round, groups of threads either write Asynchronously write segment from host to device
to contiguous device memory segments of size 64 or 8 bytasffer IN1;

and some of these segments may span 2 128-byte segment®rocess segmetit— 1 on the GPU using INO and OUTO;

(int ¢ = 0; i < numO fSegments; i+ +)
Process segmerton the GPU using streatn

of device memory. Wait for all read/write/compute to complete;
As we can see, using an od&l ord is required to avoid Asynchronously read segment 1 results from OUTO;
shared-memory bank conflicts but using an eddord (actu- Swap roles of INO and IN1;

ally using atWord value that is not a multiple of 16) results in ~ Swap roles of OUTO and OUT1;

suboptimal writes of the results to device memory. To opéani }

writes to device memory, we need to uséllord value that Process the last segment on the GPU using INO and OUTO;
is a multiple of 16. Since the Tesla executes threads on Bead last segment’s results from OUTO;

SM in warps of size 327" would normally be a multiple of
32. Further, to hide memory latency, it is recommended that
T be at least 64. WitH" = 64 and a 16KB shared memory,
Sthread €8N be at mosi6 x 1024/64 = 256 and sotWord

can be at most 64. However, since a small amount of shared, , . .
. and third reads the results for each segment back from device
memory is needed for other purpose$lord < 64. The

largest value possible faiVord that is a multiple of 16 is memory asynchronously. To ensure that the processing of a

nrcore 5. The ol work 11 whe o — s and. S8 does ot ben befre the asynchionou tarler o
mazL =17 is n* (14 ;25 *16) = 0.083n. Compared to the 9 P

casetWord = 57, the total work overhead increases from 7‘%2%%22&%?2?? rrisclgii];or gf?ﬁgnggn;]t;i?'rguogk arfé?/ir dt:Se
to 8.3%. Whether we are better off usitig/ ord = 48, which P b g 9 ' b

. L i . (t]he concept of a stream. Within a stream, tasks are done in
results in optimized writes to device memory but shared- : .
equence. With reference to Figure 6, the number of streams

memory bank conflicts and larger work overhead, or with o
y . 9 : eguals the number of segments and the tasks intthstream
tWord = 57, which has no shared-memory bank conflicts and” "~ ™ . . .
i : ; are: write segment to device memory, process segmeént
lower work overhead but suboptimal writes to device memor , .
. . ead the results for segmeinfrom device memory. To get the

can be determined experimentally. .

correct results, each segment sent to the device memory must

V. HOSTTO-HOST include the additionalnaxL — 1 characters needed to detect

Since the Tesla GPU supports asynchronous transfer of dgl[%tches that croAss segmlfnt boundarlﬁs. fici devi
between device memory and pinned host memory, it is possiblé:Or strategy A to work, we must have suificient device

to overlap the time spent in data transfer to and from gfgemory to accommodate the input data for all segments

device with the time spent by the GPU in computing th@s well as the results from all segments. Figure 7 gives

results. However, since there is only 1 1/O channel betweéf alternative strategy that requires only sufficient devic

the host and the GPU, time spent writing to the GPU cannoEmory for 2 segments (2 input buffers INO and IN1 and

be overlapped with the time spent reading from the Gplyvo output buffers OUTO and OUT1). We could, of course,

There are at least two ways to accomplish the overlap of I@uple strategies A and B to o.bta|r? a hybrid strategy.
between host and device and GPU computation. In Strategy AVe have analyzed the relative time performance of these
(Figure 6), which is given in [3], we have three loops. ThetfirdW0 host-to-host strategies in [8]. Due to space limitagione
loop asynchronously writes the input data to device memofly summarize the results of this analysis here.

in segments, the second processes each segment on the GPL), Strategy A gurantees the minimum possible completion

Fig. 7. Host-to-host strategy B

TABLE |

time while stratgey B does not. However, as noted RUN TIME FOR AC VERSIONS
earlier, strategy A requires more device memory than
2) The completion time when strategy B is used is at most N gadams 227lams 2158.31ms
13.33% more than when strategy A is used and this AC2 8.19ms 80.34ms 747.73ms
bound is tight. AC3 5.57ms 53.33ms 434.03ms
3) If the GPU system is enhanced to have two I/O chan- —A<% 2.88ms _ 26.48ms _ 248.7ims
nels between the host and the GPU and the CPU has
a dual port memory that supports simultaneous reads 10
and writes, strategy A remains optimal and B remains 99 [—e—10mB r
suboptimal; the completion time using strategy B is at 81 | —=—100mB
most 33% more than when strategy A is used and this Z: 904MB
bound is tight; and the stated enhancement of the GPU 5
system results in at most a 50% reduction in completion 4
time (this bound also is tight). 3 A Iy
2 A /g/
VI. EXPERIMENTAL RESULTS 14 n
0 T T T T

A. GPU-to-GPU

For all versions of our GPU-to-GPU CUDA code, we set
maxL = 17, T = 64, and Sy,cx = 14592. Consequently,
Sthread = Sblock/T = 228 andtWord = Sth'read/4 = bT.
Note that sincetWord is odd, we will not have shared-
memory bank conflicts (Theorem 1). We note that since ol a ui nt were extracted using shifts and masks, and DFA
code is written using a 1-dimensional grid of blocks and singransitions done on these 4 characters. This variant tooktab
a grid dimension is required to be 65536 [3], our GPU-to- 1% to 2% more time than AC3 and is not reported on further.
GPU code can handle at most 65535 blocks. With the chos&Ro, we considered variants of AC4 in whic¢hV ord = 48
block size,n must be less than 912MB. For largerwe can and 56 and these, respectively, took approximately 14.78% a
rewrite the code using a two-dimensional indexing scheme p.89% more time that AC4. We do not report on these variants
blocks. further either.

For our experiments, we used a pattern dictionary from [9] Table | gives the run time for each of our AC versions.
that has 33 patterns. The target search strings were edragts can be seen, the run time decreases noticeably with each
from a disk image and we used = 10MB, 100MB, and enhancement made to the code. Table Il gives the speedup
904MB. attained by each version relative to ACO and Figure 8 is a

1) Aho-Corasick AlgorithmWe evaluated the performanceplot of this speedup. Simply relocating the DFA from device
of the following versions of our GPU-to-GPU AC algorithm:memory to texture memory as is done in AC1 results in a

ACO This is Algorithm basic (Figure 4) with the DFA speedup of almost 2. Performing all of the enhancements

ACO AC1 AC2 AC3 AC4

Fig. 8. Graphical representation of speedup relative to ACO

stored in device memory. yields a speedup of almost 8 when= 10MB and almost
AC1 This differs from ACO only in that the DFA is stored9 whenn = 904MB.
in texture memory. 2) Comparison with Multicore Computing on HosEor

AC2 The AC1 code is enhanced so that each thread redd$ichmarking purposes, we programmed also a multithreaded
16 characters at a time from device memory rath&ersion of the AC algorithm and ran it on the quad-core Xeon
than 1. This reading is done using a variable of typeost that our GPU is attached to. The multithreaded version
uni nt 4. The read data is stored in shared memorteplicated the AC DFA so that each thread had its own copy
The processing of the read data is done by readitg work with. Forn = 10MB and 100MB we obtained best
it one character at a time from shared memory argerformance using 8 threads while fo= 500MB and 904MB
writing the resulting state to device memory directlybest performance was obtained using 4 threads. The 8-tread

AC3 The AC2 code is further enhanced so that threads
cooperatively read data from device memory to TABLE Il
shared memory as in Figure 5. time. The read data Speepup oFAC1, AC2, AC3,AND AC4 RELATIVE TO ACO
is processed as in AC2.

AC4 This is the AC3 code with deficiency D2 eliminated gcpgmizaﬁon Step 110""3 1100""3 904":'3
using a register array to save the input and coopera- AC1 193 1.92 1.95

tive writes as described in Section I1V-B2. AC2 2.80 2.83 2.89

. AC3 411 4.26 4.97

We experimented with a variant of AC3 in which data was AC4 771 858 868

read from shared memory as nt s, the encoded 4 characters

TABLE Il
RUN TIME FOR MULTITHREADED AC ON QUAD-CORE HOST

and showed that while strategy A was optimal with respect to

run time (under suitable assumptions), strategy B requéesl!

number of threads 10MB speedup 100MB speedup
1 24.48ms 1 243.47ms 1
2 13.52ms 181 125.52ms 1.94
4 11.28ms 2.17 68.74ms 3.54
8 9.18ms 2.67 67.77ms 3.59
16 10.64ms 2.30 68.07ms 3.58
number of threads 500MB speedup 904MB speedup
1 1237.64ms 1 2369.85ms 1
2 617.44ms 2.00 1206.21ms 1.96
4 319.23ms 3.88 604.54ms 3.92
8 367.32ms 3.37 677.16ms 3.50
16 356.48ms 3.47 620.99ms 3.82

device memory (when the number of segments is more than
2). Experiments show that the GPU-to-GPU adaptation of AC
achieves speedups between 8.5 and 9.5 relative to a single-
thread CPU code and speedups between 2.4 and 3.2 relative
to a multithreaded code that uses all cores of our quad-core
host. For the host-to-host case, the GPU adaptation achieve
a speedup of 3.1 relative to a single-thread code running on
the host. However, for this case, a multithreaded code ngnni

on the quad core is faster. Of course, performance relative t
the host is quite dependent on the speed of the host and using

a slower or faster host with fewer or more cores will change

the
code delivered a speedup of 2.67 and 3.59, respectively, for

= 10MB and 100MB relative to the single-threaded code. For
n = 500MB and 904MB, the speedup achieved by the 4-thread]
code was, respectively, 3.88 and 3.92, which is very close to
the maximum speedup of 4 that a quad-core can deliver. [2]
AC4 offers speedups of 8.5, 9.2, and 9.5 relative to thes
single-thread CPU code for = 10MB, 100MB, and 904MB,
respectively. The speedups relative to the best multitega
guad-core codes were, respectively, 3.2, 2.6, and 2.4ecesp

tively.
y [5]

B. Host-to-Host [6]

We used AC3 with the parameters stated in Section VI-

to process each segment of data on the GPU. The tarj&
string to be searched was partitioned into equal size segmens]
As a result, the time to write a segment to device memo‘ng;]
was (approximately) the same for all segments as was
time to process each segment in the GPU and to read the
results back to host memory. From our analysis [8], we kno
that host-to-host strategy A will give optimal performanc
while, for the selected parameters, strategy B will not give2]
optimal performance. So, we experimented only with strateg
A. Table IV gives the time taken when = 500MB and ;3
904MB using a different number of segments. This figure4]
also gives the speedup obtained by host-to-host strategyllA
relative to doing the multipattern search on the quad-cost h
using 4 threads (note that 4 threads give the fastest quéis
core performance for the chosen valuesndf Although the
GPU delivers no speedup relative to our quad-core host,
speedup could be quite substantial when the GPU is a slave
of a much slower host. In fact, when operating as a slave
of a single-core host running at the same clock-rate as our
Xeon host, the CPU times would be about the same as for our
single-threaded version and the GPU host-to-host codedwvoul
deliver a speedup of 3.1 when= 904MB and 500MB and

11]

relative performance values.

REFERENCES

A. Aho and M. Corasick, Efficient string matching: An aid biblio-
graphic search, CACM, 18, 6, 1975, 333-340.

R. Boyer and J. Moore, A fast string searching algoritt®@ACM, 20,
10, 1977, 262-272.

NVIDIA CUDA manual
http://developer.nvidia.com/object/gpucomputing.html

reference,

] N. Huang, H. Hung, S.Lai et al, A GPU-based Multiple-patt Match-

ing Algorithm for Network Intrusion Detection System$he 22nd
International COnference on Advanced Information Netwaykand
Applications, 2008

N. Jacob, C.Brodley, Offloading IDS Computation to the GFPble 22nd
Annual Computer Security Applications Conference, 2006
D.E.Knuth, J.H. Morris, Jr, and V.R.PratEast pattern matching in
strings SIAM J. Computing 6, 323-350, 1977.

L. Marziale, G. Richard Ill, V. Roussev, Massive Threagti Using GPUs
to increase the performance of digit forensics toSksience Direct, 2007
http://www.cise.ufl.ed@ahni/papers/gpuMatching.pdf
http://www.digitalforensicssolutions.com/Scalpel/

D. Scarpazza, O. Villa, F. Petrini, Peak-PerformancébBsed String
Matching on the Cell Processofhird IEEE/ACM Intl. Workshop
on System Management Technigues, Processes, and Sewitigs,
IEEE/ACM Intl. Parallel and Distributed Processing Symipos 2007
D. Scarpazza, O.Villa, F.Petrini, Accelerating R&ahe String Search-
ing with Multicore ProcessordEEE Computer Society2008.

R. Smith, N. Goyal, J. Ormont et al. Evaluating GPUs for wak
Packet Signature Matchingnternational Symposium on Performance
Analysis of Systems and Softwa2€09.

http:/iwww.snort.org/dl.

NVIDA tesla architecture, http://www.lostcircuiteam/graphics.

S. Wu and U. Manber, Agrep-a fast algorithm for multitpat search-
ing, Technical Report, Department of Computer Science, Usiityeof
Arizona, 1994.

X. Zha, D. Scarpazza, and S. Sahni, Highly compressedi-paititern
string matching on the Cell Broadband Engine, University lafriBla,
2009.

ﬂ X. Zha and S. Sahni, Fast in-place file carving for digf@rensics,

e-Forensics LNICST, Springer, 2010.

TABLE IV
RUN TIME FOR STRATEGYA HOST-TO-HOST CODE

the number of segments is 1.

VIl. CONCLUSION

We focus on multistring pattern matching using a GPU.
AC adaptations for the host-to-host and GPU-to-GPU cases
were considered. For the host-to-host case we suggest two

segments segment size GPU guadcore speedup

100 9.04MB 816.80ms 604.54ms 0.74

10 90.4MB 785.55ms 604.54ms 0.77

2 452MB 788.63ms 604.54ms 0.77

1 904MB 770.13ms 604.54ms 0.78

50 10MB 412.55ms 319.23ms 0.82

10 50MB 387.78ms 319.23ms 0.82
100MB 385.17ms 319.23ms 0.83

1 500MB 396.42ms 319.23ms 0.81

strategies to communicate data between the host and GPU

