Highly Compressed Multi-pattern String Matching
on the Cell Broadband Engine

Xinyan Zha
Computer and Information Science
and Engineering
University of Florida
Gainesville, FL 32611
Email: xzha@cise.ufl.edu

Abstract—With its 9 cores per chip, the IBM Cell/Broadband
Engine (Cell) can deliver an impressive amount of compute power
and benefit the string-matching kernels of network security,
business analytics and natural language processing applications.
However, the available amount of main memory on the system
limits the maximum size of the dictionary supported by the string
matching solution.

To counter that, we propose a technique that employs com-
pressed Aho-Corasick automata to perform fast, exact multi-
pattern string matching with very large dictionaries. Our tech-
nique achieves the remarkable compression factors of 1:34 and
1:58, respectively, on the memory representation of English-
language dictionaries and random binary string dictionaries. We
demonstrate a parallel implementation for the Cell processor that
delivers a sustained throughput between 0.90 and 2.35 Gbps per
Cell blade, while supporting dictionary sizes up to 9.2 Million
average patterns per Gbyte of main memory, and exhibiting
resilience to content-based attacks.

This high dictionary density enables natural language applica-
tions of an unprecedented scale to run on a single server blade.

I. INTRODUCTION

The evolution of “Web 2.0” applications and business
analytics applications is showing a more and more prevalent
production and use of unstructured data. For example, Natural
Language Processing (NLP) applications can determine the
language in which a document is written. E-mail web applica-
tions extract semantically tagged information (dates, places,
delivery tracking numbers, etc.) from messages. Business
analytics applications can automatically detect business events
like the merger of two companies.

In these applications and many others, it is crucial to process
huge amounts of sequential text to extract matches against
a predetermined set of strings (the dictionary). Arguably,
the most popular way to perform this exact, multi-pattern
string matching task is the Aho-Corasick [1] (AC) algorithm.
However, AC, especially in its optimized form based on a
Deterministic Finite Automaton (DFA), is not space-efficient.
In fact, the state-transition table that its DFAs use can be highly
redundant. Uncompressed DFAs have a low transition cost
(and therefore a high throughput) but also large footprint and,
consequently, a low dictionary capacity per unit of memory.
For example, a dictionary of 200,000 patterns with average
length 15 bytes occupies 1 Gbyte of memory when encoded

Daniele Paolo Scarpazza
IBM T.J. Watson Research Center
Multicore Computing Department

Yorktown Heights, NY 10598
Email: dpscarpazza@us.ibm.com

Sartaj Sahni
Computer and Information Science
and Engineering
University of Florida
Gainesville, FL 32611
Email: sahni@cise.ufl.edu

for an uncompressed AC DFA. Low space efficiency limits
the algorithm’s applicability to domains that require very
large dictionaries like automatic language identification, which
employ dictionaries with millions of entries, coming from
hundreds of distinct natural languages.

In this paper, we address precisely this space inefficiency
by exploring a variant of AC that employs compressed paths.
Our algorithm is inspired by those proposed by Tuck et al. [12]
and Zha and Sahni [19]. These algorithms are based on the
Non-deterministic Finite Automaton (NFA) version of AC, and
achieve significant memory reduction.

We choose an established multi-core architecture, the IBM
Cell/Broadband Engine (Cell) for our work because it is a
prominent architecture in the high-performance computing
community, it has shown potential in string matching appli-
cations, and it presents software designers with non-trivial
challenges that are representative of the next generations of
multi-core architectures.

With our proposed algorithm, we achieve an average com-
pression ratio of 1:34 for English words and 1:58 for random
binary patterns. Our implementation provides a sustained
throughput between 0.90 and 2.35 Gbps per Cell blade in
different application scenarios, while supporting dictionary
densities up to 9.26 million average patterns per Gbyte of
main memory.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Cell architecture. Sections III and IV
introduce the AC algorithm and the compression method of
Tuck et al. Section V demonstrates a parallel, Cell-based
implementation of our technique. Section VI discusses the
experimental results. Section VII reviews the related work.
Section VIII concludes the paper.

II. THE CELL/BROADBAND ENGINE ARCHITECTURE

The Cell processor [17] contains 9 heterogeneous cores
on a silicon die. One of them is a traditional 64-bit pro-
cessor with cache memories and 2-way simultaneous multi-
threading, called Power Processor Element (PPE), and capable
of running a full-featured operating system and traditional
PowerPC applications. The other 8 cores are called Synergistic
Processor Elements (SPEs). They have no caches, but rather

a small amount of scratch-pad memory (256 kbyte) that the
programmer must manage explicitly, by issuing DMA transfer
from and to the main memory. The cores are connected with
each other via the Element Interconnect Bus (EIB), a fast
double ring on-chip network.

The Cell delivers its best performance when the SPEs are
kept highly utilized by streaming tasks that load data from
main memory, process data locally and commit the results back
to main memory. These tasks exhibit a regular, predictable
memory access pattern that the programmer can exploit to
implement double buffering, and overlap computation and
data-transfer over time.

Achieving high performance on the Cell with non-streaming
applications is all but trivial, and algorithms based on DFAs
like ours are arguably the most difficult to port. In fact,
these algorithms exhibit unpredictable memory access patterns
and a complex latency interaction between compute code and
data-transfer code. These circumstances make it difficult to
determine what represents the critical path in the code, and
how to optimize it.

III. THE AHO-CORASICK ALGORITHM

Aho-Corasick (AC) [1] is a multi-pattern matching algo-
rithm, commonly employed in NIDS applications. There are
two versions of it: a deterministic and a non-deterministic one.
Both versions use finite state machines. The version we adopt
is the one based on a Non-deterministic Finite Automaton
(NFA).

In this version, states are connected by success and failure
transitions. Each state has one outgoing failure transition and
one or more success transitions. A success transition is labeled
with a symbol from the accepted alphabet. Each state has a
set of matches (from the dictionary) that are matched when
the NFA transitions into that state as a result of a success
transition.

The NFA is initialized in its start state, with its read head
on the first symbol of the input text string S. At each step, the
NFA performs a state transition examining the current input
symbol in S. If the current state has a success transition labeled

SPE SPE SPE SPE

- L
= 0.5MB)

=

Power g SPE SPE SPE SPE
CORE

PERV.

EIB FE

i
Rambus RRAC

Rambus X10
Memeory Controller

170 Controller

Fig. 1. Chip layout of the Cell/Broadband Engine Architecture.

as the current input symbol, the NFA follows that transition,
and the read head moves one symbol ahead over S. When
no such success transition exists, the NFA follows the failure
transition without advancing its read head.

Whenever the NFA lands into a state that has a non-empty
match set, the automaton reports that all the strings in the
match set have just been matched. In NIDS applications, this
is usually associated with the detection of malicious signatures,
and it triggers appropriate alerts.

IV. TUCK ET AL.”S COMPRESSED AUTOMATON

In this work, we focus on an adaptation of Tuck et al.’s [12]
compressed NFA method. We choose to do so despite the
fact that Zha and Sahni’s [19] technique is 31% more space-
efficient and it requires 90% fewer popcount!, additions,
because Tuck et al.’s method has a simpler control flow, and
therefore it promises higher performance on an architecture
like the Cell’s SPEs, where branches are expensive. In detail,
Zha and Sahni’s compressed automaton uses three node types
(bitmap, low degree, path compressed) whereas Tuck et al.’s
uses only two. We expect that a port of Zha and Sahni’s
method will incur more frequent branch miss penalties. An
optimized port of Zha and Sahni’s automaton is expected to
pose a harder design challenge and is left for future research.

We assume that the alphabet size is 256 (e.g., extended
ASCII characters). A naive way to store an AC NFA, for a
given dictionary D, is to represent each state with a node
having 256 success pointers, one failure pointer, and a list of
matched strings, as follows:

1) Success[0...255] is an array where element Success/[i]
points to the state to transition to, when the input is
with ASCII code 7. Success[i] is null when such success
transition is not defined.

2) MatchList is the list of strings matched when this state
is reached via a success pointer.

3) Failure is a pointer to the state to transition, when no
success transition matches the current input.

Assuming 32-bit pointers, this representation occupies 1032
bytes per node (including the MatchList pointer but not
the size of the list itself). This representation can be very
redundant: a large fraction of the Success array can be oc-
cupied by null or repeated values. We employ bitmaps and
path compression to compact this representation, reducing the
footprint of a node to 52 bytes.

Bitmap Compression. Briefly said, bitmap compression re-
places each 1032-byte node of a NFA with a 45-byte node.
Of these 45 bytes, 1 is for the node type and failure pointer
offset, 8 are used for the failure and rule list pointers. 32 bytes
contain a 256-bit bitmap with the property that bit ¢ of this
map is 1 iff Success[i] # null. The nodes corresponding to the
non-null success pointers are stored in contiguous memory and
a pointer firstChild to the first of these stored in the 45-byte
node.

'A population count (popcount) operation determines the number of ‘1’
bits in a bit field.

node failptr L1 (S1,82,...S7)
type offset 8bits*7=56bits
1bit 3bits
i le pti i i
bitmap 256bits fagtjrre ;lesigf ﬁrs:)(;:md
32bits 32hits
Fig. 2. Bitmap node layout.
node capacity failptroff1 firstchild charl ~ char 4 (32bits)
type 3bits ~failptroff ptr 32bits
1hit a4

failptr1~failptr4(32bits*4) ruleptr 1~ruleptr4 (32bits*4)

Fig. 3. Path-compressed node layout with packing factor equal to four.

A state transition for an input 7 works as follow. We first
determine whether Success[i] is null by examining bit 7 of
the bitmap. If this bit is zero, the next state is pointed by the
failure pointer. Otherwise, we determine the popcount of all
the bits in the bitmap having position < . Then we transition
to the state pointed by firstChild, offset by a state record size
(45 bytes) as many times as the popcount.

To reduce the cost of popcount, Tuck et al. propose the
use of precomputed summaries, that give the popcount for the
first 32 -7, 1 < j < 8 bits of the bitmap. Each summary
is 8 bits long, and 7 summaries are needed. The size of a
bit-compressed node with summaries is therefore 52 bytes.

Path Compression. Path compression is similar to end-node
optimization [4], [7]. An end-node sequence is a sequence of
states at the bottom of the automaton (the start state is at the
top of the automaton) that comprises states having a single
non-null success transition (except for the last state in the
sequence, which has no non-null success transition). States in
the same end-node sequence are packed together into one or
more path-compressed nodes.

For each state s; packed into a path-compressed node, we
store one success l-byte input character, the failure pointer
and the match list.

Since several automaton states are packed into a single
compressed node, a 32-bit failure pointer is not sufficient
to address packed states within a compressed node. With
an additional 3-bit offset, we handle nodes with capacity
¢ < 8. Now, [3¢/8] bytes are needed for the offsets. A path-
compressed node with capacity ¢ needs 9c+ [3¢/8] bytes for
the state information. 4 more bytes are needed to pointer to
the next node (if any) in the sequence of path-compressed
nodes. One more byte identifies the node type (bitmap and
compressed) and its size (number of packed states). So, the
size of a compressed node is 9c + [3¢/8] + 5 bytes.

Figure 3 shows a path-compressed node.

V. CELL-ORIENTED ALGORITHM DESIGN

This section describes the implementation choices we made
to adapt our AC NFA algorithm to the Cell processor.

Dictionary Original Packing Compressed Compression
AC Size Factor AC Size Ratio
(1) English 48.86 Mbytes 4 1.41 Mbytes 34.78
8 1.83 Mbytes 26.65
(2) Binary 52.37 Mbytes 4 0.90 Mbytes 58.07
8 0.85 Mbytes 61.53
12 0.86 Mbytes 60.83

Fig. 4. Compression Ratios obtained by our technique on two sample

dictionaries of comparable uncompressed size. Dictionary (1) contains the
20,000 most common words in the English language. Dictionary (2) contains
8,000 random binary patterns of same average length as in Dictionary (1).

To compute popcounts efficiently, we employ the CNTB
and SUMB instructions (available at the C level via the
spu_cntb() and spu_sumb() intrinsics). Also, we employ vector
comparison instructions to get the longest match between the
input and compressed paths.

For alignment reasons, we only consider path-compressed
nodes with packing factors (c) of 4, 8 and 12. Figure 4 shows
the corresponding compression ratio. Note that 4 is the best
choice for the English dictionary and 8 is best for random
binary patterns. For simplicity, we consider a packing factor of
4 in the experiments that follow. The difference in compression
gain obtained with a packing factor of 8 is not significant
enough to justify the increase in algorithm complexity. By
using this compressed automata, we can compress dictionaries
with an average compression ratio of 1:34 for English dictio-
naries and 1:58 for random binary patterns.

We now describe the optimizations we employed to map
our compressed AC algorithm to Cell architecture and their
impact. Results were obtained with the IBM Cell SDK 3.0
on IBM QS22 blades. Figure 5 shows the impact of the
optimization steps on the performance and quality of code. We
started from a naive compressed AC implementation and we
applied branch hinting, branch replacement with conditional
expressions, vertical unrolling, data structure realignment,
branch removal, arithmetic strength reduction and horizontal
unrolling. The aggregate effect of these optimizations is to
increase the throughput (by reducing the number of cycles
absorbed per character), reducing the cycles per instruction
(CPI), reducing stalls and increasing the dual issue rate (i.e.
clock cycles in which both pipeline in an SPE issue a new
instruction).

These techniques help to decrease the CPI, the branch stall
cycles rate, the dependency stall cycles. They also decrease the
single instruction issue rate and increase the dual instruction
issue rate. Overall, the optimization effort results in a 16 to
25 times throughput speedup against the unoptimized PPE
baseline implementation.

A. Step (1): Branch replacement and hinting

Whenever possible, we restructure the control flow so to
replace if statements with conditional expressions. We inspect
the assembly output to make sure that the compiler renders
conditional expression with select bits instructions rather than
branches.

Typical ~ Cycles/ CPI Insts Used NOP Branch Dep. Single Dual
Optimization Step Throughput char per Regs Stall Stall Issue Issue Speedup
(Gbps) (1 SPE) char Rate Rate Rate Rate Rate
Scenario A: Full Text Search
(0) Unoptimized PPE baseline implementation 0.082 — — — — — — — — — =1.0x
(1) Naive implementation on 8 SPEs 1.440 1422 142 99.9 81 23% 104% 279% 473% 11.5% 17.1x
(2) 1 Engine, branch hints, conditional expr. 1.518 1349 146 92.1 82 1.5% 237% 252% 38.0% 11.0% 18.5x
(3) 4 Engines, loops unrolling, alignment 1.616 126.8 1.46 86.7 92 19% 195% 29.0% 37.7% 11.7% 19.7x
(4) 1 Engine, branch removal 1.768 115.8 0.94 122.7 99 2.3% 27% 26.1% 449% 24.0% 215X
(5) 1 Engine, cheaper pointer arithmetics 1.771 115.6 097 118.9 99 1.8% 1.8% 260% 463% 234% 21.6Xx
(6) 4 Engines, horizontal unrolling 2.058 99.5 0.83 120.3 125 1.7% 32% 17.4% 438% 33.7% 25.1x
Scenario B: Network Content Monitoring
(0) Unoptimized PPE baseline implementation 0.082 — — — — — — — — — =1.0x
(1) Naive implementation on 8 SPEs 0.655 3128 1.23 307.2 84 18% 150% 20.7% 52.0% 10.0% 8.0x
(2) 1 Engine, branch hints, conditional expr. 0.882 232.3 1.18 231.2 83 2.4% 8.6% 27.6% 48.7% 12.6% 10.8%
(3) 4 Engines, loops unrolling, alignment 0.992 2064 1.16 225.18 86 279% 200% 200% 409% 163% 12.1x
(4) 1 Engine, branch removal 1.018 201.1 1.00 163.8 128 1.8% 1.0% 278% 48.5% 20.7% 12.4x
(5) 1 Engine, cheaper pointer arithmetics 1.464 1399 092 120.22 128 2.3% 14% 232% 44.6% 284% 179x
(6) 4 Engines, horizontal unrolling 2.071 989 092 107.04 128 1.9% 24% 22.6% 449% 279% 25.3x
Scenario C: Network Intrusion Detection
(0) Unoptimized PPE baseline implementation 0.082 — — — — — — — — — =1.0x
(1) Naive implementation on 8 SPEs 0.512 388.0 143 387.10 84 25% 154% 277% 49.1% 5.3% 6.2x
(2) 1 Engine, branch hints, conditional expr. 0.576 3553 1.14 354.41 86 2.9% 141% 21.8% 43.4% 17.8% 7.0x
(3) 4 Engines, loops unrolling, alignment 0.636 3219 128 343.40 83 1.7% 16.2% 253% 44.8% 11.6% 7.8%
(4) 1 Engine, branch removal 0.650 3153 1.00 281.75 128 18% 12% 27.6% 485% 20.8% 7.9%
(5) 1 Engine, cheaper pointer arithmetics 0.801 2557 094 199.77 128 2.2% 34% 229% 429% 28.4% 9.8%
(6) 4 Engines, horizontal unrolling 1.318 1553 092 165.73 128 1.9% 25% 22.6% 447% 28.0% 16.1x
Scenario D: Network Intrusion Detection
(0) Unoptimized PPE baseline implementation 0.092 — — — — — — — — — =1.0x
(1) Naive implementation on 8 SPEs 0.451 4536 130 441.3 84 21% 128% 260% 465% 122% 4.9x%
(2) 1 Engine, branch hints, conditional expr. 0.560 3654 1.16 314.57 86 28% 148% 220% 427% 17.4% 6.1x
(3) 4 Engines, loops unrolling, alignment 0.703 2915 1.28 227.19 83 1.7% 164% 254% 445% 11.7% 7.6
(4) 1 Engine, branch removal 1.588 1290 1.06 121.14 128 1.5% 7.6% 247% 454% 19.9% 17.3x
(5) 1 Engine, cheaper pointer arithmetics 1.694 1209 096 126.50 128 2.3% 12% 23.1% 449% 283% 18.4x
(6) 4 Engines, horizontal unrolling 2.204 929 092 100.65 128 1.7% 79% 20.6% 41.8% 273% 24.0x

Fig. 5.
presented in Section VI. Packing factor for compressed-path node is 4.

A major if statement in the compressed AC NFA kernel
does not benefit from this strategy, i.e., the one that branches
depending on whether the node type is bitmap or path-
compressed. The two branches are too different to reduce to
conditional expressions. We reduce the misprediction penalty
associated with this branch by hinting to mark the bitmap case
as the more likely, as suggested by our profiling on realistic
data.

B. Step (2): Loop Unrolling, Data alignment

We apply unrolling to a few relevant bounded innermost
loops, and we apply data structure alignment. Our algorithm
consists of two major parts: a compute part and a memory
access part. Since the compressed AC is too large to fit entirely
in the SPEs’ local stores, we store it in main memory.

We safely ignore the impact of memory accesses required to
load input text from main memory to local store and write back
matches in the opposite direction. In fact, we implement both
transfers in a double-buffered way, overlapping computation
and data transfer in time.

When a single instance of an AC NFA runs, it computes
its next-iteration node pointer and then fetches this node via a
DMA transfer from main memory. DMA transfers have round-
trip time of hundreds of clock cycles. To utilize these cycles,

The impact of the optimization steps on the performance of our compressed AC NFA algorithm when evaluated in the four application scenarios

we run multiple concurrent automata, each checking matches
in different segments of the input, unrolling their code together
vertically. Multiple automata can pipeline memory accesses,
overlapping the DMA transfer delays.

Figure 6 illustrates how different vertical unrolling factors
affect the performance. We choose vertical unrolling factor 8
in our implementation as it gives the minimal DMA transfer
delay.

We also performed an experiment to find out the best DMA
transfer size to make full use of the bandwidth and minimize
the DMA transfer delay. Figure 9 shows the optimal transfer
size is 64 Bytes over the eight SPUs.

C. Step (3): Branch removal, select-bits intrinsics

After replacing if statements with conditional expressions,
the branch miss stalls still account for about one fifth of the
total compute cycles.

We use IBM asmvis [18] to inspect the static timing analysis
of our code at the assembly level. It helps us to get a clear
view of what the compiler is doing, instruction by instruction.
The inspection reveals that conditional expressions are often
translated by the compiler as expensive branch instructions.
In this case, our code still suffers from expensive branch
miss penalties, which can cost as much as 26 clock cycles

800
700 -
600 -
500 -
400 -
300 -
200 -
100 H

Cycles/char

Number of NFAs

Fig. 6. The number of cycles processed per character with different vertical
unrolling factors. (Full-text search scenario).

25
2 4
A]
2 1.5 -
8]
-
S
o
<
&0
3
2 14
<
(==
0.5
0 T T T T T
0 1 2 3 4 5
Fig. 7. How the throughput grows with each optimization step. (Full-text

search scenario).

each. To eliminate branches, we manually replace conditional
expressions with the spu_sel intrinsic [14]. The basic idea is to
compute the two possible results for both branches and select
one of the results using a select bit instruction. For example,
the transformation reduces branch miss stalls from 19.5% to
2.7% of the cycle count for the full-text search scenario.

D. Step (4): Strength reduction

We manually apply operator strength reduction (i.e., re-
placing multiplication and divisions with shifts and additions)
where the compiler did not. In addition, we use cheap pointer
arithmetic to load four adjacent integer elements into a 128 bit
vector. This reduces the load overhead. e.g. Manual strength
reduction reduces the overall clock cycles 3% for the full text
search scenario.

H NoPs
O Branch stalls
J140 4 [Dependency Stalls
-3 — M single-Issue Cycles
o fr— O pual-Issue Cycles
= -
£120
G
-
5
o
£
L100 E —
@
o
ar
£ 80
=
3]
@
o
< 60 -
K
@
K
9 40
)
x
o
o
o 20
0 T T T T T
0 1 2 3 4 5

Fig. 8. Utilization of clock cycles following each optimization step (Full-text
search scenario).

DMA Transfer Delay
300
Ry Fe R kX
%
£
& 200 —o— 64 bytes
8 » » 2 > i —— —— 128 bytes
F_J 150 4 256 bytes
}7]
§ 512 bytes
; 100 - —%— 1024 bytes
=
(=}
50 -
0 T T T T T T T T
1 2 3 4 5 6 7 8
Number of SPEs

Fig. 9. DMA inter-arrival transfer delay from main memory to local store

when 8 SPEs are used concurrently.

E. Step (5): Horizontal unrolling

After Steps 1-4, dependency stalls occupy about 25% of
the computation time. Within the NFA compute code, one
branch handles bitmap nodes, while the other one handles
path-compressed nodes. In the code of both cases, there are
frequent read-after-write data dependencies.

To reduce the dependency stalls, we interleave the codes of
multiple, distinct automata; we call this operation horizontal
unrolling. These multiple automata process independent input
streams against the same dictionary. They have distinct states
and input/output buffers, and they require multiple, distinct
DMA operations to perform the associated streamed double
buffering.

The horizontal unroll factor must be chosen accurately to
reflect the trade-off between the decreased dependency stalls
and the potentially increased branch stalls. Our experiments
show that unrolling 2 NFAs achieves the highest performance
improvement, 10%. For example, for the full text search
scenario, dependency stalls decreased from 26.0% to 17.4%,
while branch stalls increase from 1.8% to 3.2%.

VI. EXPERIMENTAL RESULTS

In this section, we benchmark our software design in a set
of representative scenarios.

We use two dictionaries to generate compressed AC au-
tomata: Dictionary 1 contains the 20,000 most common words
in the English language, while Dictionary 2 contains 8000
random binary patterns. We benchmark the algorithm on
three input files: the King James Bible, a tcpdump stream of
captured network traffic and a randomly generated binary file.

Figure 10 shows the aggregate throughput of our algorithm
on a dual-chip blade (16 SPEs) in the six scenarios described
below. Scenario A (Dictionary 1 against the Bible) is repre-
sentative of full-text search systems. Scenario B (Dictionary
1 against the network dump) is representative of content
monitoring systems. Scenario C (Dictionary 2 against the net-
work dump) is representative of Network Intrusion Detection
Systems (NIDSs). Scenario D (Dictionary 2 against binary
patterns) is representative of anti-virus scanners.

The last two scenarios in the figure are representative of sys-
tems (with Dictionary 1 and 2, respectively) under a malicious,
content-based attack. In fact, a system whose performance de-
grades dramatically when the input exhibits frequent matches
with the dictionary is subject to content-based attacks. An

2.5

=
= (%) N
Il Il Il

Throughput(Gbps)

o
(%)
Il

Full-text
search

Intrusion
Detection

Network
content
monitoring

Fig. 10. Aggregate throughput of our algorithm on a IBM QS22 blade (16
SPEs).

Virus scanning Full-text Virus scanning
search (100% (100% match)

match)

Scenario Throughput

(Gbps)
Full-text search 1.14
Network content monitoring 1.43
Network intrusion detection 0.90
Anti-Virus scanning 1.25
Full-text search (100% match) 1.69
Anti-Virus scanning (100% match) 2.35

Fig. 11. Aggregate throughput on a IBM Cell chip with 8 SPUs (Gbps).

2.5

B

8 27

e

H

< 154

()

=]

2

k=

g 1]

©

80

e

8 0.5

<

0 T T T T T
0% 50% 67% 75% 80% 100%
The percentage of matched patterns
Fig. 12. How the percentage of matched patterns affects the aggregate

throughput. The input here is on English input data, with English Dictionary.

attacker that gains partial or full knowledge of the dictionary
could provide the system with traffic specifically designed to
overflow it. In scenarios five and six we provide our system
with inputs entirely composed of words from the dictionary.
Our experiments show a desirable property of our algorithm:
its performance actually increases in case of frequent hitting.

The reason is that our NFA spends a similar amount of
time to process a bitmap or a path-compressed node. For this
reason, a mismatch takes a comparable amount of time to the
match of an entire path.

For this reason, the cycles spent per input character de-
crease when more input characters match the dictionary. Path-
compressed nodes pack as many as 4 or 8 original AC nodes,
and allow multi-character match at one time. Figure 12 shows
how the percentage of matched patterns affects the aggregate
throughput on the IBM cell blade with 16 SPUs for the virus
scanning scenario. As the percentage of the matched patterns
increases, the aggregate throughput increases as well.

We explore the trade-offs between the AC compression ratio
and the throughput in a Pareto space. We choose the English
dictionary as the compression object and choose packing
factors of 4, 8, 12 for path compressed nodes. As shown in
Figure 13, the compression ratio decreases with increase in
the packing factor. However, the throughput is better with a
packing factor of 8 than with one of 4.

The reason for that is the input data is a English input which
has 100% match against the dictionary. So instead of matching
4 nodes in the path compressed node at one time, matching 8
nodes at one time gives better performance. However, a pack-
ing factor of 12 has some throughput degradation compared
to a packing factor of 8. One conclusion we draw from this
Pareto chart is the compression ratio affects the throughput,
in order to get a better compression ratio, we have to sacrifice
throughput.

VII. RELATED WORK

Snort [9] and Bro [8], [3], [5], [10], [2] are two of the
more popular public domain Network Intrusion Detection

40

35 4 *

4 node packing
30 4

: *
25 - 8 node packing

20 1 °
12 node packing

15 4

Compression ratio

10

0 T T T T T
0 0.5 1 15 2 2.5 3

Throughput (Gbps)

Fig. 13. The trade-off between the compression ratio and the throughput in a
Pareto space.The input here is on English input data, with English Dictionary.

Systems (NIDSs). The current implementation of Snort uses
the optimized version of the AC automaton [1]. Snort also
uses SFK search and the Wu-Manber [13] multi-string search
algorithm.

To reduce the memory requirement of the AC automa-
ton, Tuck et al. [12] have proposed starting with the non-
deterministic AC automaton and using bitmaps and path
compression.

In the network security domain, bitmaps have been used
also in the tree bitmap scheme [4] and in shape shifting
and hybrid shape-shifting tries? [11], [7]. Path compression
has been used in several IP address lookup structures in-
cluding tree bitmap [4] and hybrid shape-shifting tries [7].
These compression methods reduce the memory required to
about 1/30—1/50 of that required by an AC DFA or a Wu-
Manber structure, and to slightly less than what required by
SFK search [12]. However, lookups on path-compressed data
require more computation at search time, e.g., more additions
at each node to compute popcounts, thus requiring hardware
support to achieve competitive performance.

Zha and Sahni [19] have suggested a compressed AC trie
inspired by the work of Tuck et al. [12]: they use bitmaps
with multiple levels of summaries, as well as an aggressive
path compaction. Zha and Sahni’s technique requires 90%
fewer additions to compute popcounts than Tuck et al [12]’s,
and occupies 24%—31% less memory. Scarpazza et al. [15]
propose a memory-based implementation of the deterministic
AC algorithm that is capable of supporting dictionaries as
large as the available main memory, and achieves a search
performance of 1.5-2.2 Gbps per Cell chip. Scarpazza et
al. [16] also propose regular expression matching against small
rule sets (which suits the needs of the search engine tokenizers)
delivering 8-14 Gbps per Cell chip.

2A trie is a tree-based data structure frequently used represents dictionaries
and associative arrays that have strings as a key.

VIII. CONCLUSIONS

We present an optimized software design that exploits
compressed AC automata to perform high-throughput multi-
pattern string matching on the IBM Cell Broadband Engine.

We have presented a detailed overview of the algorithmic-
level and implementation-level optimizations that we applied
in order to improve the algorithm’s performance.

Our solution delivers impressive compression ratios in ex-
periment scenarios representative of natural language process-
ing and network security applications: respectively, 1:34 on
dictionaries containing English words, and 1:58 on dictionaries
containing random binary patterns.

Also, our solution provide a remarkable throughput between
0.90 and 2.35 Gbps per Cell blade, depending on the statistical
properties of dictionary and input.

REFERENCES

[11 A. Aho and M. Corasick, Efficient string matching: An aid to biblio-
graphic search, CACM, 18, 6, 1975, 333-340.

[2] H. Dreger, A. Feldmann, M. Mai, V. Paxson and R. Sommer, Dynamic
application-layer protocol analysis for network intrusion detection,
USENIX Security Symposium, 2006.

[3] H. Dreger, C. Kreibach, V. Paxson, and R. Sommer, Enhancing the
accuracy of network-based intrusion detection with host-based context,
DIMVA, 2005.

[4] W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software
IP lookups with incremental updates, Computer Communication Review,
34(2): 97-122, 2004.

[5] J. Gonzalez and V. Paxson, Enhancing network intrusion detection with
integrated sampling and filtering, RAID, 2006.

[6] J. Lockwood, C. Neely, and C. Zuver, An extensible system-on-
programmable-chip, content-aware Internet firewall. In Field Pro-
grammable Logic and Applications, 2003.

[71 W. Lu and S. Sahni, Succinct representation of static packet classifiers,
IEEE Symposium on Computers and Communications, 2007.

[8] V. Paxson, Bro: A system for detecting network intruders in real-time,
Computer Networks, 31, 1999, 2435-2463.

[9] Snort users manual 2.6.0, 2006.

[10] R. Sommer and V. Paxson, Exploiting independent state for network
intrusion detection, ACSAC, 2005.

[11] H. Song, J. Turner, and J. Lockwood, Shape shifting tries for faster IP
route lookup, /ICNP, 2005.

[12] N. Tuck, T. Sherwood, B. Calder and G. Varghese, Deterministic
memory-efficient string matching algorithms for intrusion detection,
INFOCOM, 2004.

[13] S. Wu and U. Manber, Agrep—a fast algorithm for multi-pattern search-
ing, Technical Report, Department of Computer Science, University of
Arizona, 1994.

[14] D. Brokenshire, Maximizing the power of the cell Broadband Engine
processor: 25 tips to optimal application performance Technique Report,
IBM STI Design Center 2006.

[15] D. Scarpazza, O.Villa, F.Petrini, Accelerating Real-Time String Search-
ing with Multicore Processors, IEEE Computer Society 2008.

[16] D. Scarpazza, G. Russell, High-performance Regular Expression Scan-
ning on the Cell/B.E. processor. 23rd International Conference on
Supercomputing 2009.

[17] Cell Broadband Engine resource center. http://www-
128.ibm.com/developerworks/power/cell
[18] IBM Assembly Visualizer for Cell Broadband En-

gine.http://www.alphaworks.ibm.com/tech/asmvis

[19] X. Zha and S. Sahni, Highly compressed Aho-Corasick automata
for efficient intrusion detection. IEEE Symposium on Computers and
Communications 2008.

