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Abstract—Peer-to-peer (P2P) protocols have been widely ac-
cepted by users and operators alike as efficient mechanisms for
non real-time content distribution. It is therefore reasonable to
extend these protocols to also handle more demanding appli-
cations, such as multimedia streaming. Many researchers have
proposed modifications to the well known BitTorrent protocol in
order to adapt it to the needs of such applications. In this paper
we present findings from our experiments with three proposals
for the integration of multimedia streaming into BitTorrent: the
fixed-size window approach, the high-priority set approach and
the stretching window approach. We evaluate these proposals
under identical circumstances using our detailed packet-level
BitTorrent simulator, showing that while all approaches are
reasonably capable of supporting multimedia streaming, their
different design choices have a pronounced effect on their
streaming performance.
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I. INTRODUCTION

The explosive growth of the Internet is largely due to the
ubiquitous adoption of the TCP/IP protocol stack. TCP/IP-
based networks were designed to simply forward traffic
between pairs of communicating end hosts, following the
communication model of the telephone network. However,
communication patterns have evolved, and the use of the
Internet has shifted towards information-centric services and
applications, such as content delivery networks (CDNs), cloud
computing services and peer-to-peer (P2P) [1] file sharing
applications like BitTorrent. These services and applications
concentrate on the information itself, rather than on the end
hosts providing or consuming it. Hence, they are implemented
as overlay solutions on top of an information-agnostic network
substrate [2].

As P2P protocols and applications became more com-
mon, many researchers realized their potential for multimedia
streaming purposes. Even though BitTorrent was designed for
non real-time content exchange, adapting it for multimedia
streaming seems promising, due to its efficient mechanisms
and its wide user acceptance. As a result, many propos-
als for streaming oriented modifications to BitTorrent have
surfaced, but their simulation based performance evaluations
are lacking: simulations setups are not documented in detail,
simulators do not take into account the entire protocol stack
overhead or the possible retransmissions in the network, and
each evaluation uses different metrics.

In this paper, we aim to address all these problems by
presenting a thorough comparison between three proposed
multimedia streaming extensions to BitTorrent, using the same

assumptions and metrics for each protocol and a detailed
packet-level BitTorrent simulator, enhanced with streaming
oriented modifications. Our simulator is available on an open
source basis to the community, therefore allowing others to
duplicate our results and further experiment with the proposed
multimedia streaming extensions.

The rest of the paper is organized as follows. In Section
II we provide a brief description of the BitTorrent protocols
and explain why they are unsuitable for streaming “out of the
box”. In Section III we present three streaming extensions
to BitTorrent. Section IV details our experimental setup,
including the simulator used, while in Section V we discuss
the results of our experiments. We conclude in Section VI.

II. THE BITTORRENT PROTOCOL

A crucial aspect of BitTorrent is that the exchange takes
place by splitting the content to be distributed into fixed-size
pieces, thus allowing a client to request different pieces from
different peers, either in parallel or at different times. This also
allows clients to stop and later resume the data exchange at
will, since each piece is essentially exchanged independently
of all others.

Typically, the distribution of a new file with BitTorrent starts
by preparing and publishing a metafile with a .torrent
extension. The metafile is distributed using an out-of-band
channel, usually by posting it on a web page indexed by a
search engine. The .torrent metafile contains the tracker
address, file size, piece size, and the hashes for the file pieces,
among other information. Trackers are responsible for helping
peers interested in the same file discover each other so as
to form a swarm. In most cases, each .torrent metafile
is served by a single tracker, but extensions to the protocol
allow multiple trackers per file or even no trackers at all [3],
by using Distributed Hash Tables (DHTs) for peer discovery.

Clients locate a tracker from the tracker’s URL stored inside
the metafile and communicate with it via a simple text-based
protocol, layered on top of HTTP. Each client periodically
announces its contact details (e.g., IP address, TCP port,
identification info) and its progress (in terms of total bytes
downloaded/uploaded) to the tracker. Note that most of the
information announced is for statistical purposes; only the IP
address and TCP port of a client are crucial for the protocol
to work. After receiving such a tracker request the tracker
selects a random set of peers that it knows about and returns
their contact details to the client. Since each tracker request
provides the contact details of a client to the tracker, the tracker
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can record this information so as to be later able to construct
these replies. As a result of the tracker requests and replies,
over time the peers discover increasing subsets of the swarm.

After receiving a set of peers from the tracker, a client
attempts to establish TCP connections with these peers. If the
connection succeeds, the two peers exchange HANDSHAKE
messages to verify their peer identities and ensure that they
are interested in the same file. This handshake is followed by
an exchange of BITFIELD messages that contain the bitfield
of each peer. The bitfield is a bitmap denoting the availability
of each piece at the peer, i.e. each bit position shows whether
the peer has fully downloaded the corresponding piece or not.
Based on that information a client can determine whether it
is interested in one or more pieces of the remote peer. By
repeating this procedure over multiple peer connections, a
client gradually collects information regarding the availability
of the file’s pieces in the subset of the swarm that it has already
explored. Based on this information, it then decides which
pieces to request from each peer.

In general, if a peer holds some pieces that the client does
not already hold, an INTERESTED message is sent to that peer
to indicate the client’s interest for the peer’s data. Initially
peers are assumed not to be interested in each other’s pieces.
Although at this stage a client knows the peers it is interested
in, that is, the peers holding pieces that it needs to download,
it cannot make any requests for pieces yet, as data cannot
be exchanged until the remote peer actively permits this by
sending an UNCHOKE message. That is, each client is by
default blocked, or, in BitTorrent parlance, choked by the
corresponding remote peer. The decision to choke or unchoke
a client is made based on several criteria embodied in the
choking algorithm [4]:

• Reciprocation: Peers unchoke the clients providing them
with the best upload rates.

• TCP performance: TCP works better with a limited
number of simultaneous exchanges.

• Fibrillation avoidance: Frequent choking/unchoking
causes data transfer interruptions that may deteriorate
protocol performance.

• Optimistic unchoking: New peers are occasionally un-
choked in order to discover potentially better opportu-
nities. Peers are thus given the chance to acquire their
first pieces.

Reciprocation is key to BitTorrent’s success: data exchange
normally proceeds in a tit-for-tat fashion, in the sense that
peers will only download data to a client that is uploading data
to them. The exception is optimistic unchokes, which allow
clients to download pieces without having anything in return.
Therefore, peers can initially rely on optimistic unchokes to
receive their first pieces, but in the long run they must be able
to upload pieces to other clients, if they are to receive the
pieces they need in return.

When a client is unchoked by a peer, it starts sending
REQUEST messages, each asking for a specific block of the
selected piece. The peer sends back the requested data using
PIECE messages. Upon completing the downloading of a
piece, a client informs via HAVE messages the peers that it
has established connections to. These peers update the bitfield

for that client and may then, potentially, express their interest
for that peer with an INTERESTED message.

While a client can use any algorithm it desires in order to
select which piece to request from other peers, normally clients
select the piece that is less commonly available in the swarm.
This ensures that rare pieces will not disappear if a few peers
leave the swarm, and, more importantly, it also provides the
client with pieces that other peers will probably be interested
in. This rarest first policy means that a client receives pieces
in a seemingly random fashion.

III. STREAMING EXTENSIONS TO BITTORRENT

A. General

Streaming applications favor a sequential piece download
policy, so as to be able to start reproducing the initial data
before the entire content has been downloaded. The standard
BitTorrent piece selection scheme however does not down-
load pieces in sequence, therefore all the proposed streaming
extensions to BitTorrent start by modifying the piece selec-
tion mechanism. Their goal is to implement a mechanism
appropriate for the needs of streaming applications, where
prompt piece arrival is critical in order to maintain playback
quality. The question then is how to reconcile the sequential
piece selection policy required for multimedia streaming with
the rarest-first selection policy that makes tit-for-tat work in
BitTorrent. Three answers to this question are described below.

B. Fixed-Size Window

The Fixed-Size Window (FSW) approach [5] modifies the
BitTorrent piece selection strategy by limiting it to a fixed-
size sliding window over the pieces. The window starts from
the first non available piece and includes k consecutive pieces,
where k is a configuration parameter; additional pieces can
only be selected for downloading within this window. Essen-
tially, rarest-first operates within the window, thus allowing the
pieces closest to their playback time to be downloaded, without
“wasting” bandwidth to download other pieces. Periodically,
the next piece in sequence is delivered for playback; if the
piece is incomplete, a loss event is signaled and the window
slides to the right, thus abandoning this piece. Note that
the window also slides to the right when its first piece has
been downloaded, therefore there is no need to also slide the
window when the player consumes a downloaded piece.

The designers of the FSW approach have also proposed a
modification to the optimistic unchoke scheme. Specifically,
they proposed that each client should randomly select some
peers at every playback interval and optimistically unchoke
them, so as to help new clients receive their first pieces [5]. We
did not consider this additional extension in our performance
comparison.

C. High-Priority Set

The basic problem with the FSW approach is that it does
not exploit the available piece download opportunities that
well. First, by fixing the window size it limits the choice of
pieces as the window fills up, thus wasting available downlink
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bandwidth. Second, by limiting the client within the window
it misses the opportunity to download rare pieces outside the
window that may become useful later on in the tit-for-tat
exchange. For this reason, in the High-Priority Set (HPS) or
BiToS approach [6], a fixed-size set (the HPS) holds the next
pieces in sequence that have not been downloaded already.
While in the FSW approach a window of size k covers exactly
k consecutive pieces in the sequence space, some of which
may have already been downloaded, in the HPS approach a
set of size k covers at least k pieces in the piece sequence
space, out of which exactly k pieces need to be downloaded.

Besides maintaining a fixed size for the HPS, in this
approach pieces outside the HPS can also be requested. For
this decision, a probability p is configured as a parameter;
with probability p a client will select a piece from the HPS
and with probability 1−p the client will select a piece beyond
the HPS, in both cases using the rarest-first policy within each
set. As in [5], when the player reaches a non available piece,
a loss event is signaled and the HPS is modified as that piece
is abandoned; the HPS is also modified whenever any of its
pieces completes downloading, as this piece must be removed
from the HPS.

The HPS scheme also assesses if a currently downloading
piece will be completed on time, i.e. before the player reaches
it, dropping pieces that cannot be completed in time [6]. We
did not consider this additional extension in our performance
comparison.

D. Stretching Window

In the Stretching Window (SW) approach, elements of the
FSW and HPS approaches are combined [7]. The SW behaves
like the HPS in that it contains (up to) k non downloaded
pieces, but pieces are only requested from within the SW. In
addition, the distance between the first and last piece in the
SW in terms of the piece sequence space is bounded by a limit
l > k; hence, the SW may contain up to k pieces, provided
these pieces do not cover more than l consecutive slots in the
piece sequence. Other than that, SW operates exactly as HPS.
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Fig. 1. Protocol extension functionality.

The functionality of these three protocol extensions is
explained in Figure 1. Pieces marked with an X were not
downloaded in time, pieces marked OK have already been
downloaded, pieces marked D are currently being downloaded
and unmarked pieces have not started downloading yet. Ar-
rows indicate the current playback position, as well as the
window limits (for FSW) or HPS limits (for HPS and SW). In
the FSW approach the window starts from the first in progress
piece and covers k = 4 consecutive pieces, regardless of how
many of these have been downloaded. In the HPS approach the
HPS starts from the same point, but covers k not downloaded
pieces, whether they have started downloading or not; the
numbers of the pieces in the HPS are also shown. In addition,
pieces may be requested outside the HPS. In the SW approach,
the SW can also grow like the HPS to up to k not downloaded
pieces, but it may not cover more than l = 5 slots in the piece
sequence space, hence it may be smaller than with HPS, as
shown in the figure. In addition, pieces are only requested
from within the SW.

IV. EXPERIMENTAL SETUP

A. BitTorrent Simulator

For the simulation-based comparison, we modified our own
detailed OMNeT++ Simulator for BitTorrent [8], in order
to add the necessary functionality for the three streaming
extensions discussed above. Our simulator models not only the
detailed protocol messages exchanged by BitTorrent peers and
the tracker, it also models all the TCP/IP messages exchanged,
using the INET framework [9], a fact that makes the results
more realistic and stresses protocol performance to its limits.
We have used transit-stub topologies generated by the GT-ITM
module [10], including both core and access routers. Each
scenario was executed 10 times with different random seeds,
which means that peers were deployed in different ways in
the network.

B. Experiments

Our results are based on a scenario with one initial seeder
and 120 peers (leechers) which join the swarm at random
times, starting from scratch. This means that peer joins are
incremental, instead of a flash crowd join. The topology we
used consists of four Autonomous Systems (AS) and 192
access routers in total. Peer access links have asymmetric
uplink and downlink bandwidths: 20% have 1/4 Mbps capacity
(uplink/downlink), 40% have 1/8 Mbps, 25% have 2/12 Mbps
and 15% have 2/24 Mbps.

The streaming application modeled was a video player
attempting to playback a 256 Kbps video stream. We assumed
that the video was encoded in an MPEG like manner, where
each Group of Pictures (GOP) was mapped to exactly one
BitTorrent piece. We set the GOP/piece size to 192 KB, which
translates to 6 seconds of video. In this manner, a piece that
has not been downloaded on time, will cause a 6 second gap in
the video, but it will not prevent the next piece from decoding.
The block size was set to 16 KB. The entire video size was 200
MB, which corresponds to around 106 minutes of playtime,
or 1067 pieces in total.
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Video size (in MB) 200
Video Bit rate (in Kbps) 256
Piece size (in KB) 192
Block size (in KB) 16
Number of pieces for prefetch buffering 1 or 5
Window size k (% of total num of pieces) 2% or 8%
Probability p (only for HPS) 80% or 90%
Bound in pieces (only for SW) 30 or 100

We kept all the default BitTorrent settings unchanged e.g.
optimistic unchoke interval, number of connections per peer,
as given in [8]. To make our model relevant to live streaming,
we assumed that each peer will remain in the swarm and seed
other peers until the video playback reaches its end, even
if the peer has already completed the video download, i.e.
that the peer leaves the swarm at playback completion. The
initial seeder on the other hand remains permanently in the
swarm, thus there is always at least one source for every piece,
modeling a video source that exploits BitTorrent extensions to
offload some of the traffic to the peers.

In addition, we assumed that each peer starts by prefetching
a few initial pieces (either 1 or 5), as in most media players,
in order to provide a satisfactory buffer to the player before
starting playback. During the prefetch period, we use the
rarest-first policy only for these first pieces, until they are all
completely downloaded. We set the base window size k to
2% or 8% of the entire number of pieces for all algorithms,
which in our case translates to 21 or 85 pieces, respectively.
The probability p was set to either 80% or 90% for HPS. The
bound l for SW was set to 30 pieces for k = 21 and to 100
pieces for k = 85, therefore SW can grow its window more
than FSW, but not as much as HPS. Table I summarizes these
parameters.

C. Metrics

We used the following metrics for the evaluation of the
various proposed BitTorrent extensions:

• Piece loss: The most important metric in our case is piece
loss. A piece is characterized as lost if the player reaches
it and the piece is not completed, leading to a gap in the
video; this includes the case where the piece is currently
being downloaded.

• Prefetch time: We measure the necessary time for
prefetching the first pieces of the video file. In other
words, the time the user of the video application should
wait for the player to start.

• Download duration: This metric shows how much time
the entire download took; it is interesting to compare this
with the (fixed) playing time.

V. EXPERIMENTAL RESULTS

In the following we present the simulation results concern-
ing the protocol modifications presented above.

A. Piece loss

In Figure 2 we show the piece loss for each protocol
modification, with the window set to 2% of the video size. It
is obvious that with more prefetched pieces the performance
slightly improves with all protocols; the penalty is an increased
delay before starting playback, as shown in the next sec-
tion. While all protocols exhibit acceptable performance, HPS
works best, with piece losses of around 1-1.5%, while FSW
and SW suffer from losses of around 1.5-2.5%. Among the two
different probabilities in HPS for selecting pieces within the
window, the highest one (90%) works slightly better. On the
other hand, FSW and SW have nearly identical performance,
despite the fact that SW can grow its window to nearly 50%
more than FSW.
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Figure 3 shows the corresponding data for a window size
of 8%. In this case HPS becomes the worst performer, with
losses of roughly 3.5-5%, while FSW and SW actually work
better than in the previous case, with losses of 1.5%. Again
prefetching more pieces leads to better performance in all
schemes. For HPS, the higher probability for selecting pieces
within the window works noticeably better, while FSW and
SW have again nearly identical performance.

Looking at both scenarios, it is clear that the window size
is an important parameter. With a 2% window (21 pieces),
FSW and SW cannot keep up with HPS which can grow its
window more. With a 8% window however, FSW and SW
have enough pieces to download; there is no need to grow the
window too much. Regarding the HPS option of downloading
outside the window, in both scenarios HPS works better when
it is less likely to do so, while FSW and SW that do not
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offer this option work even better when the window is not too
small. Finally, note that FSW and SW are more predictable
than HPS, since their performance changed only slightly from
one scenario to the other.

B. Prefetch time

The buffering time at the beginning of a video fluctuates
between 21 and 33 seconds (average values), depending on
the number of pieces we have chosen to download; Figure 4
shows the data for a 2% window size, while Figure 5 presents
the case for a 8% window size. Note that when only one piece
is prefetched, there is essentially no buffering: it is necessary
for the first piece to be downloaded in order for the player to
begin anyway, therefore these experiments show the minimum
buffering time. With five pieces prefetched, the user must
wait a little bit longer, around 50% more, hoping for better
performance later on, although the improvements in loss rates
are low, as discussed in the previous section.

These waiting times seem to be large, but this is due to the
latency from the first joined peers in the swarm, when there
are not many sources available, except for the initial seeder,
therefore peers have to wait in order to receive these first
pieces via opportunistic unchokes. Note that there are hardly
any differences between the various protocols in this metric,
since the protocol modifications have not started operating yet.
The same is true of the window size, which is disregarded
during the prefetch period.
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C. Download time

The time required to complete the video download, as
shown in Figures 6 (2% window size) and 7 (8% window
size), is lower for HPS and higher for FSW and SW. While
SW and FSW are nearly identical, in HPS it seems that a
higher probability to download within the window leads to
worse download times (recall that it also led to lower loss rates,
so there is a tradeoff here). On the other hand, the number of
prefetched pieces only has a minor impact on completion time,
as the prefetch period is dwarfed by the rest of the download.

We point out that since the playback time is 6400 sec, all
schemes manage to complete the download well before the
playback ends. With a larger window, the downloads complete
even faster. Since clients remain in the swarm until their
download completes, this means that there are always plenty of
peers to exchange pieces with, except in the very beginning of
the exchange, when everyone has to rely on the initial seeder;
we surmise that most of the observed losses are due to these
first peers.
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D. Overall Evaluation

Based on the above evaluation, it is clear that there is no
dominant scheme; HPS exhibits lower loss rates than FSW
and SW for smaller windows, but with larger windows the
situation is reversed. Since HPS works slightly better with
a lower probability to request pieces outside the window, the
ability of HPS to download outside the window does not seem
beneficial. FSW and SW perform nearly identically, therefore
the extra complexity of SW does not seem to be worthwhile.
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Prefetching does lower the loss rates slightly, but at the cost of
adding nearly 10 extra seconds of startup delay until the pieces
are downloaded. Regarding download times, HPS is clearly the
winner, but since all protocols complete the download well
before the end of playback, this may not be as important as a
reduced loss rate.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a simulation based performance
comparison of three protocol extensions that add multimedia
streaming capabilities to BitTorrent. We explored, through
simulations using detailed TCP/IP message exchanges, the
factors that impact protocol performance and behavior, using
the exact same setup for each protocol extension. We focused
on three metrics: piece loss, prefetch time and download time.
The collected data showed that the HPS approach presents
the best performance in terms of download time, but its loss
rate heavily depends on the window size. The SW and FSW
approaches provided nearly identical performance, therefore
there seems to be no point in the additional complexity of SW
over FSW. While SW and FSW led to higher download times
than HPS, they offered lower loss rates when the window size
was large enough.

Future work includes running additional experiments with a
larger set of parameters, such as different data rates, numbers
of peers, network topologies, prefetch window sizes and
stretch limits and HPS probabilities. We also plan to study
the distribution of losses among downloads, in order to verify
whether the average observed loss rates are mostly affected by
the first peers joining the swarm. Another direction is changing
the player model to stall when the next piece is missing instead
of skipping that piece, as in most current streaming players; in
that case, the main metric would be the number and duration
of stall periods, rather than the number of lost pieces.
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