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Abstract—Within network measurement context, traffic sam-
pling has been targeted as a promising solution to cope with
the huge amount of traffic traversing network devices as only a
subset of packets is elected for analysis. Although this brings an
evident advantage to measurement overhead, the computational
burden of performing sampling tasks in network equipment
may overshadow the potential benefits of sampling. Attending
that sampling techniques evince distinct temporal and spatial
characteristics in handling traffic, this paper is focused on
studying the computational weight of current and emerging
techniques in terms of memory consumption, CPU load and
data volume. Furthermore, the accuracy of these techniques in
estimating network parameters such as throughput is evaluated.
A sampling framework has also been implemented in order to
provide a versatile and fair platform for carrying out the testing
and comparison process.

I. INTRODUCTION

Performing network measurement tasks in today’s networks
is a continuous challenge attending to the massive traffic
volumes involved, to the wide range of possible monitoring
objectives to fulfill, sometimes in a near real-time basis
and requiring minimal interference in the network operation.
Aiming at efficient network measurements, traffic sampling
techniques are broadly deployed in strategic network nodes,
generically called measurement points. Their main objective
is to select a subset of packets which will be used to estimate
network parameters, avoiding processing all traffic [1].

Despite the efforts in developing sampling techniques able
to capture network parameters accurately, studying the im-
pact those techniques have in terms of computational weight
is a topic still open. This study is however relevant as
measurements should be carried out without compromising
the performance of network elements when executing tasks
involving end-user traffic. Thus, taking conventional sampling
techniques commonly used in today’s network devices [1]
and recent adaptive sampling techniques [2] as reference, this
paper is devoted to evaluate the computational burden of
sampling regarding memory and CPU usage in presence of
real network traffic. The volume of sampled traffic and the
accuracy of these techniques in the estimation of parameters
such as throughput and mean packet size are also analyzed.

The methodology of tests resorts to a sampling framework
developed with the purpose of implementing different sam-
pling techniques in a flexible way to allow the combination of
their inner characteristics in forthcoming operational scenarios.
Using a low-cost open computing device currently deployed in

measurement architectures [3], this paper presents quantitative
results comparing the computational overhead of multiple sam-
pling techniques in presence of similar workloads. This study
aims to contribute to a better understanding of the current
weight of sampling procedures, allowing to identify the most
suitable sampling techniques for using in low-cost and scalable
passive measurement solutions. In addition, this allows to
extend the applicability of measurement nodes proposed in
[3], where a large scale and inexpensive active measurement
infrastructure is deployed.

This work is organized as follows: the related work is
discussed in Section II; the traffic sampling framework is
introduced in Section III; the methodology of tests is presented
in Section IV; the computational weight results are discussed
in Section V; and the conclusions are included in Section VI.

II. RELATED WORK

Currently, traffic sampling sustains a wide range of network
tasks. For instance, its usefulness has been explored in: traffic
engineering to assist traffic classification and characterization
[4]; network security for anomaly and intrusion detection,
botnet and DDoS identification [5]; SLA compliance and QoS
control for estimating parameters such as packet delay, jitter
and loss [6], [7], [8]. Despite the importance of sampling to
reduce the computational effort of handling huge amount of
data, most works in this area are only focused on analyzing
the accuracy of traffic parameter estimation. The resource
requirements of sampling techniques are covered through
proposals which aims to reduce the memory usage [9] and the
data volume involved in measurement process [2], maintaining
the accuracy in traffic classification. Classic techniques [1] are
also analyzed in terms of CPU load and memory usage in
dedicated equipments [10], however there are no embracing
studies analyzing and comparing the computational weight of
existing sampling approaches, namely i.e., systematic, random
and adaptive (see Section III), motivating the present work.

III. TRAFFIC SAMPLING FRAMEWORK

Network sampling techniques may be structurally classified
according to three well-defined components, i.e., granularity,
selection scheme and selection trigger (see Figure 1). Each
component is further divided into a set of approaches able to
encompass both classic and recent sampling techniques:

e Granularity identifies the atomicity of the element under
analysis in the sampling process: a flow-level approach



consists in applying the traffic capture policy only to
packets belonging to a flow or a set of flows of interest;
in a packet-level approach, packets are eligible as single
independent entities.

e Selection scheme identifies the function defining which
traffic packets will be selected and collected; this fol-
low a systematic, random, or adaptive function. In the
systematic approach, the packet selection is ruled by
a deterministic function. The random approach selects
packets according to a random or probabilistic function
[1]. In the adaptive approach, the sampling technique
is endowed with the ability to change the selection of
packets during the course of measurement [11].

o Selection trigger is used to decide the spatial and tempo-
ral sample boundaries. It may use a time-based, a count-
based or an event-based approach.

Following this taxonomy, firstly introduced in [12], a frame-
work implemented in Java using Jpcap, connects the sampling
components in order to enable a versatile deployment of sam-
pling techniques. This framework is designed in two planes
comprising the relationship among the sampling components,
as illustrated in Figure 1, and may be applied to both online
and offline measurement scenarios.

The sampling plane has a modular design, allowing a
flexible sampling technique selection and configuration. This
plane is also responsible for identifying and selecting the
network interface in which the sampling will be applied.

In the network plane, traffic is collected from network
interfaces by applying the sample rules defined in the sampling
plane. Then the collected packets are reported to be analyzed
according to network task measurement needs.
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IV. METHODOLOGY OF TESTS

The computational weight of network sampling techniques
is analyzed regarding the memory consumption, CPU load and
volume of data involved in the sampling process. For this, a set
of real traffic traces with different load features is applied to

classic and emerging traffic sampling techniques. In addition
to the comparison of the computational weight, the sampling
techniques are also compared regarding their ability to identify
traffic characteristics. These aspects are detailed below.

To perform tests, the sampling framework was deployed and
installed in a general purpose low-cost single-board computer,
i.e., Raspberry Pi Model B, running a ARM processor at
700MHz and 512MB RAM. This type of equipment is taking
ground in network monitoring context, namely in large scale
measurement architectures [3].

A. Sampling techniques

The sampling techniques evaluated correspond to the main
techniques currently used in network measurement tools, i.e.,
systematic count-based, systematic time-based and random
count-based [1]. In addition, two adaptive techniques are also
evaluated, i.e., adaptive linear prediction [13] and multiadap-
tive sampling [2].

1) Systematic count-based (SystC): drives the packet se-
lection through a deterministic and invariable function based
on the packet position, using counters [1]. As exemplified in
Figure 2 (a), every Sth packet is selected and captured by the
sampling process.

2) Systematic time-based (SystT): the process of the packet
selection follows a deterministic function based on the arrival
time at the measurement point [1]. In this technique the sample
size and the time between samples are set at the beginning and
remain unchanged along the sampling process, as presented in
Figure 2 (b). As shown, all packets arriving at the measurement
point along a period of 100ms are selected for a sample,
whereas all incoming packets along 200ms are ignored for
measurement purposes.

3) Random count-based (RandC): selects the starting
points of the sampling intervals in accordance with a random
process. As presented in Figure 2 (c), in the n-out-of-N random
approach, n elements are randomly selected out of the parent
population that consists of N elements [1].
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Fig. 2. Examples of sampling techniques

4) Adaptive linear prediction (LP): this time-based tech-
nique uses linear prediction to identify changes in the network
activity, adjusting the sampling frequency accordingly while
the sample size remains invariant [13]. Its basic operation
consists of increasing the sampling frequency, i.e., reducing



the interval between samples, when more network activity than
predicted is observed in order to identify the new traffic pat-
tern. Conversely, when less network activity than predicted is
observed, the interval between samples is increased, reducing
the sample frequency and, consequently, the amount of data
involved in the sample process.

5) Multiadaptive sampling (MuST): this time-based tech-
nique resorts to a mechanism for identifying the level of
network activity similarly to the adaptive linear prediction
technique. However, the multiadaptive technique considers
both the interval between samples and the sample size as
adjustable parameters [2].

Apart from increasing the sampling frequency in periods of
more activity than predicted, the multiadaptive technique also
reduces the sample size, avoiding the overload of the measure-
ment point in a critical scenario of its operation. Conversely, in
periods of less activity than predicted, in addition to sampling
frequency reduction, the multiadaptive sampling also increases
the sample size in order to acquire more information about
the network without the risk of overloading the measurement
point. Previous work has shown the ability of this technique
in capturing correctly the network throughput with very low
overhead as regards to the volume of data involved [2].

B. Comparative parameters

The computational weight of each sampling technique is
analyzed in terms of hardware resource usage and volume of
sampling data stored. While resource usage may impact the
performance of the measurement point, data volume affects
the bandwidth required by measurement data as well as the
storage and processing overhead [10]. The main computational
resources observed along the sampling process are CPU load
and memory usage, analyzed through vmstat, a computer
monitoring tool able to collect summary information about
the operating system activity on a near real-time basis. The
volume of data corresponds to the sum of all packets collected
by each sampling technique, using the total length field within
IP header.

Considering that in traffic sampling only a subset of total
network packets is captured and considered for measurement
purposes, the computational weight should be balanced with
the correctness in estimating traffic behavior. A common way
to achieve this goal is estimating throughput, measuring the
amount of sampled data in a time interval. Thereby, the
accuracy in estimating traffic behavior is analyzed through in-
stantaneous throughput, i.e., the throughput estimated in each
sample along the measurement process, and mean throughput,
i.e., the total estimated load, and its mean relative error
(MRE). In addition, the accuracy in instantaneous throughput
estimation is measured using the variance, where a smaller
variance means a more accurate estimation. This comparison
is performed resorting to the mean square error (MSE), a
common metric to compare estimators [10]. Furthermore, the
mean packet size and complementary descriptive statistics to
measure the variability of packet time series, i.e., the ratio
between peak and average packet size, are also analyzed.

C. Traffic scenarios

The traffic scenarios used in the analysis correspond to three
workload periods (low, moderate and high) in the network
backbone of the University of Minho campus along a typical
workday. Initially, only https traffic was collected, then sub-
mitted to each sampling technique. This traffic type leads to a
significant trace for analysis and allows to keep the privacy of
users data. The measured values for each traffic load scenario
are presented in Table 1.

TABLE 1
TRAFFIC SCENARIOS

Workload scenario / Feature [ Low [ Moderate High
Number of packets 311159 1273068 1718804
Volume of data (MBytes) 112.04 712.99 1063.16
Mean throughput (Mbps) 3.90 26.65 68.79
Mean packet size (Bytes) 377.58 587.26 648.59

V. EVALUATION RESULTS

This section includes the main test results evaluating the
computational weight of the sampling techniques described in
Section IV. After performing initial tuning of count and time-
based techniques to assess the impact of sampling frequency,
the discussion is focused on evaluating CPU load, memory
consumption, volume of sampled data and accuracy of the
sampling techniques under study.

A. Tuning of systematic techniques

Considering that the computational resources consumption
of systematic techniques is empirically proportional to the
sampling frequency, Figure 3 shows the difference of the mean
computational consumption for distinct sampling frequencies
of the systematic techniques when applied to the high work-
load scenario. For SystC (Figure 3(a)), a frequency of 1/8
means that every eighth packet is collected at the measurement
point, while for SystT (Figure 3 (b)), a frequency of 100/500
means that all incoming packets are collected along 100ms
periods, and ignored in the following 400ms periods.

Figure 3 confirms the relation between sampling frequency
and computational weight, although the CPU load presents
a greater variation than memory usage for both systematic
techniques. In SystC (Figure 3(a)), the computational weight
exhibits a smoother variation as the sampling frequency de-
creases, indicating a minimal demand in terms of resources.
In SystT (Figure 3(b)), besides the relation with the sampling
frequency, the computational weight varies for different fre-
quencies with the same sampling ratio, i.e., 100/500, 200/1000
and 500/2500.

In addition, Figure 3 also demonstrates the relation between
sampling frequency and volume of data processed and stored
by the systematic techniques. Although SystC is more widely
used than SystT, SystT requires less computational resources
when considering an equivalent volume of sampled data (e.g.,
for sampling frequencies of SystC 1/8 and SystT 500/3500).

Despite of the values presented in Figure 3, the following
comparative evaluation uses the frequency 1/100 for SystC and
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Fig. 3. Systematic techniques comparison - High workload

RandC techniques, as suggested in [14]. For SystT technique,
the sampling frequency in use is 100/1000 as it led to the best
results for the analysis performed.

B. CPU load

Regarding the comparative analysis of all sampling tech-
niques deployed in the framework, Figure 4 presents the CPU
load along the sampling process of high workload traffic. As
shown, the LP technique clearly requires more CPU resources
than the other techniques. This occurs because this technique
requires processing all packets to analyze the evolution of
traffic activity based on accumulated data, even of packets
not collected. Conversely, the MuST technique requires the
lowest CPU usage, confirming its main goal and ability to
reduce the resource consumption during high activity periods
[2]. This aspect is particularly relevant for high-load, high-
speed networks.

The complete comparison of the average CPU load is
presented in Table II. As shown, SystC and RandC techniques
outperform MuST for low workload scenarios. This is due
to the impact of the adaptive process in self-adjusting facing
workload variations. In addition, the difference in CPU load

of count-based techniques (SystC and RandC), for the same
sampling frequency, is due to the additional cost of the random
function in RandC.
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C. Memory usage

Figure 5 illustrates the memory usage by each sampling
technique along the sampling process for the high workload
scenario. In this case, the SystT technique requires the highest
amount of memory, for all traffic scenarios considered, as
presented in Table II. The SystC technique demands the lowest
memory amount, although none technique has incurred in a
significant resource consumption, as observed in the CPU load
analysis. Regarding MuST, Table II also ratifies its ability to
reduce the memory consumption during high activity periods,
as observed in the CPU load analysis.
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D. Volume of Data

Regarding the volume of data collected and stored along
the sampling process, the count-based techniques, i.e., SystC
and RandC, demonstrate less use of resources, as illustrated
in Figure 6. Figure 6(a) represents the total number of packets
collected by each technique and Figure 6(b) the sum of the



TABLE II
AVERAGE USE OF COMPUTATIONAL RESOURCES

Parameter [ SystC [ SystT [ RandC LP MuST l
Low workload

CPU load (%) 5.03 14.55 5.50 27.35 8.82
Memory (kBytes) 76566 | 95900 81222 82440 85295
Moderate workload

CPU load (%) 10.80 17.95 16.86 96.68 10.72
Memory (kBytes) 80773 | 96410 84042 87698 84371
High workload

CPU load (%) 14.92 20.12 18.26 97.27 10.76
Memory (kBytes) 81801 90754 86163 85551 80765

corresponding packet lengths, in Mbytes. As shown, MuST
achieves the best results among the time-based techniques.
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Although with higher consumption of storage resources,
SysT and MuST achieve a better relationship between the
volume of data collected and the computational cost involved.
This is shown in Table III, in which the ratio of CPU load
and memory usage per MByte collected and stored extends
the discussion of SectionV-A. This may be an advantage for

network activities in which more information about the traffic
represents improved results in measurement accuracy (e.g.,
traffic classification and intrusion detection).

TABLE III
COMPUTATIONAL RESOURCE PER MBYTE - HIGH WORKLOAD

[ Ratio [ SystC [ SystT [ RandC [ LP [ MuST
% CPU/MByte 1.40 0.20 1.73 1.71 0.45
% Memory/MByte 1.63 0.16 1.73 0.32 0.72

E. Accuracy

Despite the importance of reducing the consumption of
computational resources associated with traffic sampling, the
sampling techniques must still be able to represent the network
behavior accurately. Table IV presents the mean throughput
estimated after each sampling process. For all scenarios, the
mean relative error is low (less than 10%). Exceptions are:
(i) the MuST technique when applied to the high workload
scenario, achieving a significant lower relative error (less
than 1%); and (ii) the RandC technique when applied to
the moderate workload scenario, with a relative error above
10%. This analysis is particularly useful for activities such
as traffic engineering, accounting and SLA compliance, as
measurements over large time intervals are considered.

Regarding the MSE of the instantaneous throughput esti-
mation (see Table IV), the LP and MuST techniques are more
stable for all traffic load scenarios, indicating high accuracy for
short-time measurement intervals. These results are detailed in
Figure 7, where each point corresponds to one sample and the
values closer to the reference line indicate a lower estimation
error and an overall stability of its algorithms.

Analyzing the packet size distribution, Table V shows that
all techniques achieve accurate estimations of mean packet
size, where the low workload scenario presents the less
accurate results. The ratio between peak and average packet
size, a descriptive statistics to measure the variability of packet
time series, for identifying burstiness, also ratifies the accuracy
of all techniques estimation. In this case, the low workload

TABLE IV

THROUGHPUT ESTIMATION
Parameter | Total | SystC | SystT | RandC [ LP | MuST
Low workload
Mean throughput 3.90 372 3.70 3.66 3.85 3.81
(Mbps)
MRE 0.044 0.049 0.059 0.011 0.021
MSE 1.42 0.84 0.84 0.17 0.38
Moderate workload
Mean throughput | 26.65 25.40 25.08 23.73 25.51 25.44
(Mbps)
MRE 0.046 0.059 0.11 0.042 0.045
MSE 1.66 1.59 1.50 0.42 0.21
High workload
Mean throughput | 68.79 65.54 64.06 65.05 64.28 68.47
(Mbps)
MRE 0.047 0.068 0.054 0.065 0.004
MSE 0.57 1.95 0.56 0.39 0.44
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TABLE V
PACKET SIZE DISTRIBUTION

Parameter [ Total [ SystC [ SystT [ RandC LP MuST ]
Low workload
Mean pkt size (B) | 377.58 | 387.87 | 375.65 371.39 390.32 | 386.70
Peak-to-average 4.00 3.90 4.03 4.07 3.87 391
Moderate workload
Mean pkt size (B) | 587.26 | 586.90 | 579.42 586.53 589.38 | 587.82
Peak-to-average 2.57 2.57 2.61 2.58 2.56 2.57
High workload
Mean pkt size (B) | 648.59 | 647.95 | 633.33 643.15 63549 | 65236
Peak-to-average 233 233 2.39 2.35 2.38 232

scenario exhibits the highest variability, feature correctly iden-
tified by the sampling techniques. For both metrics, the count-
based techniques (SystC and RandC) have presented more
accurate overall results, followed by the MuST technique,
improving the results obtained by time-based techniques.

VI. CONCLUSIONS

Facing the undeniable role of sampling in supporting net-
work measurement tasks, this paper was devoted to a lesser
studied yet relevant topic within traffic sampling, which was
inspecting the computational weight of classical and recent
sampling proposals. The computational weight was measured
in terms of CPU load, memory usage and data volume,
under distinct workload scenarios. For this purpose, this study
resorted to a flexible traffic sampling framework, developed
to provide a comprehensive and modular implementation of
current sampling techniques, able to be applicable to online
and offline traffic environments.

Despite the extensive deployment of count-based tech-
niques, the results have demonstrated that, time-based tech-
niques SystT and MuST have a better relationship between
volume of sampled data and computational resource usage. In
the overall traffic sampling process, CPU is a more demanded
resource than memory, also exhibiting a higher load variation.
When considering smaller observation intervals (e.g., one
sample), the adaptive techniques present a better accuracy in
throughput estimation.

Although the present study considers a specific test environ-
ment, the obtained results bring a valuable comparative insight
among existing sampling techniques. The present contribution
is therefore a step forward in providing a better understanding
of traffic sampling techniques overhead regarding their deploy-
ment in real scenarios.
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