IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: zarrin, J., Aguiar, R. L. & Barraca, J. P. (2014). A Self-organizing and Self-
configuration Algorithm for Resource Management in Service-oriented Systems. 2014 IEEE
Symposium on Computers and Communications (ISCC), 6912524. doi:
10.1109/iscc.2014.6912524

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18178/

Link to published version: https://doi.org/10.1109/iscc.2014.6912524

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Self-organizing and Self-configuration Algorithm
for Resource Management in Service-oriented
Systems

Javad Zarrin
Instituto de Telecomunicagdes
3810-193 Aveiro, Portugal
Email: javad@av.it.pt

Abstract—With the ever increasing deployment of service-
oriented distributed systems in large-scale and heterogeneous
computing environments, clustering and communication overlay
topology design has become more and more important to address
several challenging issues and conflicting requirements, such as
efficient scheduling and distribution of services among computing
resources, reducing communication cost between services, high
performance service and resource discovery while considering
both inter-service and inter-node properties and also increasing
the load distribution and the load balance. In this paper, a
four-stage hierarchical clustering algorithm is proposed which
automates the process of the optimally composing communicating
groups in a dynamic way while preserving the proximity of
the nodes. The simulation results show the performance of the
algorithm with respect to load balance, scalability and efficiency.

Keywords—Self-configuration, Self-adaptation, Service-oriented
Systems, Self-deployment, Resource Discovery, Resource Manage-
ment

I. INTRODUCTION

Large-scale service-oriented systems’ lunch on the infras-
tructure contains thousands of processors (computing resources)
distributed across multiple clusters. The services must collabo-
rate with each other in order to achieve a common goal without
relying on any centralized control. Such systems are subject
to dynamicity and scalability. The distribution of services
based on centralized or hierarchical architecture will raise
the bottleneck and single point of failures.But employing a
fully-distributed system has its drawbacks too. Furthermore,
the service distribution and allocation among a large set of
dynamic resources would become too complex to be managed
by using manual or statical configuration. Services need to
become self- adaptive to maintain the entire system performance
and functionality. Along this line, it is necessary to employ
an efficient self-deployment and self-configuration mechanism
which dynamically creates communicating groups of resources
by building logical overlays on top of network topology. In this
paper we present a multi-step, load-balanced, self-organized,
clustering algorithm for overlay establishment (particularly for
resource discovery) in distributed environments which preserve
the locality of the nodes within the groups while it deals with
efficiency and scalability.

The rest of this paper is organized as follows: Section II
investigates the current related works. In section III we present
our clustering algorithm and we explain the multi steps of the

Rui L. Aguiar
Universidade de Aveiro
3810-193 Aveiro, Portugal
Email: ruilaa@ua.pt

Jodo Paulo Barraca
Universidade de Aveiro
3810-193 Aveiro, Portugal
Email: jpbarraca@ua.pt

proposed grouping mechanism in hierarchical layers. In section
IV we discuss the simulation and experiment results and finally
in section V we present our conclusion.

II. RELATED WORKS

Over the past years, several group-based distributed systems
have incorporated grouping and clustering mechanisms into
their design as a way to tolerate the system growth, enhance the
system performance and isolate faults. These approaches can
be classified particularly for resource discovery into three main
classes: quantity based (none-content based), quality based
(content based) and hybrid clustering.

In quantity based clustering, overlay construction gets
involved in the methods of organizing nodes/resources in
the groups without considering the content (for example in
terms of attributes, features, properties and behaviors) of
nodes/resources. For this purpose, the focus might be on some
performance related issues such as load balance, maintenance,
self-organization, stability (churn and fault tolerance) while the
overlay is constructed along the way to finally satisfy all the
requirements of a resource discovery protocol which aims to run
on top of it. To give some examples of quantity based clustering
we could mention the following systems: In JXTA[1], a large
number of nodes are decomposed for a set of manageable
groups by introducing the concept of PeerGroups[2]. Shark[3]
alters the nodes in the groups based on the common interest
of the users. By the same token, Considine[4] creates multiple
cluster-based overlays for Chord while considering the metrics
such as network proximity between peers within the group.
In super-peer systems such as [5] and [6], the less powerful
nodes are clustered around super-nodes. This reduces the
network overhead significantly by converting a costly all-to-
all communication scheme into a more efficient hierarchical
pattern.

On the other hand, the quality based clustering approaches
organize groups based on the content similarity of each individ-
ual nodes/resources considering different aspects. According to
the different views and definitions of the concept of the content
similarity, there are several well-known approaches for content
clustering which shape the discovery mechanisms in different
directions. Proximity-aware[14], semantic-aware[15] and QoS-
aware[16] resource discovery are the sample applications of
content-based clustering(see Tablel).

TABLE 1.

EXAMPLES OF CLUSTERING APPROACHES FOR RESOURCE DISCOVERY

Overlay Architecture

Mechanism

Clustering

Resource Discovery Examples

Semantic-Aware
Proximity-Aware
QoS-Aware

Load-Aware

The nodes/resources with similar contents
are organized in the same cluster

The physically nearby nodes/resources are
organized in the same cluster

The nodes/resources with similar quality
of service are organized in the same cluster
The nodes/resources are organized in a
particular overlay (e.g, DHT ring) in order

Content-based Clustering, Semantic Over-
lay Network (SON)[7]
Content-based Clustering

Content-based Clustering

None-Content based Clustering, P2P over-
lay network (e.g., DHT based P2P)

ERGOT8]
TriPod [9], PIRD [10]
CycloidGrid [11]

PIAS[12] and ASTAS[13]

to equally distribute the communication
loads among nodes to enhance the overall
system performance.

The nodes/resources are organized in a
particular overlay (e.g, tree or hierarchy)
in order to enhance the overall system
performance. (e.g. Load balanced Tree)

Super-Peer, Tree

None-Content based Clustering, None-
DHT based P2P Overlay

The works in [5], [6]

In hybrid clustering, the communicative groups are con-
structed based on a combination of both qualitative and
quantitative characteristics and behaviors of the nodes in the
system. The PeerCluster[17] is an example of hybrid clustering
which groups the peers with similar interests using a hypercube
structure to increase the querying efficiency. Cluster-K+[18]
is another approach which uses a static tree structure to alter
the network peers in the groups based on the possibility of
subscribing to multiple content types for each peer (i.e., resource
types) while rapidly being informed of content updates.

The aforementioned group-based systems have been pro-
posed for different applications and research topics. To the
extent of our knowledge there are few research works related
to dynamic overlay construction in service-oriented systems.
The work in[19] proposes a service-oriented architecture
which could optimize the execution of the service workflows
by enabling dynamic service grouping without considering
resource grouping.

Furthermore, the works in[20] and [21] address two different
aspect of self-deployment, self-adaptation and self-configuration
of the services in service oriented architectures. [20] proposes
a dynamic self-adaptation pattern that defines the way in which
a set of components that make up an architecture or a design
pattern dynamically cooperate to change the configuration
of a service-oriented system to a new configuration through
constructing overlay for the components. In the other work,[21],
the authors propose a self-adapted autonomic ontology-based
architecture which characterizes the properties of services
participating in the autonomic collaborative environment.

We must note that none of these works address the problem
of service distribution and resource mapping in their overlay
construction proposals with regards to resource management
issues. However, in this work, our focus is on providing an
efficient resource-oriented mechanism for overlay construction
in the presence of service oriented architectures.

III. ALGORITHM

In order to create and maintain groups and also support
the query processing for the resource discovery, we implement
a three-layer overlay which includes Leaf-Node(LN) Layer,
Aggregate-Node(AN) Layer and the Super-Node(SN) Layer.
Our algorithm contains multiple steps to establish and create

a dynamic hierarchical overlay on top of the network topol-
ogy.(see Figurel) In this section we explain these steps with
regard to the following assumptions:

Assumption 1: We assume that the system is fully unstruc-
tured which means that the nodes do not know any information
about each other. i.e., the nodes do not have any information
about the network topology. Rather they only know about their
local set of connection gates.

Assumption 2: The underlying topology is dynamic, with
frequent changes. Furthermore the nodes characteristics are
changing over time.

Furthermore, we define a set of terms (i.e., input parameters
and criterias) which are used to structure our algorithm which
could be additionally used to evaluate the algorithm’s efficiency.
These terms are as follows:

1) Group Diameter (Gg): It is the maximum number of
hops between an aggregate node of a group and other
leaf-node members within the group. (i.e., it is the
maximum distance between an aggregate-node and a
leaf-node within a group).

2) Locality Factor (k): It is a defined criteria to indicate
the proximity of the nodes within a group. k = G%,
where k is the locality factor and G4 is the group
diameter.

3) Neighboring Indicator (V;): It clarifies the definition
of the neighboring nodes through specifying the
maximum number of hops between the source node
and the potential neighbors.

4) Grouping Variables: They refer to the overlay design
parameters (i.e., the validated range for the group’s
size in different layers of hierarchy) such as Maxi-
mum/Minimum number of allowed nodes per group
in AN/SN layer.

Continuing this section we discuss the different steps of our
algorithm. On the first step the nodes discover the underlying
topology by recognizing its direct set of connecting neighbors.
Afterwards, on the second step, in a time frame, nodes start to
negotiate and exchange messages with each other in order to
efficiently create the first level of the communicating groups
which consists of specifying a group and a role (either leaf-node
or aggregate-node) within the group for every one of the nodes

Fig. 1.

Clustering overlay on top of the physical network topology

in the system. On the next step, an optimization algorithm is
applied to enhance the results of the previous step by merging
the groups that have their sizes below the required threshold.
Finally, on the last step, the aggregate-nodes of each group
must participate in a process to elect the super-nodes which
leads to establishing the second level of the communicating
groups.

Step 1: A node initializes the procedure by sending the
ID-Request messages to all of its local connecting gates in
order to obtain information about the possible neighbors. By
default, the module-roles and the grouping variables (such as
resource-id, qms-id and sqms-id) of all the nodes are unknown.
The resource-id denotes the node’s address (e.g., [P address)
while the qms-id (aggregate-node’s address) and sqms-id (super-
node’s address) specify the layer and the group that the node
belongs to. Upon receiving ID-Request message at a destination,
the receiving node records the sender information and sends
its information to the requester through a message of type
ID-Reply. Meanwhile, it checks its local information about the
other neighbors and if there is still some missing information,
it propagates the ID-Request messages to all of its connecting
gates except the one that already knows about the other side
of the connecting edge.

Step 2: Each node itself generates a random delay bounded
in a specific time frame. Consequently, a WakeUP event is
automatically triggered when the delay is over. Upon the
occurrence of the event, the node checks its states and if the
value of the module-role is still unknown it sends a message
of type Join-Request to all its neighbors.(see Algorithm1) The
information about the neighbors have already been collected in
step 1. Depending on the states of the destination nodes, arrival
of the Join-Request messages cause different reactions in the
receiver nodes. When the module-role of the receiver node is
unknown, it changes the current state of its module-role to LN

(leaf-node) value while it also sets the value of its grouping
variable for the first layer (i.e., qms-id) according to the address
of the request sender. In addition to that it sends a message
of type Join-Accept to the requester address. It means that
the receiver node is ready to join a group which potentially
can be created by the requester itself as the aggregate-node.
In the case that the module-role state of a receiver node is
LN, which means that this node already belongs to a group, it
relays the request message to its assigned aggregate-node by
forwarding the message to the address mentioned in the gms-id.
Another possibility is that the receiver node of a Join-Request
message is an aggregate-node (i.e., the node already belongs
to a group and its module-role is AN). Each aggregate-node
locally registers its LN members. Although, the number of LN
members in a group is restricted to the maximum and minimum
allowed size of the AN-Groups, it has to be clarified by the
values of the overlay design input parameters. Thus, for each
new joining request, the aggregate-node (as the receiver of a
Join-Request message) must examine the possibility of adding
the new member to the group and if it is feasible it must send
an Update message to the original requester containing the
information of the aggregate node saying that the requester
is allowed to join the group otherwise the request message
(i.e. the Join-Request message) is just ignored. However if the
receiver node decides to ignore the request message, it caches
the requester information as a potential remote aggregate-node
for the purpose of super-node election on the later steps of the
algorithm.(see Algorithml, see also Figure2)

Algorithm 1 WakeUp,JRequest

Generate(WakeUp,RandomDelay)
On-WakeUp:
if local — node.state is unknown then
for all remote — node IN neigbours — set(N;) do
sendM sg(J Request, remote — node)
end for
end if
On-JRequest:
switch (local — node.state)
case unknown:
set local — node.state as LN
set local — node. AN as msg.sender
sendM sg(J Accept, msg.sender)
case LN:
forward(msg, local — node.AN)
default:
if checkGP(GVars, k) > 0 then
sendM sg(Update, msg.sender)
AMembers.add(msg.sender)
else
Cache(msg.sender.info)
end if
end switch

Generally, the most sensible reactions of the nodes to
the Join-Request message are either Join-Accept or Update
messages which specify the direction of the grouping from
sender to the receiver or vice-versa. When a node receives a
Join-Accept, it means that the node already is qualified by at
least one node to establish a new group as an aggregate-node,
however it might be possible that the node’s state has been

changed by other parties during the time between issuing the
Join-Request by the node and getting the Join-Accept from
a particular node. Therefore the node behaves according to
its current status to handle the incoming Join-Accept. So, if
the current module-role is unknown, it changes its state to
AN (aggregate-node), and a new group is created with at least
two members (including the current node) and if its current
state is LN, it simply forwards the Join-Accept message to its
aggregate-node which is the representative of the group to make
decision about the joining possibility of the new members. We
must notice that this would happen only if the issuer of the
Join-Accept is a node different from the local aggregate-node.
In other cases, when the receiver of the Join-Accept is an
aggregate-node, according to the group making policies, the
AN receiver decides to add the Join-Accept issuer to its local
group. It checks if the arrived message has been relayed from
one of the current leaf-node members and if so, it sends a
message of type Change to the original sender to update its
grouping information for the new aggregate-node. Otherwise,
the aggregate-node just records the information of the new
member for the later query processing (e.g., resource discovery
query). In other situations if the AN (as the receiver of a Join-
Accept message) avoids admitting the potential new member
(which is already reserved) to the group (based on the policies
like group size or locality factor) it sends a message of type
Failed-Group to the sender to make the sender node free by
changing its status to unknown. In fact, when a node issues
a Join-Accept, that node will be temporarily reserved for a
potential grouping led by a particular aggregate-node. A Failed-
Group message releases the reserved node.(see Algorithm?2)

Algorithm 2 JAccept

On-JAccept:
switch (local — node.state)
case unknown:
set local — node.state as AN
set local — node.AN as local — node
AMembers.add(msg.sender)
case LN:
if msg.sender is local — node.AN then
set local — node.state as AN
set local — node. AN as local — node
else
msg. flag.set(FJ Accept)
forward(msg,local — node. AN)
end if
default:
if checkGP(GVars,k) >0 then
if msg. flag.get is FJAccept then
sendM sg(Change, msg.sender)
end if
else
sendM sg(Change, msg.sender)
Cache(msg.sender.info)
end if
end switch

When a node receives an Update message, it means that
there is an opportunity for the receiver node to join a group
organized by the sender as the aggregate node. So, if the
receiver’s state is unknown, it sets its module-role as LN and

Fig. 2. Example of message processing for overlay making (maximum group
size=3)

updates its grouping variable (qms-id) to the original sender’s
address. Otherwise, it sends a message of type DenyUpdate to
the sender, notifying the remote AN that the current node
is not available and it belongs to a different group. The
DenyUpdate notification will erase the sender node from the
list of AN-Group members of the destination node (remote
AN). Furthermore, the update message receiver caches the
information of the sender (remote AN) when its current state is
AN. This information will be used during group optimization
and super-node election process.

Step 3: The second step will be completed by triggering
all the assigned WakeUp events in different individual nodes
within various random intervals. Therefore, upon completing
the second step, we expect that all the nodes in the system
contribute to make a group and find out about their role within
the group. But it might still be possible that some nodes are not
within the group. In such a situation these nodes will establish
their own group as an aggregate-node. They are clustered within
a group that could be undersized. Besides, even the groups
which are created during the second step may suffer from this
problem. For example, the size of a group might be too short
compared to the minimum allowed size of a group mentioned
as the overlay design parameter. The third step of the overlay
creation process tries to solve the aforementioned problem
by implementing a grouping optimization algorithm through
merging the small groups in order to create larger groups which
could satisfy the required conditions of the overlay. The group
size and the locality-factor are two important parameters for
efficient clustering. The locality-factor that is proportional to
the group’s diameter is evaluated and determined during the
second step while a new member is added to the group. So
the grouping mechanism in the second step guaranties that the
proximity of the nodes within a group will be preserved. On
this step, the aggregate-nodes as the representatives of other
group members inspect their own grouping conditions and if
they notify that their groupings are not efficient particularly in
terms of the group size they start to propagate Grouping-Info
messages to a set of nodes which would be equal to the union
of their members set, their proximity set (neighbors set) and
their local set of possible aggregate nodes (cached information).
We must note that the neighboring-indicator is an important
parameter which specifies the neighbor’s order. For example,

if the value of the neighboring-indicator parameter is 1, the
proximity set (i.e., neighboring set) only includes the direct
neighbors while for neighboring-indicator=2, the proximity set
contains the combination of the direct neighbors and the second
level neighbors.

Algorithm 3 Merging Optimization
if .state == AN and GV alid(node, GVars,k) < 0 then
iList= AMembers U Cache AN s U Nset(N;)
for all remote — node IN iList do
sendM sg(GInfo, remote — node)
end for
end if
On-Group Checking:
if ANOps.size > 1 and ANOps.find(.AN) > 0 then
finalSize = .group.size
candidate AN s.add(.AN)
ANOps.erase(.AN)
while finalSize <= Max and ANOps.size! =0 do
largestGroup = findLargestGp(ANOps)
if finalSize + largestGroup.size <= Max then
finalSize = finalSize + largestGroup.size
candidate AN s.add(largestGroup. AN)
end if
ANOps.erase(largestGroup. AN)
end while
if candidate AN s.size > 1 then
largestCGp = findLargestGp(candidate AN s)
candidate AN s.erase(largestCGp.AN)
for all remote AN IN candidateANs do
sendM sg(SMerging(largestCGp), remote AN)
end for
end if
end if

Furthermore each aggregate node generates and assigns a
Group-Checking event which will be triggered to recognize and
determine the best possible group merging options. Grouping-
Info messages contain information about the groups such
as group size and gms-id (the aggregate-node address). The
Grouping-Info receivers will collect these information for the
later processing during Group-Checking event. When the Group-
Checking event is triggered, the nodes which have received
the Grouping-Info from at least two different aggregate-nodes
will be distinguished as spot nodes. According to the collected
information about the groups in vicinity, the spot nodes detect
and analyze all the group-merging possibilities. It must also
be taken into account that the final group after merging can’t
be over-sized and it should be smaller than the maximum
allowed value for the overlay design while preserving the
locality. On the other hand the merging cost (particularly in
terms of communication) to switch the nodes from a small group
to a larger group is much lower than switching from a larger
group to a small group. Therefore the algorithm first chooses the
largest validated group among the list and afterwards it selects a
set of smaller groups (merging-list) to merge within the largest
one. This operation will be iterated for the remaining groups
in the list. Finally the spot nodes offer their merging proposals
to the related aggregate-nodes through sending StartMerging
messages to the aggregate-nodes of the groups within merging
list. StartMerging provides a suggestion to the receiver to

merge with a specific larger validated group while the locality
preservation and the group making feasibility are guaranteed
(See Algorithm3). Consequently the StartMerging receivers
send their Merging-Request to the proposed destinations and
later upon acceptance of the merging requests by target groups
the requesters will notify their members to upgrade their
grouping information according to the new aggregate-node.

Step 4: Similar to the second step, for each aggregate-node
a WakeUP event is assigned which is automatically triggered in
random intervals bounded within a specific time frame. Upon
occurrence of the WakeUP event each aggregate-node sends
a message of type SuperNodeElection and also its cached list
of possible aggregate nodes to its neighbors. The neighbor
nodes which are the LN members of this aggregate-node
will also relay this request to their next level neighbor while
considering to avoid forwarding replications. When the receivers
of the SuperNodeElection are the LN members belonging to
the groups which are differentiated from the requester group,
the election requests will be forwarded to the corresponded
aggregate-nodes in those groups.

IV. EVALUATION

This section contains the evaluation results of the algorithm
by running different experiments in order to evaluate the
algorithm’s performance with respect to load balance, efficiency
and scalability. We use Omnet++ and OverSim simulator
to simulate and evaluate our proposed algorithm. The most
important contribution of this work is to provide a load
balanced clustering approach which efficiently works in a purely
unstructured distributed environment to implement service
based distributed system such as resource discovery protocols.

TABLE II. INPUT PARAMETER VALUES USED IN THE EXPERIMENTS
(SCENARIO 1)

Parameter Values
Physical network size 12 to 1000 nodes
Maximum size of a group in the first layer 40
Minimum size of a group in the first layer 10
Maximum size of a group in the second layer 20
Minimum size of a group in the second layer 2
Locality Factor k k=.025
Number of iterations 100
Neighboring indicator N; 1

The hierarchical overlay could be highly applicable to
the deployment of such services if it can dynamically be
adapted to the system requirements in a way that the overlay
characteristics (such as the number of groups, replicas, super-
nodes or aggregate nodes in each layer of the hierarchy) can
be adjusted to suit the optimum number of values. For such
overlay design, supporting the load balance is an important
desirable aspect.

OverSim is a well-known validated P2P overlay network
simulation framework which is based on Omnet++ simulator.
Howeyver, in order to validate our simulation results, we have
used different dynamic random topology graph for each iteration
with discrete uniformly-distributed random edge weights (e.g.
in term of latency [1,100]). We have also tested, validated and
verified the simulation results for various small-sized systems
such as n=12, n=24 and n=60.

TABLE III. INPUT PARAMETER VALUES USED IN THE EXPERIMENTS

(SCENARIO 2)

Parameter Values

Physical network size 12 to 1000 nodes
Maximum size of a group in the first layer 20

Minimum size of a group in the first layer 10

Maximum size of a group in the second layer 10

Minimum size of a group in the second layer 5

Locality Factor k& £k=0.1,0.2,0.33,0.5
Number of iterations 100

Neighboring indicator N; 1

To evaluate our work, in the first scenario, we focus on the
load balance issue. According to the simulation parameters in
the Tablell we conduct a simulation scenario for the variable
size of network. We run the simulation in multiple iterations to
achieve results with better accuracy. The clustering is performed
along the way to satisfy the required conditions. As the input
parameters we bind the group size in each layer in range while
we maintain the locality factor constant.

Self_DeploymentLoad Distribution For Different Network Size

Load Per Node
B

B

10 100 1000

Network Size

Fig. 3. Evaluation results for the Load distribution in different network sizes
- Average number of processed messages per node for overlay making

The simulation results as illustrated in Figure4 demonstrates
that the distribution of the communication loads for overlay
setup are almost balanced between all the individual nodes in
the system of size 600 and 1000 nodes and there are few nodes
which receive and process the higher amount of messages.
The clustering mechanism does not suffer from bottleneck
and a single point of failure since the method does not rely
on the specific pre-configured nodes. As we see in Figure3,
the average number of transacted messages by each node
during the clustering procedure is a value between 12 and
13 transactions for different network sizes. The processing
nodes in the system can simultaneously and in parallel process
their received messages. In other words, it means that the load
distribution is independent from the network size, thus, the
system provides the scalability while we increase the number
of involved nodes.

In the second scenario (see Tablelll), we evaluate the
efficiency of the algorithm while considering the size of created
groups and the locality of the nodes within each group. We have
defined the locality as an indicator parameter that shows how
much the nodes within a group are close to each other in general.
It is assumed that all the nodes within the created logical groups
through our proposed overly clustering mechanism are validated
members since the locality factor for each new group’s member

A- Load Distribution Among the Nodes for Network Size=600

565

5
& w
SR
= om

Different Modes- Nade | D

B W oW
PRI R R R o]
GhoBaddakR

-

0.0 50 100 15.0 200 250 30,0 350 400 45.0
Load PerNode

B- Load Distribution Among the Nodes for Network Size=1000

958
871
784
897
610
523
436
349
262
175

88

Different Nodes Mode|Ds

o0 50 100 150 200 250 300 350 400 450
Load Per Node

Fig. 4. Evaluation results for the Load distribution among the nodes for
network size=600 nodes and network size=1000 nodes

in every layer will be checked upon arrival of the request in
the corresponded aggregate-node or super-node of the target
group. So, It is guaranteed that all the nodes within the created
groups are locality-aware which are based on the required
proximity conditions of the overlay. However the size of all the
created groups might not satisfy the overlay design requirements.
We define the Grouping Efficiency criteria according to the
following formula:

Number of the Qualified Groups

G ing Effici =
rouping cleney Total Number of the Created Groups

Grouping Efficiency for Different Locality Factors and Network Sizes

0 100 1000

Network Size

—-K3=0.2 —-K1=0.5 K2=0.33 -e-K4=0.1

Fig. 5. Evaluation results for the clustering efficiency for different locality
factors and network sizes

In the second scenario we keep constant the values for the
maximum and minimum allowed size of each group while we
change the value of the locality-factor as well as the network
size. The results in Figure5 shows that the algorithm provides
better efficiency for the lower values of the locality factor. If we
increase the locality factor it will lead to the reduction of the

grouping efficiency, because, for the larger amount of locality
factor, the group diameter would be smaller. This would reduce
the freedom degree of the algorithm to create the groups within
the validated range through adding or removing the potential
nodes to the groups with regards to the underlying topology
limitation, but the algorithm is still efficient for the proper
values (moderate values) of the locality factors. Setting the
locality factor for very small values would possibly result
in inefficiency for lunching the services, lunched on the top
of the overlay because of the expensive communication cost
among the service components in the very large communicating
groups. Figure5 also demonstrates the scalability of the system
where the increment of the network size doesn’t almost have a
considerable impact on the grouping efficiency.

V. CONCLUSIONS

The recent huge increase in the popularity of large scale
service-oriented distributed system has exposed the problem
of service distribution in computing nodes/resources, which is
especially due to the existence of the single point of failure
in server-based systems and the scalability and efficiency
challenges of the P2P systems. Logical overlays can improve the
performance of service management and resource management
through facilitating the efficient distribution and allocation of
the service components in a large scale environment which is
saturated by communicating nodes with thousands of processing
resources. In this paper we present a hierarchical proximity-
aware self-deployment and self-configuration algorithm to alter
the underlying network topology in a way that the optimal
clustering of the nodes in different layers of hierarchy can
be performed dynamically. The simulation results show that
our grouping mechanism supports the load balance while
it composes the groups in the layers with respect to the
required locality and clustering requirements. Furthermore, the
experiment results prove the scalability and efficiency of the
proposed algorithm for different system sizes.

VI. ACKNOWLEDGMENT

The authors acknowledge the support of Project FP7-
ICT-2009.8.1, Grant Agreement No. 248465, Service-oriented
Operating Systems (2010-2013) and of project Cloud
Thinking(CENTRO-07-ST24-FEDER-002031).

REFERENCES

[11 L. Gong, “Jxta: A network programming environment,” IEEE Internet
Computing, vol. 5, no. 3, pp. 88-95, May 2001. [Online]. Available:
http://dx.doi.org/10.1109/4236.935182

[2] L. Gong et al., “Project jxta: A technology overview,” Tech-
nical report, SUN Microsystems, April 2001. http://www. jxta.
org/project/www/docs/TechOverview. pdf, Tech. Rep., 2001.

[3] S. Annapureddy, M. J. Freedman, and D. Mazieres, “Shark:
Scaling file servers via cooperative caching,” in Proceedings of
the 2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, ser. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 129-142. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251213

[4] J. Considine, “Cluster-based optimizations for distributed hash tables,”
Boston University Computer Science Department, Tech. Rep., 2002.

[5] A. Montresor, “A robust protocol for building superpeer overlay
topologies,” in Peer-to-Peer Computing, 2004. Proceedings. Proceedings.

Fourth International Conference on, 2004, pp. 202-209.

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

B. Beverly Yang and H. Garcia-Molina, “Designing a super-peer network,”
in Data Engineering, 2003. Proceedings. 19th International Conference
on, 2003, pp. 49-60.

A. Crespo and H. Garcia-Molina, “Semantic overlay networks for
p2p systems,” in Proceedings of the Third international conference
on Agents and Peer-to-Peer Computing, ser. AP2PC’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 1-13. [Online]. Available:
http://dx.doi.org/10.1007/11574781_1

G. Pirr6, P. Trunfio, D. Talia, P. Missier, and C. Goble, “Ergot: A
semantic-based system for service discovery in distributed infrastruc-
tures,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, 2010, pp. 263-272.

G. Pipan, “Use of the tripod overlay network for resource discovery,”
Future Generation Computer Systems, vol. 26, no. 8, pp. 1257-1270,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X1000018X

H. Shen, Z. Li, T. Li, and Y. Zhu, “Pird: P2p-based intelligent resource
discovery in internet-based distributed systems,” in Proceedings
of the 2008 The 28th International Conference on Distributed
Computing Systems, ser. ICDCS ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 858-865. [Online]. Available:
http://dx.doi.org/10.1109/ICDCS.2008.9

T. Ghafarian, H. Deldari, B. Javadi, M. H. Yaghmaee, and
R. Buyya, “Cycloidgrid: A proximity-aware p2p-based resource
discovery architecture in volunteer computing systems,” Future Gener.
Comput. Syst., vol. 29, no. 6, pp. 1583-1595, Aug. 2013. [Online].
Available: http://dx.doi.org/10.1016/j.future.2012.08.010

H. Ballani and P. Francis, “Towards a global ip anycast service,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 301-312, Aug.
2005. [Online]. Available: http://doi.acm.org/10.1145/1090191.1080127

T. Stevens, M. De Leenheer, C. Develder, F. De Turck, B. Dhoedt, and
P. Demeester, “Astas: Architecture for scalable and transparent anycast
services,” Communications and Networks, Journal of, vol. 9, no. 4, pp.
457-465, 2007.

G. P. Jesi, A. Montresor, and O. Babaoglu, “Proximity-aware superpeer
overlay topologies,” in Proceedings of the Second IEEE International
Conference on Self-Managed Networks, Systems, and Services, ser.
SelfMan’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 43-57.
[Online]. Available: http://dx.doi.org/10.1007/11767886_4

Y. Sun, L. Sun, X. Huang, and Y. Lin, “Resource discovery in
locality-aware group-based semantic overlay of peer-to-peer networks,”
in Proceedings of the 1st International Conference on Scalable
Information Systems, ser. InfoScale ’06. New York, NY, USA: ACM,
2006. [Online]. Available: http://doi.acm.org/10.1145/1146847.1146887

C. Xiao and L. Nianzu, “Overlay construction within diffserv domains
for qos-aware multicasting,” in Proceedings of the 2010 Third
International Symposium on Information Science and Engineering, ser.
ISISE *10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
271-274. [Online]. Available: http://dx.doi.org/10.1109/ISISE.2010.61

X.-M. Huang, C.-Y. Chang, and M.-S. Chen, “Peercluster: A
cluster-based peer-to-peer system,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17, no. 10, pp. 1110-1123, Oct. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2006.142

T. Obafemi-Ajayi, S. Kapoor, and O. Frieder, “Cluster-k+: Network
topology for searching replicated data in p2p systems,” Inf. Process.
Manage., vol. 48, no. 5, pp. 841-854, Sep. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.ipm.2010.12.005

T. Glatard, J. Montagnat, D. Emsellem, and D. Lingrand, “A
service-oriented architecture enabling dynamic service grouping for
optimizing distributed workflow execution,” Future Gener. Comput.
Syst., vol. 24, no. 7, pp. 720-730, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2008.02.011

H. Gomaa and K. Hashimoto, “Dynamic self-adaptation for distributed
service-oriented transactions,” in Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, June
2012, pp. 11-20.

G. Gharbi, M. B. Alaya, C. Diop, and E. Exposito, “Aoda: an autonomic
and ontology-driven architecture for service-oriented and event-driven
systems,” International Journal of Collaborative Enterprise, vol. 3, no. 2,
pp. 167-188, 2013.

https://www.researchgate.net/publication/266389445

