
This paper has been accepted for presentation in IEEE ISCC 2016 – 21st IEEE Symposium on Computers and
Communications to be held on 27-30 June, 2016, Messina, Italy. This is an author copy. The respective Copyrights are with

IEEE.

A Cloud Platform-as-a-Service for Multimedia
Conferencing Service Provisioning

Ahmad F. B. Alam†, Abbas Soltanian†, Sami Yangui†, Mohammad A. Salahuddin†‡,
Roch Glitho† and Halima Elbiaze‡

†Concordia University, Montreal, Quebec, Canada, ‡Université du Québec À Montréal, Montreal, Quebec, Canada
{a_binala, ab_solta, s_yangui, glitho}@encs.concordia.ca, mohammad.salahuddin@ieee.org, elbiaze.halima@uqam.ca

Abstract—Multimedia conferencing is the real-time

exchange of multimedia content between multiple parties. It is

the basis of a wide range of applications (e.g., multimedia

multiplayer game). Cloud-based provisioning of the

conferencing services on which these applications rely will bring

benefits, such as easy service provisioning and elastic scalability.

However, it remains a big challenge. This paper proposes a PaaS

for conferencing service provisioning. The proposed PaaS is

based on a business model from the state of the art. It relies on

conferencing IaaSs that, instead of VMs, offer conferencing

substrates (e.g., dial-in signaling, video mixer and audio mixer).

The PaaS enables composition of new conferences from

substrates on the fly. This has been prototyped in this paper and,

in order to evaluate it, a conferencing IaaS is also implemented.

Performance measurements are also made.

Keywords- Cloud Computing, Conferencing Service

Provisioning, Multimedia Conferencing, Platform-as-a-Service

I. INTRODUCTION

Cloud computing is a paradigm for swiftly provisioning a
shared pool of configurable resources (e.g., storage, network,
application and services) on demand. It has three key facets:
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS) [1]. It provides several
benefits, such as rapid provisioning of services, scalability and
elasticity. Multimedia conferencing is the conversational
exchange of media content (e.g., voice, video and text)
between multiple parties [2]. It is an important component of
conferencing applications (e.g., audio/video conference,
massively multiplayer online games).

For cost efficiency purpose, developers of conferencing
applications can use conferencing services (e.g., dial-in video
conference and dial-out audio conference with floor control)
offered by third parties. Such services could be provisioned as
SaaS by third party conferencing service providers using
PaaS. Conferencing service provisioning refers to the entire
life-cycle of the conferencing service, i.e. development,
deployment and management [3]. Provisioning conferencing
services in the cloud is quite challenging. A challenge, for
instance, is the necessity for conferencing service developers
to master low-level details of conferencing technologies,
protocols and their interactions. Yet, another challenge is that
the provisioned conferences need to scale elastically to
accommodate a fluctuating number of participants.
Unfortunately, existing PaaS solutions do not address these
challenges. This paper proposes an innovative PaaS to tackle
them.

The proposed PaaS is based on the business model in [2],
which proposes six roles: Connectivity provider, broker,
conferencing substrate providers, conferencing infrastructure
providers, conferencing platform providers and conferencing
service providers. This paper focuses on conferencing service
providers, conferencing platform providers and conferencing
infrastructure providers. Moreover, it is assumed that the
substrate provider plays the role of the conferencing
infrastructure provider as well. The proposed PaaS provides
conferencing service providers, who are experienced in
programming, with high-level interfaces to hide the internal
complexities of conferencing. Besides, it composes on the fly
conferencing building blocks entitled substrates (e.g., dial-in
signaling, video mixer and audio mixer) into full-fledged
conferences.

The rest of the paper is organized as follows: Section II
introduces a motivating scenario, derives the requirements on
conferencing PaaS and reviews related work. Section III
describes the proposed overall architecture. Section IV
presents the software architecture, prototype and experimental
results. Section V concludes the paper.

II. MOTIVATION, REQUIREMENTS AND RELATED WORK

A. Motivating Scenario

Fig. 1 depicts the motivating scenario. It includes three
example conferencing applications – (i) a game using dial-in
audio conferencing, (ii) a distance learning program using
dial-out audio conferencing, and (iii) a plain conferencing
application offering dial-out video conference with floor
control. These conferencing applications use conferencing
services offered as SaaS by conferencing service providers.
One service provider offers conferencing service A that
supports both dial-in and dial-out audio conferences. The
distance learning and the game applications consume service
A. Another provider offers dial-out video conference with
floor control (service B), used by the plain conferencing
application.

Conferencing IaaS 1
(Dial-in Signaling,
Dial-out Signaling)

Conferencing IaaS 2
(Audio Mixer, Video

Mixer)

Conferencing
IaaS 3

(Floor Control)

Conferencing
Service Provider 2

Conferencing
Service Provider 1

Conferencing Service A
(Dial-in/Dial-out Audio

Conference)

Conferencing Service B
(Dial-out Video Conference

with Floor Control)

Distance Learning AppGame App Conferencing App

Conferencing

PaaS

Fig. 1. Conferencing Service Provisioning in the Cloud

This paper has been accepted for presentation in IEEE ISCC 2016 – 21st IEEE Symposium on Computers and
Communications to be held on 27-30 June, 2016, Messina, Italy. This is an author copy. The respective Copyrights are with

IEEE.
The conferencing services create new conferences when

they receive corresponding requests from conferencing
applications. For example, service A creates dial-in audio
conference and dial-out audio conference when it receives
requests from the distance learning and the game applications,
respectively. The PaaS composes these conferences from the
required substrates offered by conferencing IaaSs. It is
assumed that the PaaS has prior knowledge of the existing
conferencing IaaSs and their offered substrates. During a
conference, as the players join and leave, the PaaS scales the
conference in an elastic manner.

B. Requirements

The following four requirements are derived:
1) High-level Interfaces for Service Providers: The

conferencing PaaS interfaces should enable the service
providers to provision new services without having to deal
with the complexities of conferencing components and their
interactions. The interfaces should also be flexible enough for
creating complex and novel conferencing services (e.g., a
dial-in video conference with five minutes of chat per hour).

2) Composition of Conferences from Substrates: When a
conferencing service receives a request to create a new
conference, the PaaS should determine necessary substrates,
select appropriate conferencing IaaSs providing those
substrates and then compose the requested conference from
the selected substrates.

3) Elastic Scalability: The conferencing PaaS, in
collaboration with the conferencing IaaSs, should scale the
ongoing conferences in response to the fluctuating number of
participants. This allows the PaaS to gain cost efficiency and
to follow the pay-per-use principle.

4) Quality of Service: Meeting Quality of Service (QoS)
requirements, such as latency, jitter and throughput, is critical
as conferencing services are real-time. This paper focuses on
the latency of operations performed during a conference (e.g.,
participant joining and setting floor chair).

C. Related Work

The cloud-based conferencing architectures and the
existing PaaS are reviewed below.

1) Cloud-based Conferencing Architectures
A cloud-based framework for conferencing service

provisioning is proposed in [4]. It offers conferencing services
as SaaS, while using a conventional PaaS for deployment and
execution. It does not provide high-level interfaces to service
providers. It does not address conference scalability and QoS
requirements, either. An approach for providing video
conference as a Web service is presented in [5]. To help the
conferencing application developers, this paper proposes a set
of high-level SaaS to be offered by conferencing service
providers. However, it does not address how service providers
could provision these SaaS. Neither does it discuss conference
composition, elastic scalability and QoS.

A cloud infrastructure, proposed in [6], relies on
conferencing substrates and can scale elastically. It also
proposes PaaS/IaaS interfaces rooted in substrates. These
characteristics make the infrastructure suitable for use by a

conferencing PaaS. However, the PaaS-level issues including
the interfaces for service providers and the composition of
conference substrates are not taken into account. Neither do
they provide QoS measurements for conference runtime
operations. There has been other research works in the
literature, such as [7], [8], [9], which address specific
problems of cloud-based conferencing – for instance, inter-
datacenter network utilization, media mixing and transcoding.
While they focus on how conferencing components can
efficiently utilize the cloud, they do not address conferencing
service provisioning.

2) Existing PaaS Solutions
Aneka [10] and Cloud Foundry [11], the two

representatives of PaaS are evaluated. Aneka provides high-
level interfaces and supports elastic scalability, specifically
for distributed application provisioning. Nonetheless, the
interfaces are not suitable for conferencing service providers.
Cloud Foundry provides no interfaces for conferencing
service provisioning. It supports scaling of application
instances but does not address elastic scaling of conferences.
Neither addresses conference composition and QoS.

III. PROPOSED ARCHITECTURE FOR CONFERENCING PAAS

The architectural principles are first presented. Then, the
architectural components and service development APIs are
discussed in detail, followed by an illustrative scenario.

A. Architectural Principles

Two widely used compositional approaches are
orchestration and choreography [12]. The former allows a
central entity to control the component services and their
interactions. The latter allows the component services to
collaborate in a decentralized manner. The first principle of
our architecture is to adopt the orchestration approach for the
substrate composition because it provides PaaS with a greater
control on the substrates and their interactions. The second
principle is to use high-level PaaS/IaaS interfaces rooted in
substrates. It contributes to easy conference composition from
substrates. This principle also enables PaaS to request IaaSs
for scaling conferences in terms of conference size, instead of
VM resources. The third principle is to extend the existing
PaaS architectures. This allows us to reuse the existing PaaS
for the conferencing PaaS implementation.

B. Overall Architecture

The proposed architecture consists of a repository and five
components, as shown in Fig. 2. These components deal with
three key facets: (i) Conferencing services, (ii) conferences
and (iii) substrate information.

1) Components Related to Conferencing Services
This facet includes service development, deployment and

management. Conferencing PaaS GUIs and APIs component
provides tools for the conferencing service providers. For easy
development, service providers use high-level Service
Development APIs (c.f. Section III.C), which is novel in this
architecture. They also use GUI for service deployment and
management, such as starting, updating and stopping services.
This component satisfies the requirement of high-level
interfaces.

This paper has been accepted for presentation in IEEE ISCC 2016 – 21st IEEE Symposium on Computers and
Communications to be held on 27-30 June, 2016, Messina, Italy. This is an author copy. The respective Copyrights are with

IEEE.

Management (Services and PaaS) component manages
the conferencing services and monitors their QoS and SLAs.
Service Hosting and Execution component hosts the
conferencing services. It allocates necessary PaaS resources
(e.g., server runtime and database drivers) and prepares
execution environment before hosting.

Management (Services and PaaS) receives request from
the conferencing PaaS GUI for service deployment and
management. It deploys and executes services in Service
Hosting and Execution component and manages them during
execution. Note that Conferencing PaaS GUIs and APIs is an
extension of application provisioning front-end, available in
regular PaaS architectures. Management (Services and PaaS)
and Service Hosting and Execution components are reused
from conventional PaaS architectures.

2) Components Related to Conferences
This facet concerns conference composition and

management of created conferences including elastic scaling.
Conference Orchestration and Management component
creates and manages conferences. More explicitly, it performs
the following five tasks. First, it determines the necessary
substrate types and their associated requirements by using, for
instance, syntactic matching with the categorized API
parameters (c.f. Section III.C). Second, given the
requirements of a substrate, it selects the most suitable
conferencing IaaS, by using an algorithm. Existing algorithms
for cloud service selection, such as [13], can be reused in this
context. Third, it orchestrates conferences from substrates and
executes them. Note that conferences are executed in this
component. In contrast, the conferencing services that create
conferences are executed in the Service Hosting and
Execution component. We assume that conferencing IaaSs
expose substrates as RESTful web services as in [6].
Therefore, existing approaches and techniques for RESTful
web service orchestration, such as [14], can be reused. Fourth,
it manages the composed conferences. For example, it can add
or remove video from a conference. Fifth, it monitors the
current size of each running conference to make decisions
about scaling. If needed, it requests conferencing IaaSs to
scale in terms of conference size. However, this decision-
making process requires new conference scaling algorithms.
This component, along with conferencing IaaS, satisfies the
requirement of elastic scalability. It also meets the
requirement of composing conferences from substrates.
Conferencing IaaS Handler component handles all
communications between the conferencing PaaS and the

conferencing IaaSs. It realizes the high-level conferencing
PaaS/IaaS interfaces proposed in [6], which is reused in this
work.

Conference Orchestration and Management receives
requests from conferencing services. Based on the requests
received (e.g., create a conference and stop a conference), it
takes actions and communicates with IaaSs via Conferencing
IaaS Handler. Note that Conference Orchestration and
Management is a novel component while Conferencing IaaS
Handler is an extension of IaaS communication component in
conventional PaaS architectures.

3) Components Related to Substrate Information
To select the best conferencing IaaS for a given substrate,

PaaS needs certain information about that substrate, such as
substrate type, price, SLA and QoS. Conferencing PaaS
provider uses a GUI in Conferencing PaaS GUIs and APIs
component to manage (e.g., add, remove, update) such
information of the substrates. The information is stored in the
Substrate Information Repository.

C. Conferencing Service Development APIs

Three principles are followed to design the proposed APIs.
The first principle is leveraging basic conferencing concepts
(e.g., conference, participant, media and floor) in the API
design. This helps in achieving an abstraction level higher
than conferencing components (e.g., signaling, media mixer
and media transcoder) and their complex interactions. The
second principle is categorizing API parameters, which helps
service providers to easily understand a conference’s
mandatory and optional aspects, required API parameters for
each aspect and dependencies among parameters. The third
principle is the use of RESTful design. It is standard-based,
lightweight and flexible for data representation, allowing us to
describe the APIs in a generic way.

Table I delineates four API examples. It shows some of
the REST resources along with an example operation for each.
The request parameters and the response contents are also
listed. The categorization of API parameters is shown in table
II. This table highlights that a service provider has to specify
one conference model, at least one media and the conferencing
technology. It also shows the conditional dependencies of
parameters. For example, for WebRTC-based conferencing,
signaling protocol must be specified. The parameters service
providers can change during runtime are italicized.

D. Illustrative Scenario

The illustrative scenario consists of a game application
where players can talk for unlimited time but can have private
text chat for only 5 minutes per hour, a service provider
offering dial-in audio conferencing service with text chat for
limited time and a conferencing PaaS that subscribes to three
conferencing IaaSs. IaaS A and B offer dial-in signaling and
audio mixer substrates; IaaS C offers an instant messaging
substrate. The scenario shows how the conferencing PaaS
creates a conference when the game application sends
requests to the service. It also illustrates how APIs are used by
service providers.

Fig. 3 depicts the interactions. For brevity, the game
application is omitted in the figure. When the service receives

Conferencing IaaS

Conference Orchestration and Management

Conferencing PaaS GUIs and APIs

Service Hosting and Execution

Monitor

PaaS

resources

Monitor and

maintain SLA

Manage service lifecycle

Create new conferences

PaaS / IaaS Interfaces

Update

substrate

info

Conferencing IaaS Handler
Scale conferencesActivate and manage substrates

Provision

hosting

environment

Deploy, start, stop,

scale service

instances

Conferencing Service Provider Conferencing Platform Provider

Substrate Info
Repository

Fetch

substrate

info

Management (Services and PaaS)

Fig. 2. Overall Architecture of Conferencing PaaS

This paper has been accepted for presentation in IEEE ISCC 2016 – 21st IEEE Symposium on Computers and
Communications to be held on 27-30 June, 2016, Messina, Italy. This is an author copy. The respective Copyrights are with

IEEE.

a request from the game application for creating a conference,
it invokes the create conference API. API handling is
delegated to Conference Orchestration and Management,
which determines necessary substrates and selects appropriate
IaaSs. It is assumed that it selects IaaS A for dial-in signaling
and IaaS B for audio mixer substrates. Next, it requests IaaSs,
via Conferencing IaaS Handler, to activate the substrates.
Interactions for substrate activation are not shown. After
activation, Conference Orchestration and Management
orchestrates a new dial-in audio conference from substrates
and then executes it. The orchestrated conference represents a
full-fledged conference. It creates individual conferences on
the substrates it is composed of. Finally, the ID of the full-
fledged conference is returned to the game.

It is assumed that the service enables private text chat after
30 minutes. Using a regular timer function (available in most
programming languages), the service invokes another API to
add instant messaging to the conference for 5 minutes.
Conference Orchestration and Management selects IaaS C,
activates a substrate and modifies conference to add instant
messaging. On the new substrate, individual conference is
created for 5 minutes and existing participants are added.
Then, participants can start exchanging text messages.

IV. IMPLEMENTATION AND MEASUREMENTS

A. Software Architecture

Fig. 4 shows the software architecture. To evaluate the
proof-of-concept of conferencing PaaS, a stripped down
conferencing IaaS is also designed. Its software architecture is
shown in the very same Fig. 4.

1) Conferencing PaaS
In Conferencing PaaS GUIs and APIs, Service

Development APIs can be provided as a programming library
(e.g., JAR file in Java and NPM module in JavaScript). For

service deployment and management, Service Management
GUI is used. Substrates Support Management GUI is used by
the conferencing platform provider to manage substrate
information. Management (Services and PaaS) component
and Service Hosting and Execution component are reused
from conventional PaaS architectures. So, we do not discuss
these in detail here.

In Conference Orchestration and Management
component, Substrate Selector chooses the most suitable
conferencing IaaS, given the substrate requirements.
Substrate Orchestration Engine composes the selected
substrates into a full-fledged conference. Conference
Execution Engine hosts the conferences. Conference Scaling
Decision Maker monitors running conferences and requests
scaling when needed. Conference Manager receives requests
from northbound component and coordinates other sub-
components to serve the requests. Conferencing IaaS Handler
component communicates with the conferencing IaaSs using
PaaS/IaaS interfaces.

2) Conferencing IaaS
Conferencing IaaS has two main components. The first

one, IaaS Manager, communicates with PaaS and handles all
incoming requests. Moreover, it has control on resources (e.g.,
RAM, HDD and CPU) allocated to substrates. It also does
regular IaaS tasks such as SLA management and IaaS
governance. The second component, Substrate Manager,
instantiates the requested substrate and configures it based on
the PaaS requirements.

B. Prototype

The prototype scenario includes a service provider
offering dial-in audio conferencing service and a game
application consuming that service. It also includes the
conferencing PaaS and two conferencing IaaSs – both
providing dial-in signaling and audio mixer substrates. Two

TABLE II. CATEGORIZATION OF API PARAMETERS
 Categories Example Values

Mandatory

Aspects

Conference
Model

Pre-arranged conference Dial-in conference, Dial-out conference
Ad-hoc conference

Media At least one of audio, video and text

Conferencing
Technology

SIP-based
Signaling protocol SIP by default. No need to specify.
Audio and video encodings No mandatory encodings. So, must specify.

WebRTC-based
Signaling protocol No mandatory protocol. So, must specify.
Audio encodings Mandatory: G.711 and Opus. Can specify additional.
Video encodings Mandatory: H.264 and VP8. Can specify additional.

Hybrid (SIP-based +
WebRTC-based)

Mandatory protocols and encodings from both technologies apply. Can specify
additional.

Optional

Aspects

Floor control At least one floor control policy, e.g., chair-moderated and round-robin.
Subconference Enabled or not

TABLE I. EXAMPLES OF CONFERENCING SERVICE DEVELOPMENT APIS
REST

Resource
Operation HTTP action and resource URI Request body parameters

Most important info in

response

List of
Conferences

Create
conference

POST: /conferences
Conference model, media,
floor control, technology, conference
size, QoS requirements, etc.

ID and URI of created
conference

Participant
Add
participant

POST: /conference/ {conferenceId}/ participants Participant description: name, URI
ID and URI of new
participant

Floor Add floor POST: /conferences /{conferenceId} /floors
Floor description: chair, floor
participants

ID and URI of new floor
created

Subconference
Remove
subconference

DELETE: /conferences /{conferenceId}
/subconferences /{subconferenceId}

None
Success or failure
indication

This paper has been accepted for presentation in IEEE ISCC 2016 – 21st IEEE Symposium on Computers and
Communications to be held on 27-30 June, 2016, Messina, Italy. This is an author copy. The respective Copyrights are with

IEEE.

use cases are considered: One selects substrates from the same
IaaS and the other chooses substrates from different IaaSs.

Cloud Foundry PaaS is extended, providing the
implementation of typical PaaS components. For Substrate
Orchestration Engine and Conference Execution Engine,
open-source Camunda tool [16] is reused. Conference
Manager and Conferencing IaaS Handler are implemented
using Express.js framework. Advanced REST Client [15] is
used to simulate SaaS API invocations by the game.

For conferencing IaaS, OpenStack [17] is reused.
Controller is implemented as a custom Java application with
REST-based APIs to communicate with the PaaS. For
signaling and media handling substrates, Asterisk [18] is used
as an open source framework. It is deployed on a machine with
4 GB RAM and two vCPUs running Ubuntu 14.04 LTS.

C. Measurements

Three scenarios are considered: (i) Non-cloud
conferencing (NCC) where resources are allocated
beforehand. The two other scenarios concern cloud-based
conferencing, where conferencing PaaS is leveraged: (ii)

Cloud single IaaS provider (CSIP) – PaaS selects required
substrates for a conference from one IaaS, and (iii) cloud
multiple IaaS provider (CMIP) – PaaS chooses substrates
from different IaaSs. In CSIP, IaaS is assumed to host all
substrates for a conference on the same VM.

The following three metrics are used: (i) Conference start
time – i.e. the time required to get a conference ready upon the
receipt of a request, (ii) participant joining time – i.e. the time
required to add a participant to a running conference, and (iii)
resource allocation – i.e. the total amount of allocated
resources, such as RAM and CPU, to accommodate all
participants. The last metric pertains to cloud-based scenarios.

As shown in Fig. 5(a), NCC takes the least time to start a
new conference due to the absence of virtualization overhead.
Since substrates need to connect over network in CMIP, it
takes more time than in CSIP. Participant joining time is the
least in NCC as shown in Fig. 5(b). Cloud-based scenarios
take more time because of the notification overhead between
IaaSs, PaaS and the game server. However, this is a one-time
operation for a participant and does not contribute to the
participant’s communication delay. Moreover, based on

Conferencing Service

(running on PaaS)

Conference Orchestration

and Management

Determine necessary substrates, select conferencing IaaSs, activate substrates (dial-in signaling

ID D1, audio mixer ID M1), finally compose conference and execute it

Conferencing IaaS

Handler

Dial-in Signaling

(IaaS A)

Audio Mixer

(IaaS B)

Create conference (D1)

Return conference ID (C1)
Conference created (C1)

Create conference (D1)

Create conference (M1)

Return conference ID (C2)

Create conference (M1)

Conference created (C2)

Map new conference ID from substrates' conference IDs : X1 = (C1, C2).

Conference created (X1)

Instant Messaging

(IaaS C)

1. Select IaaS for instance messaging and activate if not done already. (IaaS C - substrate ID IM1)

2. Modify orchestrated conference to add instant messaging with substrate ID IM1

Create conference (IM1)

Return conference ID (C3)
Conference created (C3)

Create conference (IM1)

Associate C3 with running conference: X1 = (C1, C2, C3)

After 30 minutes ...

Media added to conference X1)

Add participants (participants in X1, C3, IM1)
Add participants (list of participants, C3, IM1)

Return IDs of added participants
Participants added (IDs of participants)

API.createConference({

 model: dial-in,

 media: audio,

 technology: WebRTC,

 signaling-protocol: JSEP,

 maxSize: 1000,

 startTime: March 4, 2016

 15:00:00,

 duration: 2 hours

});

API.addMedia(X1, {

 type: instant messaging,

 protocol: SIP/SIMPLE,

 duration: 5 minutes

});

Fig. 3. Conference Creation

Conferencing PaaS GUIs & APIsSubstrates Support Management GUI

Service Hosting & Execution

Management (Services & PaaS)

Conference Orchestration and

Management

Hosting Environment Manager

Service SLA Manager PaaS Governance

Substrate Selector Substrate Orchestration Engine

Service Development APIs

Conferencing IaaS Handler

Substrate Info
Repository

Conferencing Platform Provider Conferencing Service Provider

Substrate ConfiguratorSubstrate Instantiator

Substrate Manager Controller

IaaS GovernanceSLAs Manager

IaaS Manager

Conferencing IaaS Handler

Service Lifecycle Manager

Service Management GUI

Conferencing IaaS

PaaS/IaaS Interfaces

Conference Scaling Decision MakerConference Execution Engine

Conference Manager

Service Hosting & Execution Container

Hosting Environment Lifecycle Manager

Fig. 4. Software Architecture

This paper has been accepted for presentation in IEEE ISCC 2016 – 21st IEEE Symposium on Computers and
Communications to be held on 27-30 June, 2016, Messina, Italy. This is an author copy. The respective Copyrights are with

IEEE.

International Telecommunication Union (ITU) standards, this
time is acceptable as long as it is below 400 msec [19].
Participant joining time of the two cloud-based scenarios are
close as IaaSs can notify PaaS in parallel. Thus, the proposed
architecture satisfies the QoS requirement.

Although in cloud-based scenarios, the start time and the
participant joining time are more than those in NCC, it helps
to achieve resource efficiency and reduce costs. Fig. 6 shows
the allocated amount of RAM for a conference with between
1 and 3000 participants. To simulate conference scaling,
conference size is increased by 200 participants every 10
minutes. The results are based on the observed resource usage
per participant. IaaSs are assumed to scale up and out VMs
while maintaining QoS requirements. In NCC, there are
always some idle and non-utilized resources because of
upfront resource provisioning. Hence, it is not shown in Fig.
6. CSIP scales better than CMIP (i.e. allocates less resources)
for smaller conferences whereas CMIP wins for bigger
conferences, because in CMIP, substrates are hosted on
separate VMs as they are chosen from different IaaSs. For
smaller conferences, it leads to more VMs and more non-
utilizable resources (e.g., resources consumed by operating
system) than in CSIP. However, with the increase of
conference size, CMIP achieves better scalability because of
the less VMs and more utilizable resources than in CSIP.

V. CONCLUSION

A novel conferencing PaaS architecture for service
providers is proposed, to easily provision conferencing
services. The proposed PaaS cooperates with conferencing
IaaSs to scale conferences elastically. The experiments show
that cloud-based conferencing service provisioning can
provide better resource efficiency. Several future algorithmic
works have been identified, for instance, algorithms for PaaS
to scale conference in terms of the number of participants and
algorithms to select the most suitable conferencing IaaS, given
the requirements of a substrate.

VI. ACKNOWLEDGMENT

This work is supported in part by an NSERC/Ericsson
CRD grant, the NSERC SAVI Research Network, and an
NSERC Discovery grant.

VII. REFERENCES
[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A

break in the clouds: towards a cloud definition,” ACM SIGCOMM

Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2008.
[2] R. H. Glitho, “Cloud-based multimedia conferencing: Business model,

research agenda, state-of-the-art,” in Commerce and Enterprise

Computing (CEC), 2011 IEEE 13th Conference on, 2011, pp. 226–
230.

[3] M. Jacobs and P. Leydekkers, “Specification of synchronization in
multimedia conferencing services using the TINA lifecycle model,”
Distrib. Syst. Eng., vol. 3, no. 3, p. 185, 1996.

[4] J. Li, R. Guo, and X. Zhang, “Study on service-oriented Cloud
conferencing,” in Computer Science and Information Technology

(ICCSIT), 2010 3rd IEEE International Conference on, 2010, vol. 6,
pp. 21–25.

[5] P. Rodríguez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, and
J. Salvachúa, “Vaas: Videoconference as a service,” in Collaborative

Computing: Networking, Applications and Worksharing, 2009.

CollaborateCom 2009. 5th International Conference on, 2009, pp. 1–
11.

[6] F. Taheri, J. George, F. Belqasmi, N. Kara, and R. Glitho, “A cloud
infrastructure for scalable and elastic multimedia conferencing
applications,” in Network and Service Management (CNSM), 2014

10th International Conference on, 2014, pp. 292–295.
[7] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud

service using inter-datacenter networks,” in Network Protocols

(ICNP), 2012 20th IEEE International Conference on, 2012, pp. 1–11.
[8] R. Cheng, W. Wu, Y. Lou, and Y. Chen, “A cloud-based transcoding

framework for real-time mobile video conferencing system,” in Mobile

Cloud Computing, Services, and Engineering (MobileCloud), 2014

2nd IEEE International Conference on, 2014, pp. 236–245.
[9] J. Liao, C. Yuan, W. Zhu, P. Chou, and others, “Virtual mixer: Real-

time audio mixing across clients and the cloud for multiparty
conferencing,” in Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on, 2012, pp. 2321–2324.
[10] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for

.NET-based cloud computing,” High Speed Large Scale Sci. Comput.,
vol. 18, pp. 267–295, 2009.

[11] “Cloud Foundry Overview.” [Online]. Available:
http://docs.cloudfoundry.org/concepts/overview.html. [Accessed: 04-
Nov-2015].

[12] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X.
Xu, “Web services composition: A decade’s overview,” Inf. Sci., vol.
280, pp. 218–238, 2014.

[13] T. Yu and K.-J. Lin, “Service Selection Algorithms for Composing
Complex Services with Multiple QoS Constraints,” in Service-

Oriented Computing - ICSOC 2005, B. Benatallah, F. Casati, and P.
Traverso, Eds. Springer Berlin Heidelberg, 2005, pp. 130–143.

[14] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino,
“RESTful service composition at a glance: A survey,” J. Netw.

Comput. Appl., vol. 60, pp. 32–53, 2016.
[15] “Advanced REST client.” [Online]. Available:

https://chrome.google.com/webstore/detail/advanced-rest-
client/hgmloofddffdnphfgcellkdfbfbjeloo. [Accessed: 27-Feb-2016].

[16] “camunda BPM.” [Online]. Available: https://github.com/camunda.
[Accessed: 27-Feb-2016].

[17] “Home » OpenStack Open Source Cloud Computing Software.”
[Online]. Available: https://www.openstack.org/. [Accessed: 26-Feb-
2016].

[18] “Asterisk.org.” [Online]. Available: http://www.asterisk.org/.
[Accessed: 11-Sep-2015].

[19] O. T. Time, “ITU-T Recommendation G. 114,” ITU-T May, 2000.

(a) (b)

Fig. 5. (a) Average Conference Create Time (b) Participant Joining Time

0

20

40

60

80

100

NCC CSIP CMIP
0

50

100

150

200

NCC CSIP CMIP

Fig. 6 Resource Allocation Evaluation

0

2000

4000

6000

8000

1
20

1
40

1
60

1
80

1
10

01
12

01
14

01
16

01
18

01
20

01
22

01
24

01
26

01
28

01

R
A

M
 (

M
B

)

Number of Participants
CSIP CMIP

C
re

at
e

T
im

e
(s

ec
)

Jo
in

 T
im

e
(m

se
c)

