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Abstract—In this paper, we consider fair privacy in a shared
network subject to traffic analysis attacks by an eavesdropper.
We initiate the study of the joint trade-off between privacy,
throughput and delay in such a shared network as a utility
fairness problem and derive the proportional fair rate allocation
for networks of flows subject to privacy constraints and delay
deadlines.

I. I NTRODUCTION

Privacy in packet switched networks has attracted increasing
interest in the research community over the last decade.
Traditionally encryption techniques have been used to provide
privacy by hiding the content of communication messages
from an eavesdropper. However, more sophisticated attacks
have been developed in recent years that use characteristics
other than the content of the packets to gain information
about the content of transmissions. For example, it has been
demonstrated that packet length, count and the inter arrival
times between packets can be used to infer with high accuracy
the identity of web pages being browsed [6], video being
watched and the content of encrypted voice calls [16], [17].
For attacks which make use of packet length information the
obvious defence is to pad/fragment packets to be of fixed size.
However, this simple defence is insufficient to protect against
timing only attacks, since these make no use of packet size
information. Note that timing only attacks can be powerful e.g.
in [6], [7] it is demonstrated that the web site being browsed
can be successfully inferred with greater than 90% accuracy
using timing information alone.

Timing attacks make use of the properties of the packet
stream, rather than of individual packets, and defence against
such attacks therefore requires use of traffic shaping to modify
the timing pattern of the stream of packets transmitted over
the network such that it becomes hard for an eavesdropper to
learn about the original message. Such traffic shaping can be
achieved by inserting dummy packets into the packet stream
to mask idle periods, by delaying/buffering packets to modify
their timing and of course by dropping packets. In practice this
shaping might be performed by, for example, end hosts or by
a VPN gateway.

However, such privacy enhancing traffic shaping can im-
pose a cost on the user and on the network. For example,
insertion of dummy packets increases the load on the network
while buffering user packets for longer increases delay but
can reduce the need for dummy packets to ensure privacy.
Importantly, for users sharing common a network path this
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Fig. 1: Schematic illustrating simple two flow example.

creates a joint trade-off between their privacy, throughput and
delay. This is illustrated in Figure 1 which shows two users
whose traffic is shaped to enhance privacy and is then sent
over a shared link which may be subject to eavesdropping. An
increase in the rate of dummy packet transmissions by user
1 reduces the available bandwidth for user 2 on the shared
link, and so to maintain privacy may require user 2 to reduce
the rate at which useful (non-dummy) packets are sent, to
buffer packets for longer (to disrupt timing without adding
extra dummy packets) or to drop more packets (again to disrupt
timing patterns). Alternatively, user 2 may choose to sacrifice
privacy in order to avoid reducing throughout, increasing delay
etc. That is, increased privacy for one user may come at the
cost of decreased throughput, increased delay and/or reduce
privacy for another user.

In this paper, we initiate the study of the joint trade-off
between privacy, throughput and delay in a shared network as
a utility fairness problem. We derive the proportional fairrate
allocation for networks of flows subject to privacy constraints
and delay deadlines. To the best of our knowledge this is the
first study offair privacy in a shared network subject to timing
attacks.

II. RELATED WORK

There exists a large body of research focused on fair rate
allocation in shared networks but without consideration of
privacy, see for example [5], [11], [1] and references therein.
With regard to privacy, fairness has previously been considered
in the context of mix networks [2] where the aim is to achieve
unlinkability/anonymity. Mishra et al. [12] propose a propor-
tional fair scheduling model that preserves source anonymity
and in [13] investigate the trade-off between anonymity and
quality of service. The focus in both papers is on hiding
the identity of the users in a shared network. With regard
to traffic analysis and associated defences, previous studies
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have established that the packet size, count, transmissionrate,
inter-arrival timesetc.can reveal significant information about
a traffic flow, see e.g. [16], [4], [6], [7] and references therein.
A number of defences have been proposed to counter these
traffic analysis attacks, mostly addressing attacks that make use
of packet size, count and the length of transmissione.g. they
modify the traffic by padding the packets to be the same length
or by adding dummy traffic to the end of the packet sequence
to mask the packet count [8]. These defences are, however,
ineffective against attacks that solely use timing information
of network flows, see for example [6] and [7]. To the best
of our knowledge none of this previous work on defences
against traffic analysis attacks has considered fairness orthe
joint aspect of the trade-off between privacy, throughput and
delay in a shared network.

III. A TTACK MODEL & PRIVACY FOR A NETWORK FLOW

We consider a network path where timet ∈ {0, 1, · · · } is
slotted and in slott a new packet may arrive for transmission
across the network. We let random variableX(t) = 1 if a
packet arrives in slott andX(t) = 0 otherwise. It is assumed
that packets themselves contain no interesting information for
an eavesdropper, which means that the packets are strongly
encrypted and are of constant size. However, the sequence
X := {X(t)} of packet arrivals contains information that
can be used to reveal the characteristics of the traffic flow. To
protect this information, the arriving packet stream is passed
through a traffic shaper before being transmitted across the
network. We let random variableY (t) = 1 if a packet is
transmitted across the path in slott andY (t) = 0 otherwise.

Our attack model is that the sequenceY := {Y (t)}
of transmissions is observable by an adversary, but not the
sequenceX of arrivals. Note that in general we expect that
an eavesdropper listening to network transmissions does not
observe output sequenceY directly, but rather only after trans-
formation by the MAC layeri.e. after buffering, scheduling
delay etc. This will generally increase privacy (this follows
from the data processing inequality, and more specificallye.g.
passing through a queue increases entropy). Nevertheless,we
take a conservative approach and assume a strong attacker who
can perfectly invert these changes and so recoverY.

We use the mutual informationI(Y;X) between se-
quencesX and Y as our measure of privacy, similarly to
[18] and others. Mutual information measures the capacity of
the information channel between sequencesX andY. When
I(Y;X) = 0 the sequences are statistically independent and
more generally mutual information captures the exposure to
watermarking attacks, which can be thought of as a worst
case situation in our setup, namely where the user sequence
X has a signature intentionally embedded within its timing
pattern by an adversary (e.g. by a web site which is being
downloaded) Recall thatI(Y;X) = H(Y)−H(Y|X), where
H(Y) is the entropy of the output sequence andH(Y|X) the
conditional entropy between the output and input sequences.
Privacy is maximised whenI(Y;X) is minimised (as already
noted, whenI(Y;X) = 0, the output sequenceY is statis-
tically independent from the input sequenceX and we say
transmissions are fully private).

IV. ON-OFF TRAFFIC SHAPING POLICY

Transmitting a packet in every slot regardless of the pattern
of the arriving user traffic ensures that the transmitted packet
sequence contains no information about the user traffic1 and
I(Y;X) = 0. Similarly, when no packets are transmitted,
Y (t) = 0, t = 1, 2, · · · , then also triviallyI(Y;X) = 0.
However, transmitting a packet in every slot means that when
there is no information packet to send a dummy packet must
be transmitted and so is clearly wasteful. And transmittingno
packets at all is clearly private but not useful for communica-
tion. This motivates use of an on-off approach to transmission.
That is, we specify an intervalτ . In the first slot of this
interval we transmit a packet (sending a dummy packet if no
information packets are available2), and over the remaining
τ−1 slots no packets are transmitted (any arriving information
packets are buffered in a queue). That is,Y (t) = 1 for
t = 1 and Y (t) = 0 for t ∈ {2, · · · , τ}. It is known
from queueing theory that deterministic service minimises
the queueing delay for a specified mean service rate [10],
i.e. periodic service minimises delay. Conveniently, periodic
service also means that the pattern of packet transmissions
contains no information, i.e. the mutual information between
the transmitted sequenceY and the arrival processX is zero,
I(Y;X) = 0 and so transmissions are fully private. Hence this
traffic shaping approach is a minimum delay maximum privacy
one. By adjusting the mean transmit rate via parametersg
and τ we can tune the trade-off between the number of
dummy packets sent (which waste network bandwidth) and
the buffering delay experienced by information packets.

This on-off traffic shaper can be modelled as a so-called
Fixed Cycle Traffic Light (FCTL), first studied in[14] in the
context of vehicular traffic. Consider cars arriving at a junction
controlled by a FCTL. The light has two states which divides
the total cycle into fixed length green (g) and red (r) cycles.In
the red cycle, a new arrival enters a queue, waiting to cross the
junction. When the light turns green, cars in the queue crossthe
junction one at a time until the cycle lasts or queue becomes
empty. Cars arriving at the junction during a green cycle and
finding the queue empty proceed to cross the junction. It is
this latter characteristic which makes the FCTL different from
a conventional queue with periodic service. In our setup the
green cycle is of durationg = 1 slot and the red cycle is of
duratonr = τ − 1 slots. The characteristics of a FCTL have
been much studied, see for example the overview in [3], with
estimates of the average queue length given in [14] and [15].

A. Delay

Suppose the input sequence{X(t)} is i.i.d with P(X(t) =
1) = p and P(X(t) = 0) = 1 − p. That is, the traffic

1Formally, suppose output sequenceY (t) = 1, t = 1, 2, · · · i.e. a packet
is transmitted in every slot. The entropy of the transmission at a single slot
is H(Y (t)) = p log p + (1 − p) log(1 − p) where p = Prob(Y (t) =
1). Sincep = 1 when a packet is always transmitted,H(Y (t)) = 0. The
entropy of thesequence{Y (t)} satisfiesH(Y) ≤

∑
t H(Y (t)) = 0 and

sinceH(Y) ≥ 0 it follows that the entropy of the sequence{Y (t)} is zero.
Similarly, H(Y|X) = 0 and so the mutual informationI(Y;X) = 0.

2Note that it is also possible to adopt a partially private approach where,
when no information packet is available to send, a dummy packet is transmitted
with some probability less than one. In this case the mutual information
I(Y;X) will be non-zero, but can be controlled by adjusting the probability
with which dummy packets are sent. However, we leave this more general
case for future work.
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Fig. 2: Comparison of Newell’s (equations (3.7) and (5.6) in
[14]) and Miller’s estimates for the waiting time at a FCTL
with simulation data. The simulation values are averaged over
1000 cycles withp = 0.3 andτ = 100. The data forg/τ < p
is excluded as the queue is unstable in this region.

arrivals form a Bernoulli process. Given that the time is slotted,
following [14], the average waiting timew for each packet
measured in time slots is

w = (τ − g)(1− p)−1τ−1(E(qx)/p+ (τ − g + 1)/2). (1)

whereE(qx) denotes the length of queue right at the end of
green (serving) period of thexth cycle andτ is the length of
each cyclei.e. τ = r + g.

In order to calculatew we need to find the equilibrium
distribution for qx and evaluateE(qx). While the calculation
of q1 and q2 is straightforward, the evaluation ofq3 onwards
quickly becomes tedious and the expressions cumbersome.
Several attempts have therefore been made to derive accurate
estimates ofE(qx) which are simpler in nature. Two estimates,
that of Newell [14] and of Miller [15], are illustrated in
Figure 2 and compared against numerical simulation data. In
the sequel we use Miller’s estimate due to its accuracy and
simplicity. This is given by

E(qx) ≈ max{
2pτ − g

2(g − pτ)
.(1− p), 0} (2)

B. Rate of Dummy Packet Transmissions

In addition to the delay introduced by traffic shaping we are
also interested in the fractiond of slots expended on dummy
packet transmissions (when no information packet is available
to send at a slot in an on cycle). The information packet arrivals
ν during an off period are distributed as:

Prob(ν = k) =

(

T

k

)

pk(1− p)T−k, (3)

and the associated probability generating function isK(z) =
[(1 − p) + pz]T . RegardingΠ(z), the probability generating
function for the limiting distributionπj the length of the queue
at the start of the first slot of an on period, we have:

Π(z) =

∑g−1

j=0
πj(z

g − zj)

zg/K(z)− 1
=

∑g

j=0
πj(z

g − zj)

zg[(1− p) + pz]−T − 1
. (4)
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Fig. 3: Comparison ofF -distance between different web traces
for unmodified, slotted and queued+slotted scenarios. The slot
size is0.01s,g = 5, τ = 10 and the window size for evaluating
F -distance is 0.2.

We knowΠ(1) = 1, which means after using L’hopital’s rule

d =
1

τ

g−1
∑

j=0

πj(g − j) =
g

τ
− p, (5)

the average number of dummy packets transmitted over cycle.

We will assume thatg−pτ > 0. This means that on average
our service can accommodate all of the arrivals to the queue
and the queue is stable. Stability can be seen by looking at
the polynomialzTon [(1− p) + pz]−T − 1 which, for stability,
should have no zeros in or on the unit circle. Now,

zg = [(1− p) + pz]τ , gzg = pτ [(1 − p) + pz]τ−1 (6)

Dividing the two equations, for|z| < 1 we should havepτ > g,
but this is excluded wheng − pτ > 0.

C. Example

In order to investigate the effectiveness of on-off traffic shaping
on privacy, we conducted the following test: we collected
packet timestamp traces from 10 different web sites. The traces
are of approximately same length. We compared all of the
samples with each other using Dynamic Time Warping and
calculated theirF -distance [6]. TheF -distance, which is a
value in [0, 1], is a measure of the similarity between two
timestamp traces and is used in [6] as the basis for a successful
timing-only traffic analysis attack based ink-NN clustering.
TheF -distance is smaller when traces are similar and increases
as they become more different. It can be seen in Figure 3
that the average distance between the traces for different web
sites is relatively large, which would enable an attacker to
distinguish between them.

We then manually divided time into slots (of 10ms dura-
tion) and adjusted the packet timings so that they are only
sent at the beginning of a slot3. It can be seen in Figure 3 that
time slotting decreases the average distance between packet
traces, the decrease is relatively small and would still allow an
attacker to distinguish between different the traces for different
web sites.

3Note that using an actual time slotted tunnel adds an additional distortion
due to network protocols. So by manually time slotting the time we are
considering a slightly easier scenario for the attacker.
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Fig. 4: Comparison between transmission duration and packet
count for unmodified and on-off shaped web traces.g/τ = 0.5.
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Fig. 5: Comparison between transmission duration and packet
count for unmodified and on-off shaped web traces.g/τ =
0.01.

Finally we applied on-off traffic shaping and calculated the
F -distance. It can be seen that there is now a considerable drop
in the average distance, and also in the variance. This indicates
that the modified traces are now much more similar, making
it difficult for the attacker to distinguish between web sites.

As already noted, traffic shaping introduces a queueing
delay and the transmission of additional dummy packets.
Figure 4 shows the measured delay and number of dummy
packets wheng/τ = 0.5. It can be seen that the delay is
negligible sinceτ is small but the number of dummy packets
is almost 2 times that of the real traffic. Asg/τ is decreases,
the number of dummy packets transmitted falls, but the delay
increases. This is illustrated in Figure 5 forg/τ = 0.01.

V. PROPORTIONAL FAIR PRIVACY

We consider a shared network where each user applies traffic
shaping before transmitting their traffic over the network,e.g.
see Figure 1. Note that traffic shaping is applied individually
to each user’s traffic, which is required to prevent active traffic
injection attacks (where an adversary sharing a queue with a
user injects traffic in a way that reveals the presence/absence
of a user packet in the queue [9]). In practice this setup might
correspond to a VPN where the client shapes and encrypts
arriving traffic before transmitting it across the Internetto a
VPN gateway. As already noted, buffering and shaping may
introduce delay (via buffering) and consume bandwidth (via
dummy packet transmissions) and there is a joint trade-off
between privacy, delay and throughput for the users sharing
the network.

A. Network Model

We consider a multi-user network serving a set ofN users
and a setF of flows. Each flowf ∈ F has a sourcesf ∈ N ,
a mean offered load rateµf and a mean delay deadlineσf .
The network uses a scheduler that can service the offered load
provided the aggregate flow usage satisfies

∑

f∈F

µf

ψf

≤ 1 (7)

whereψf is the physical transmit rate for flowf and soµf/ψf

is the mean fraction of airtime used by flowf and for arrival
ratepf and dummy ratedf we haveµf = pf + df .

B. Convexity of Traffic Shaping Delay

As already noted, on-off traffic shaping introduces addi-
tional delay. When on-timeg = 1 we have

E(qx) ≈ max{
(2p− c)(1− p)

2(c− p)
, 0} (8)

and mean waiting time

w =
1− c

1− p

[

E(qx)

p
+

1

2c

]

(9)

wherec = g/t > p.

Lemma 1 (Convexity of Delay):The mean waiting timew
in (9) is convex in the arrival ratep and dummy rated = c−p,
although not jointly convex, forp ∈ [0, 1], c ∈ (p, 1].

Proof: When c > 2p (so E(qx) = 0), the second
derivatives ofw with respect top andc are

wpp =
1− c

c(1− p)3
, wcc =

1

c3(1− p)
wpc = −

1

2c2(1− p)2

It can be seen thatwpp > 0 andwcc > 0 sincep, c ∈ [0, 1].
When c < 2p (soE(qx) > 0), we have

wpp = (1− c)

[

1

(c− p)3
−

1

p3
+

1

c(1− p)3

]

(10)

wcc =
1− p

(c− p)3
+

1

c3(1 − p)
(11)

wpc = −
1

2

[

2− p− c

(c− p)3
+

1

p2
+

1

c2(1− p)2

]

(12)

Sincec > p thenwcc > 0. Sincec < 2p, wpp > 0. However
the Hessian need not be positive semidefinite (for example
when p = 0.5 and c = 0.9). Sincewpp > 0 andwcc > 0,
the delayw is convex inp and c individually, but since the
Hessian is not positive semidefinitew is not jointly convex in
these variables. Nowd = c − p is a linear function ofc and
p. Convexity is preserved under linear transformations and so
the stated result follows.

Note that since the on timeg and cycle timeτ are expressed
as numbers of slots, they are integer valuedg, τ ∈ N and so
the domain of ratioc is the rational numbersQ rather than
the real-valued numbers. We therefore consider the relaxed
problem wherec takes values in(p, 1] ⊂ R in order to ensure
convexity. This relaxation does not, however, entail any loss
of generality. Rather than using fixed on timeg ∈ N, define a
sequencegk ∈ N , k = 1, 2, · · · . For a given value ofc ∈ R,



by queue continuity an integer-valued sequencegk exists such
|
∑

k gk − ĝ| is bounded and so the waiting time can be made
arbitrarily close to that with specified̂g = cτ ∈ R.

C. Proportional Fair Allocation

We consider the following optimisationP which maximises
log-rate (and so is proportional fair) subject to network and
traffic shaping delay constraints:

min
p,d

U(p) :=
∑

f∈F

− log(pf ) (13)

s.t. w � σ (14)
∑

f∈F

pf + df
ψf

≤ 1 (15)

p,d ∈ [0, 1]|F| (16)

with

wf =
1− (pf + df )

2(1− pf )

[

max{
(pf − df )(1− pf )

pfdf
, 0}+

1

(pf + df )

]

(17)

for all flows f ∈ F and wherew = [wf ], σ = [σf ],
p = [pf ], d = [df ] for f ∈ F are vectors inR|F|. Constraints
(14) impose the requirement that flow delay deadlines are
met, while (15) ensures that the flow rates (including both
information and dummy transmissions) can be scheduled by
the network.

D. Solving Non-Convex OptimisationP

OptimisationP is not convex because, by Lemma 1, the delay
constraints are not jointly convex inp and d. Nevertheless,
these constraints are convex inp and d individually. This
suggests the use of an alternating approach to solveP . Namely,
solve for p holding d constant, then solve ford holding
p constant. Letp∗

k, d∗
k, k = 1, 2, · · · denote the sequence

of alternating solutions found in this way. Each solution is
feasible for problemP . Further, since each individual opti-
misation is convex, we can find a global minimum and so
U(p∗

k+1
) ≤ U(p∗

k). Hence, the sequencep∗
k, d∗

k is guaranteed
to converge to a feasible stationary point of problemP . While
this stationary point is, in general, sub-optimal, in practice we
have found that it is usually close to a global optimum.

To carry out each optimisation we use a subgradient
method for simplicity and because of its suitability for dis-
tributed implementation. Of course other methods might also
be used. The resulting procedure is summarised as follows:

Algorithm 1 Alternating Solution Method

iterate s:
iterate t:
p(t+ 1) = p(t)− α∂pLp(p(t),d(s− 1),λp(t))
λp(t+1) = [λp(t)+α∂λLp(p(t),d(s−1),λp(t))]

+

loop
iterate t:
d(t+ 1) = d(t)− α∂dLd(p(s),d(t),λd(t))
λd(t+ 1) = [λd(t) + α∂λLd(p(s),d(t),λd(t))]

+

loop
loop
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Fig. 6: Illustrating optimal throughput and dummy rate for
delay deadlinesσ2 = 10 andσ1 = {5, . . . , 15}.

with Lagrangians,

Lp(p,d
∗,λ) =

∑

f∈F

− log(pf ) +
∑

f∈F

λ1,f (wf − σf )+

λ2((
∑

f∈F

pf + d∗f )− 1)+

∑

f∈F

λ3,f (pf − 1)−
∑

f∈F

λ4,fpf

Ld(p
∗,d,λ) =

∑

f∈F

λ1,f (wf − σf )+

λ2((
∑

f∈F

p∗f + df )− 1)−
∑

f∈F

λ5,fdf

E. Examples

We present a number of examples to illustrate the proportional
fair allocation in a fully private shared network.

Example 1: Fully private network.Consider a network with
two users having different delay deadlines. We let delay dead-
line σ2 = 10 and varyσ1 between{σ2−5, σ2+5} to observe
the impact of the delay deadline on users’ network share in
a fully private network. Figure 6 shows the proportional fair
p∗ and d∗ vs σ1. It can be seen that users’ throughput and
dummy rate are proportional to their delay deadlinesi.e. users
with lower deadline are allowed to transmit more real and
dummy traffic resulting a larger network share.

Example 2: Mix of private and non-private flows.As
already noted, users in a shared network need to sacrifice
throughput and/or delay to achieve full privacy. However,
staying within our traffic shaping framework, a user can choose
to ignore privacy by sending no dummy packets and using
the full cycle length for transmitting information packets.
Of course this allows an adversary to see their packet arrivals.
The optimization problem for this scenario is similar to 13
except that the delay and dummy rate constraints are now

wf ≤ σf , f ∈ Fprivate

df > 0, f ∈ Fprivate

df = 0, f ∈ F − Fprivate

whereFprivate ⊂ F is the set of private users.

In this example we consider similar conditions to those in
Example 1, but now User 2 is non-private. Figure 7 shows
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Fig. 7: Illustrating optimal throughput and dummy rate for
a mix of private and non-private users. User 1 is private
with σ1 = {5, . . . , 15} while User 2 ignores privacy by
transmitting no dummy packets and using the full cycle length
for transmitting information packets.

p∗ and d∗ vs the delay deadline of User 1. It can be seen,
that User 1 consistently gets higher throughput than in a fully
private network (compare Figures 7a and 6a).

VI. SUMMARY AND CONCLUSIONS

In this paper, we introduce a rate allocation scheme for
private shared networks. First, a defence is proposed against
timing only traffic analysis attacks which protects the userby
transforming their packet arrival time sequence into one which
contains no information about the packet arrival pattern of
the original sequence. The transformation however imposesa
delay on transmission and consumes bandwidth by transmitting
dummy traffic. We address a shared network scenario where
the performance of one user can affect the network experience
of another. This leads to a further analysis of the resulting
trade-off between user privacy and quality of experience and
to the design of a proportional fair rate allocation algorithm.
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