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Abstract—Robust and accurate traffic prediction is critical in
modern intelligent transportation systems (ITS). One widely used
method for short-term traffic prediction is k-nearest neighbours
(kNN). However, choosing the right parameter values for kNN
is problematic. Although many studies have investigated this
problem, they did not consider all parameters of kNN at the
same time. This paper aims to improve kNN prediction accuracy
by tuning all parameters simultaneously concerning dynamic
traffic characteristics. We propose weighted parameter tuples
(WPT) to calculate weighted average dynamically according to
flow rate. Comprehensive experiments are conducted on one-year
real-world data. The results show that flow-aware WPT kNN
performs better than manually tuned kNN as well as benchmark
methods such as extreme gradient boosting (XGB) and seasonal
autoregressive integrated moving average (SARIMA). Thus, it is
recommended to use dynamic parameters regarding traffic flow
and to consider all parameters at the same time.

Keywords—Flow-Aware, Weighted Parameter Tuples, k-
Nearest Neighbours Regression, Short-Term Traffic Prediction

I. INTRODUCTION

Increasing road traffic is nowadays causing more congestion

and accidents which gain more attention from public and

authorities due to severe loss of life and property [1], [2].

Efficient traffic management and automatic accident detection

are key requirements in modern intelligent transportation sys-

tems (ITS). Reliable and accurate short-term traffic forecasting

is necessary for achieving efficient traffic management and ac-

cident detection [3]. Predicting short-term traffic is a complex

task, which has been a research subject of many studies in the

past few decades [4].

The existing short-term traffic forecasting methods can be

divided into two categories which are parametric and non-

parametric methods [4]–[6]. A typical parametric method is

seasonal autoregressive integrated moving average (SARIMA)

[7]. Moving average considers that the near-future data is

similar to the latest data and uses a weighted average of

latest data as predictions. An autoregressive model is based on

interdependent observations of stationary time series. Values

of one stationary time series are in a range with a constant

variance considering existing data and future data with a

constant average. Within a stationary series, interdependency

between history and future can be used to make a prediction.

If the original time series is non-stationary, an integrated part

is needed in the model to make it stationary by conduct

differencing. Traffic data usually meet the peak during noon

time and bottom after midnight. Besides, weekends have a

different traffic scenario when being compared with workdays.

Those patterns are modelled as seasonal part in SARIMA.

Within the non-parametric category, decision trees have

been widely used. Gradient boosting is one way to improve de-

cision trees. It improves tree models by focusing on badly pre-

dicted instances iteratively. Extreme gradient boosting (XGB)

is a fast and regularised gradient boosting implementation

with higher calculation speed and more robustness against

overfitting. As a state-of-the-art method, XGB has shown

outstanding performance and efficiency which is comparable

with or better than random forest [8], [9]. Thus, XGB is used

as a benchmark method in this study.

Another important non-parametric algorithm is k-Nearest

Neighbours (kNN) [10]. Both classification and regression

tasks can be handled using kNN. For time series regression,

the key idea in kNN is to find history data with similar

patterns of most recent data. This paper uses kNN because of

the substantial increase in data availability [4], the flexibility

of kNN for solving non-linear problems and easiness of

understanding and implementation [11]. Some studies show

that kNN is better than traditional methods (such as Kalman

filter and SARIMA) [12], [13]. However, some others reported

that kNN has similar performance with traditional methods

[14], [15]. Thus, SARIMA is also used as a benchmark method

in this study.

Three parameters of kNN are the number of nearest neigh-

bours (k), search step length (d) (also known as lag) and

window size (v) (also known as constraint) [14]. Though

distance measurement of neighbours can also be considered

as a dynamic parameter, it is beyond this paper’s scope and

will be addressed separately. Besides, when m (number of

predict steps ahead) changes, the parameters should also be

tuned. Many studies tried to tune the parameter k and some

work also tried to tune d while few researchers considered v.

Previous work has focused on some of the parameters,

but the value assignment for those three parameters at the

same time is still a problem. On one aspect, we propose to

use weighted parameter tuples (WPT) to improve kNN by

considering all parameters together. On another aspect, we

focus on flow-aware parameter tuning, while previous studies

focused on improving kNN from temporal aspect (time-aware)
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[8], [15], such as the hour of day or day of week etc.

II. BACKGROUND AND PROBLEM SETTINGS

This section contains some background definitions and

formulate the problem in this paper mathematically.

A. kNN Regression for Prediction

Suppose there is a time series with data on time points:

· · · , t − 2, t − 1, t, · · · where t is the near-future to predict.

The time interval can differ from system to system and is

usually between 1 minute and 15 minutes.

The following steps are employed to predict the traffic at

time t as shown in Figure 1.

Step one is to construct state vector as the query to represent

current traffic state by selecting the latest data. If we choose

search step length as d, the state vector of current flow rate

is:

r[t] = [rt−1, rt−2, · · · , rt−d] (1)

while the state vector of current speed is:

s[t] = [st−1, st−2, · · · , st−d] (2)

For the distance measurement with two variables, the state

vector is:

S[t] =

[

rt−1 rt−2 · · · rt−d

st−1 st−2 · · · st−d

]

(3)

The search step length is sometimes referred as “window”

in some areas, though we have another kNN parameter named

window. To distinguish them, the phrase “search step length”

is used in this work.

Step two is to find the most similar vectors (nearest neigh-

bours) of history days when being compared with current

query state vector. For instance, data from time point t − d

to t− 1 of yesterday (Day−1), from t− d to t− 1 of Day−2

etc. are the neighbours to compare.

In kNN, window size (constraint) (v) is used to describe

the maximum time point shift when searching for neighbours.

If v = 2, the maximum shift of time point is two, therefore,

all possible shifts are -2,-1,0,+1,+2. For instance, Figure 1 is

showing situation with v = 1 and the number of neighbours

within yesterday is three instead of one. The time points of

neighbours in yesterday are: [t0 − d − 1, · · · , t0 − 2] (with

shift -1), [t0 − d, · · · , t0 − 1] (with shift 0) and [t0 − d +
1, · · · , t0] (with shift +1). Thus, if there are n days to search,

then there are n × (2v + 1) neighbours to search to find k

nearest neighbours.

Finally, the average value of all k nearest neighbours’

predictions is calculated as the final prediction.

B. Mathematical Problem Settings

The three critical parameters of kNN include the number of

neighbours k, search step length d and window size v. Suitable

values should be assigned to them. If k has MK options, d

has MH and v has MV options, the possible number of tuples

of those parameters is huge: MK · MH · MV . When three

parameters are considered together, a legitimate combination

is called a tuple which is a 3-tuple in this work. For instance,

(k = 8, d = 4, v = 0) is a tuple that can be used by the three

kNN parameters.

III. METHODOLOGY

The kNN regression algorithm is introduced in the previous

section. This section describes how the usage of WPT can

enhance kNN and how the parameter-tuples’ predictions can

be employed to generate a weighted average. Later on, we

explain how the weights are generated and present several

weighting methods to assign weights.

The general idea is to conduct predictions using different

values of (k, d, v) values for all training time points, and the

performance of tuples can be measured. According to the

performance, weighting functions generate weights for each

configuration of (k, d, v). Later, selected (k, d, v) tuples are

used to make prediction and a weighted average is calculated

as the final result.

An overview of the proposed WPT algorithm is shown in

Figure 2.

A. Traffic Metrics Selection

Traffic engineering contains three fundamental metrics

which are flow rate, speed and density [16]. Given two metrics,

it is just enough to calculate the remaining metric. Most

previous studies use only one of them, which is usually flow

rate, sometimes speed. This work uses both flow rate and

speed.

B. Training Weights

The following content explains how to train weights and to

predict traffic using all parameter tuples.

We conduct multi steps ahead prediction using kNN with all

given parameter values for each training time point. A tuple set

(P) is a Cartesian product of three sets which contains values

of k, d and v: K contains MK values, D contains MD values

and V contains MV values. The performance of each tuple

(k, d, v) is measured. The set of the tuples to be measured is:

P = K× D× V =

{(kik , hid , viv )|kik ∈ K;hid ∈ D; viv ∈ V}
(4)

where ik = 1, 2, · · · ,MK ; id = 1, 2, · · · ,MD; iv =
1, 2, · · · ,MV and P contains MP = MK ·MD ·MV tuples of

k, d and v.

For each pip ∈ P, (ip = 1, 2, · · · ,MP ), three values are

used to set up kNN and make prediction. Later, prediction

error (ε) is measured. Error of flow rate prediction for each

pip is measured as ε(r[t])ip = fe(r̂[t](pip), r[t]) where r̂[t](pip)
is the predicted flow rate at t using pip and fe is the function

to measure prediction error. For error of speed prediction, the

same measurement is used as ε(s[t])ip = fe(ŝ[t](pip), s[t])
where ŝ[t](pip) is the predicted speed at t using pip .
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Figure 1. Prediction for time t using kNN with window size v = 1 (shifts: -1,0,+1). History data last until time point t− 1. Search step length (lag) is d.

Figure 2. Overview of the proposed WPT algorithm.

1) Flow-Aware Weights: Previous research has shown that

the traffic has time-variant dynamic characteristics in the

different hour of day, day of the week, holiday versus non-

holiday etc. [8], [15]. However, if records are separated by

time of day, it is not guaranteed that the flow situation is

the same, neither the day of week, etc. Instead, records are

separated by flow rate levels. A practical method is to separate

the flow into ten levels equally from the lowest flow rate to

the highest flow rate. For instance, for a road with peak flow

of one hundred cars per time unit and zero during night, from

0 to 10 will be the lowest level while from 90 to 100 is the

highest level. WPT adapts the weights of tuples to the flow

according to separated flow levels. The present flow rate is

determined by averaging flow rate of the last 15 minutes, as

it is the minimum time to have stable traffic flow [20].

2) Weighting Function: It is worth mentioning that the

weights are for tuples, not for neighbours or search steps

(lags). Rank-based weighting generates scores according to

the ranks of candidates when sorted according to increasing

order of distances from the subject profile [21]. Previous

work shows that rank-based weighting is better than inverse

weighting [22]. When using weight dispersion measure of 1,

the score generated by rank-based weighting (crnk) is as below

(Equation 5).

crnk = MP − γ + 1 (5)

where γ is the rank of the candidate (γ = 1, 2, · · · ,MP ). The

candidate with γ = 1 has the lowest ε. The scores for all p’s

form an arithmetic sequence: [MP ,MP − 1, · · · , 1].
Each pi is tested and corresponding scores are calculated

and added to the pi’s total score. The tuples with highest

scores (e.g., top 25%) are used on each flow level. Finally,

a normalisation procedure is conducted for weights to make

sure the sum of weights is 1 for each flow level. An easy-

to-understand logic will be presented in experimental design

later. The final weights are as below:

W = [w1, w2, · · · , wMP
] (6)

C. Predicting using Weights

Instead of assigning weights to nearest neighbours, WPT

assigns them to the parameter tuples (pi).

To predict the flow rate, the following steps are taken.

Firstly, all tuples of (k, d, v) in P are used to calculate

predictions. The predicted flow rate values are noted as below

(Equation 7):

R̂ = [r̂1, r̂2, · · · , r̂ip , · · · r̂MP
]; ip = 1, 2, · · · ,MP (7)

As the weights are W, the weighted flow rate prediction is:

r̂ = W · R̂ (8)

To predict the speed, a similar procedure is used.

1) Distance of Neighbours: Euclidean distance (ED) is a

widely used traditional and ordinary distance in transportation

data for finding nearest neighbours [24]. It is easy to under-

stand, implement and fast to calculate [26].

Here is a brief description of ED. Suppose i(1 ≤ i ≤ n1) is

instance index and j(1 ≤ j ≤ n2) is variable index in dataset

X = [[xij ]] that contains n1 observations of n2 variables.

EDi is the distance between query instance xi and a

neighbour instance x
′

i
. Both instances have d intervals. As:

xi =

[

r[t]

s[t]

]

;x′

i
=

[

r
′

[t]

s
′

[t]

]

(9)

EDi = |xi − x
′

i
| =

∑d
id=1

√

(rt−id − r′t−id
)2 + (st−id − s′t−id

)2

d

(10)
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Big values of d may cause the curse of dimension problem

for distance measurement, which is caused by the sparse space

[27]. To avoid this problem, we consider all search steps in the

time domain as one dimension instead of d dimensions. This is

done by averaging the distances of all search steps. Some other

types of distances are available, for example, Mahalanobis

distance [28], [29], which is beyond this paper’s scope.

IV. EXPERIMENTS

A. Data Specification

The real world data is collected by a traffic management

centre who deployed dozens of devices along a highway

named Kunshi. Each device sends one statistical record at five-

minute intervals. Each record contains a timestamp and some

statistical values such as flow rate and average speed. Part of

the data from one monitoring device on the road is used. The

time range of data is from April 2013 to May 2014. This road

is under-saturated except during holidays.

B. Experimental Design

The beginning 80% data is used as training data to train

weights, the remaining 20% is left as test data. To get rid

of the influence of incidents, kNN ignores one neighbour if

more than 10% steps in its searching steps or prediction steps

contain incident data.

For the values of k, d and v, exponential incremental

values are used as follows: K = {2, 4, 8, · · · , 256}, D =
{2, 4, 8, · · · , 256}, V = {0, 4, 8, 16, 32}. v starts from 0 so

that the results can be compared with previous studies which

did not use window. As 256 days is more than half, which

is supposed to be big enough for k when v is zero. For d,

256 is the maximum value because one day contains 288 · 5

minutes. For v, the values start from 0 to compare with general

no window situation. Thus, P contains MP = 320 pairs of k,

d and v.

To solve the huge calculation load, graphics processing

unit (GPU) is used to reduce calculation time especially for

training stage. GPU makes it practical to conduct a huge

amount of calculations by accelerating them significantly. The

detailed algorithm logic diagram with GPU kernels is shown

in Figure 3. The analysis of one year data using non-optimized

R implementation would consume more than a year to conduct

experiments on a central processing unit (CPU). GPU reduces

this computational time to hours. As the original traffic data is

only around one megabyte, it is divided into smaller chunks

which are copied into shared memory from global memory

and shared by threads. This further accelerates calculations.

Four kernels are developed for the experiments and the first

two kernels are used in both training and predicting stage.

The experiment is conducted using CUDA [30] driver

v8.0 and runtime v7.5 on GeForce 690 card. The analysis

environment is R programming language [31] v3.3. XGB im-

plementation is from R library xgboost v0.4.4. One parameter

of XGB should be set, which is the number of iterations.

In this paper, 16 can produce the best results. SARIMA

implementation is from R library forecast v7.2 in which a fully

Figure 3. WPT logic diagram with GPU kernels.

automatic and objective SARIMA parameter value assignment

is implemented.

C. Performance Measurement (fe)

To measure the performance of prediction, mean absolute

error (MAE) is used as fe. For the flow rate prediction

measurement:

MAE =

∑q
δ=1 |r̂δ − rδ|

q
(11)

where r̂ is the predicted flow rate, r is the grant truth flow

rate, and q is the number of records. Mean absolute percentage

error (MAPE) is not used because the flow rate is sometimes

zero after midnight before morning.

As mentioned before, the records are separated to ten dataset

X
′ (xi) according to ten evenly separated flow levels. Each

flow level contains about ninety thousand records in average

for training, which are used to generate scores and weights.

V. RESULTS

This section firstly provides results regarding the impact of

flow rate. Later comes the comparison of different benchmark

methods (XGB and SARIMA) in terms of the accuracy.

A. Impact of Flow Rate

The weighted averages of parameter values are shown in

Figure 4. Though WPT uses weights to calculate prediction,

the weights can also be applied to parameter options to

analyse how flow impact parameters. The results show that

the parameter values are not linearly correlated with flow

rate. There is no obvious similarity among patterns of three

parameters when flow changes.

Besides, those patterns may differ when comparing decreas-

ing flow with increasing flow. The traffic flow rate increases

from 3 am to 15 pm and decreases after 15 pm until the next

early morning. The patterns of weighted k and d are similar,

but the pattern of v values is different when flow level is lower

than 4. Thus, only v’s values are plotted as shown in Figure

5.
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B. Benchmarking

The benchmark results are shown in Figure 6. When m

increases, the error of SARIMA grows from 5.959 to 7.505

which is 25.95%. The error of XGB grows from 5.853 to

6.064 (3.61%). The error of WPT only grows from 5.702 to

5.836 (2.34%). Thus, WPT is more robust. Besides, WPT is

giving 0.5% higher accuracy when being compared with the
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Figure 6. Results of benchmarking WPT with SARIMA and XGB.

best possible result (5.772) of manually tuned parameter tuple

p for any m.

VI. ANALYSIS OF RESULTS

Previous work used relatively small values for parameters

by default (e.g. k = 8 or 10, d = 3 or 4 and v = 0), which is

hard to produce optimal results.

Considering flow rate (Figure 4), the higher the flow rate the

less the neighbours needed. The reason is high flow occurs in

holidays and number of holidays are much less than workdays.

For d and v, the trend is not monotonous. None of the relations

between any of the three parameters and flow rate is linear.

Thus, considering different flow levels separately is a good

idea, especially when there is enough data to train weights.

For incremental and decremental flow, as v has different

relations with flow rate, it is necessary to treat incremental

and decremental flows separately.

The benchmark results show that WPT gives not only the

most accurate but also the most robust result when m changes.

Considering all m choices, in average, WPT gives flow rate

prediction accuracy 5.744, which is 3.05% improvement when

compared with 5.925 given by XGB, and 11.7% improvement

in comparison to 6.503 given by SARIMA.

To reduce the calculation time further, we used top 25% of

the tuples on each flow level. If the GPU kernels are modified

accordingly, it can accelerate prediction stage by four times.

The experiment shows it also increases accuracy by discarding

bad tuples.

VII. CONCLUSION

This paper proposes to use WPT to make kNN dynamically

tuned regarding dynamic flow rate levels. WPT gives the

performance that cannot be achieved using the manual tuning.

Besides, WPT is 3.05% better than XGB and 11.7% better than

SARIMA. WPT is not only accurate but also space efficient.

Only weights are saved which is one hundred kilobyte in the

experiment, and one-year history traffic data uses less than

one-megabyte space. Additionally, WPT is more robust when

predicting multi-step ahead.

One problem we are facing is that the real-world data

is usually dirty which has to be handled when designing

and implementing WPT algorithm. Cleaning data in the pre-

processing stage is not easy since manual registration work

and testimony of incident eyewitnesses often lack accuracy.

Besides, the distance measurement of neighbours is also

important. We plan to investigate these topics further in the

future work.
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