
ar
X

iv
:1

80
8.

09
39

9v
1 

 [
cs

.S
Y

] 
 2

8 
A

ug
 2

01
8

Application-Network Collaboration Using SDN for Ultra-Low Delay Teleorchestras

Emmanouil Lakiotakis∗†, Christos Liaskos∗, Xenofontas Dimitropoulos∗†

∗Foundation for Research and Technology - Hellas (FORTH)
†University of Crete, Computer Science Department

Emails: {manoslak,cliaskos,fontas}@ics.forth.gr

Abstract—Networked Music Performance (NMP) constitutes
a class of ultra-low delay sensitive applications, allowing
geographically separate musicians to perform seamlessly as a
tele-orchestra. For this application type, the QoS indicator is
the mouth-to-ear delay, which should be kept under 25 mil-
liseconds. The mouth-to-ear delay comprises signal processing
latency and network delay. We propose a strong collaboration
between the network and NMP applications to actively keep the
to mouth-to-ear delay minimal, using direct state notifications.
Related approaches can be characterized as passive, since
they try to estimate the network state indirectly, based on
the end application performance. Our solution employs Soft-
ware Defined Networking (SDN) to implement the network-to-
application collaboration, being facilitated by the well-defined
network interface that SDN offers. Emulation results show that
the proposed scheme achieves an improvement of up to 59%

in mouth-to-ear delay over the existing passive solutions.

Keywords-Software Defined Networking; Networked Music
Performance; Quality of Service; ultra-low delay sensitive;

I. INTRODUCTION

Many applications used in daily life require responsive

Internet connectivity. In this category belong instant mes-

saging services, social network services, world wide web

browsing, multimedia streaming, financial transactions etc.

Among the above cases, there are subcategories that are

much more demanding in their QoS restrictions than others.

For instance, multimedia streaming services require low-

latency connectivity. In the present paper, we conduct a study

of the interaction between an application and the network,

focusing on Networked Music Performance (NMP) systems.

The term NMP was initiated by John Lazzaro from

Berkeley University in 2001 and since then the term is

globally used for describing real time distant musical in-

teraction using the Internet [1]. NMP describes the process

where musicians located in different places around the world

perform together via the Internet. This process has very

low delay tolerance. More specifically, in NMP services

the maximum affordable delay between the transmitted and

the finally played signal should be up to 25 ms. This

constraint is denoted as Ensemble Performance Threshold

(EPT) [2]. Thus, NMP systems can be approached as QoS-

sensitive applications, whose evaluation metric is the end-

to-end delay.

The present work studies NMP performance from the

aspect of direct collaboration between such a system and

the network. Differentiating from the existing approaches,

we consider a case where the network can directly inform

an NMP system of its current or expected status (e.g., in-

coming traffic congestion). NMPs can then alter their signal

processing parameters, keeping the end-to-end delay under

the EPT threshold. The proposed approach is implemented

and evaluated in a realistic, emulated setup. The SDN

technology is used towards this end, given the inherent ease

in interacting with the network as a whole via a controller.

The remainder of the paper is organized as follows.

Section II provides the necessary background and details of

the employed system model. Section III presents the related

work in this problem domain. Section IV introduces our

architecture. Evaluation is discussed in Section V and finally,

Section VI concludes our work.

II. BACKGROUND

Two facts affect the performance of NMP systems: the

first factor refers to the delay related to the audio context. In

this aspect, the delay is caused by the signal capturing from

the audio hardware, the audio coding in the transmitter’s

side and decoding in the receiver’s side. The second factor

refers to the delay caused by the transmission of data via

the network equipment.

Regarding the network delay, in an ideal scenario, routers

should forward the packets that they receive instantly but in

cases of bandwidth overload this is not feasible. This also

explains the jitter that appears and affects data transmissions.

Delay due to queuing means that the total network delay is

higher than the physical distance between peers. Apart from

the delay caused by routing policies, delay is also caused

by limitations in bandwidth offered to users by Internet

Service Providers (ISPs). Conventional Internet connections,

such as DSL, make NMP impossible, since even a small

ICMP (Internet Control Message Protocol) packet has re-

sponse time over 50 ms which is twice the value of EPT

as mentioned above. Using audio compression techniques

would be an important solution towards reducing bit-rate

to required levels but conventional audio coders increase

latency due to encoding/decoding process and this is not
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Figure 1. End-to-end delay in NMP systems

acceptable in NMPs. For instance, standard coders like MP3

or AAC have a delay of about 100 ms or more. Even AAC-

Low Delay encoder still introduces delay of about 20 ms

using 48 kHz sampling rate [3]. This prevents the use of

conventional audio encoding/decoding methods in NMP in

the general case.

The overall delay for an audio signal to propagate from

the transmitter’s mouth to the receiver’s ear is called mouth-

to-ear delay. This delay, depicted in Fig. 1, can be expressed

as follows:

dmouth−to−ear = da−s + dp−s + dn + da−d + dp−d (1)

where dmouth−to−ear denotes mouth-to-ear delay, da−s is

the delay inserted by the transmitter’s sound-card, dn is the

delay added due to transmission through the network and

da−d is the delay inserted by the receiver’s sound-card. dp−s

and dp−d describe the delay inserted due to audio processing

and encoding/decoding in transmitter/receiver side. In this

paper uncompressed audio is transmitted so equation (1) is

transformed to equation (2).

dmouth−to−ear = da−s + dn + da−d (2)

In cases that transmitter-receiver use sound-cards with

similar specifications regarding to reading/recording pro-

cesses which means that da−s = da−d = dsound−card,

Equation (2) evaluates end-to-end delay in NMP systems.

dmouth−to−ear = 2 ∗ dsound−card + dn (3)

Equation (3) models the mouth-to-ear delay as a function

of delay created by audio capturing in transmitter/receiver

side and delay caused by transmission through the network.

In the audio community, the delay caused by audio capturing

is called blocking delay. It indicates the delay due to pro-

cessing by sound-card. Equation (4) describes the blocking

delay evaluation process.

dblocking−delay =
frame size

sampling rate
+ d0 (4)

In equation (4) frame size denotes the size of audio

packets that sound-card can process per hardware clock tick

and the sampling rate is the number of samples the sound-

card acquires per second. Finally, d0 is a constant delay that

is due to the sound-card’s hardware quality. It is obvious that

to achieve blocking delay minimization, the fraction between

frame size and sampling rate should be minimized.

III. RELATED WORK

This section first gives an overview of previous research

on NMP systems and SDN-supported mechanisms for QoS-

aware applications. Research has approached NMP systems

from two different perspectives: audio processing and net-

work. Both approaches have a common feature: approaching

the problem from a single perspective (audio-latency or

network-latency only) does not allow important improve-

ment because NMP is a summary of both perspectives.

From the audio perspective, many researchers focus on

the audio flows forwarding process. In more details, not

all participants are interested in receiving audio from all

transmitters. For this reason, participants should declare their

interests and forwarding is based on this profiling type.

This method is implemented by Selecting Forwarding Unit

(SFU) [4]–[8]. On the other hand, collecting, mixing and

forwarding all audio flows is proposed using another entity

called Multipoint Conferencing Unit (MCU) [9], [10]. Ad-

ditionally, a common trend in NMP projects is that Session

Initiation Protocol (SIP) is used to support control messages

among transmitter and receiver side. SIP is a protocol widely

used in parallel with Real Time Protocol (RTP) for initial

handshaking and dynamic transmission modifications during

runtime [11]–[15].

From the network perspective, SDN is widely used in

network condition-aware applications [16]–[19]. The main

feature is that traffic is prioritized using criteria such as

Type of Service (TOS), requirements, SLAs or packet header

fields [20]–[23]. Moreover, SIP combined with SDN is intro-

duced also in [24] where an approach for VoIP applications

is described by codec modification due to network changes.

Finally, in [25] an alternative method for collecting network

statistics is introduced where SDN Controller sends period-

ically requests to switches about statistics. This information

is used for network delay monitoring by SDN Controller.

All solutions described above examine NMP either from

signal processing or network perspective but they do not

take into account both delay types. Approaching NMP

from the audio perspective leads in innovating in audio

encoding/decoding methods that reduce blocking delay. Ad-

ditionally, selective audio forwarding through the network

can contribute in traffic congestion cases but this inserts

additional delay caused by the pre-processing stage for

filtering audio flows. On the other hand, from network

perspective, exploiting SDN capability of global network

view and dynamic adaptation to network changes allows

optimal path selection for audio transmission but it ignores

blocking delay that comes into play during NMP process.
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Figure 2. Proposed architecture

In our proposed architecture, we approach end-to-end

delay in NMP systems combining the two individual per-

spectives, i.e., the audio processing and the network delay.

In more details, during NMP operation, the two basic com-

ponents that participate in a NMP system, application and

network, can interact in order to overcome network delay

increase and keep end-to-end delay constant despite traffic

congestion problem. This is achievable by modifying audio

process that results in blocking delay decrease. In other

words, network delay increases can be absorbed by blocking

delay decreases, offering seamless quality of service.

IV. PROPOSED APPROACH

In our implementation, depicted in Fig. 2, SDN is used to

increase NMP performance during link congestion. End-to-

end delay is monitored in real time and rerouting decisions

are taken in cases that another path shows less network

delay according to a threshold value. In case that all paths

are congested, (which can lead to over-EPT end-to-end

delay), a request is sent to the application to modify its

audio processing configuration, reducing the blocking delay,

coping with the network delay increase. During the NMP

process there are three key roles: transmitter, receiver and

SDN Controller. Each of the above entities are equipped with

modules that implement the interaction between network and

application.

A. Transmitter

In the proposed architecture, the Transmitter component

is any entity that generates audio. For instance, transmitters

are musicians that participate in the teleorchestra application.

The Transmitter component is equipped with two modules:

the Application Audio module and the Application Network

module. The Application Audio module informs the SDN

Controller about the audio profile of transmitter and also

captures the audio signal for transmission through the net-

work. Audio profiling describes the initialization process

(occurring once, during system setup) where each participant

tests his sound-card performance for various frame size and

sampling rate combinations. Thus, a dictionary of signal

configuration to blocking delay is created. This information

forms the audio profile of each user and is sent to SDN

Controller in order to have a summary of audio performance

for each user. The Application Audio module also receives

requests for audio processing modification in case of traffic

congestion. This operation is similar to the Session Initia-

tion Protocol (SIP), where all users negotiate to the audio

transmission parameters [26].

The second module in the transmitter’s side is the Ap-

plication Network module. This module transmits audio

signal through the network. Also, the Application Network

module is responsible for network delay monitoring. Each

transmitter records in real time the network delay towards

the corresponding receiver and informs the SDN Controller.

Following this process, the SDN Controller uses the col-

lected information to estimate the mouth-to-ear delay using

equation (3).

B. Receiver

The Receiver entity represents all users in the NMP

system that receive audio flows. In this category belong

the audience users and also musicians that should receive

audio flows from other musicians in order to be synchro-

nized. The receiver component has the same modules as

the transmitter but they are adapted to its role. In more

details, the receiver uses the Application Audio module for

informing the SDN Controller about its audio profile and

playing the received audio signal. The Application Audio

module receives requests from the SDN Controller in case

of traffic congestion, in order to change its audio processing

configuration. In addition to the Application Audio module,

the receiver uses the Application Network module in order

to receive the audio signal from network and participate in

the traffic monitoring process, described later.

C. SDN Controller

The SDN Controller is the major component of our

architecture. It combines the conventional SDN Controller

duties for taking routing decisions based on the network and

application performance. It is also assigned to interact with

applications, informing them on traffic congestion, allowing

them to modify the audio processing parameters, coping with

the network delay increase.

The requested SDN Controller functionality is imple-

mented by three modules: The SIP module is responsible

for collecting audio profiles from each user when he joins

into the application. For this reason, it keeps a data structure

that stores the audio profile information for each user. It

also informs the application when the network is congested

in order to choose another frame size and sampling rate

combination, thus decreasing the blocking delay. The second

module that is used in the SDN Controller entity is the

SDN module. This module is responsible for installing

flow rules into network switches that participate into the

selected path. The communication between the SDN module
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and the switches is accomplished via the OpenFlow pro-

tocol [27]. Finally, the third module that SDN Controller

uses is the Network Monitoring module. This module is

responsible for monitoring the network delay. It keeps real-

time measurements of network delay per each path in the

network in a data structure. This information is used in case

that a rerouting decision is required to deal with a traffic

congestion problem.

D. Network delay monitoring

As we describe in Section IV, the Network Monitoring

module in the SDN Controller is used for monitoring the

network delay for each path in the network. Many ap-

proaches that use network monitoring (mentioned in Section

III), measure connection events at the switches (such as

PACKET INs).

In our approach, switches do not participate in network

monitoring process, reducing their load. This operation is

moved to the end hosts that communicate through the

network. The process is depicted in Fig. 3. A sender node

sends periodically UDP packets, with specific header fields,

over each path towards the receiver. The receiver acts as an

echo server and sends these packets back over the paths that

were initially used. The sender then evaluates the network

delay in terms of Round Trip Time (RTT), and the results

are sent to the Network Monitoring module.

E. Rerouting process

Following the network monitoring process described in

IV-D, the SDN Controller has a view of the network delay

for each path in the network in real time. The SDN Con-

troller, via the Network Monitoring module, can choose the

path that results in below-EPT mouth-to-ear delay, given

the current blocking delay. In case that a path yields a

network delay less than a threshold value, the SDN module

chooses this path and installs the appropriate flow rules to the

switches that form it, in an application-transparent manner.

F. Application-Network interaction

In subsection IV-E, we describe the process by which

the SDN Controller evaluates the mouth-to-ear delay, using
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Figure 4. Emulation scenario

equation (3). In case that there is at least one path that

results in below-EPT end-to-end delay, the SDN module

chooses it. On the other hand, if no such a path exists,

the SDN Controller informs the application to modify its

audio processing configurations at both the transmitter and

receiver-side. This interaction aims to cope with the network

delay increase via incurring a corresponding blocking delay

decrease. For the communication between the application

and network, the SIP module in the SDN Controller sends

notifications to the Application Audio module at both the

transmitter and the receiver-side. The modification of audio

processing parameters may cause a drop in the sound quality.

Care is taken to ensure the use of configurations that offer

acceptable quality, while keeping the mouth-to-ear delay

under the EPT value.

V. EVALUATION

We employed an emulation scenario to evaluate the

efficiency of an NMP process running over the pro-

posed network-to-application interaction system. The goal

is to demonstrate how application-network collaboration

can improve application robustness against sudden network

changes.

A. Emulation scenario

The emulation scenario is developed in Mininet [28]. As

shown in Fig. 4, it consists of five OpenFlow switches [27],

that form the paths between the transmitter and the receiver.

We employ the POX SDN Controller, which is widely

used in SDN research [29]. Audio processing and streaming

functionality is implemented using Mathworks Simulink en-

vironment at both the transmitter and the receiver sides [30].

Finally, congestion is emulated using the Netem traffic

control tool [31]. The default audio configuration set refers

to 22050 Hz as sampling rate and 128 samples frame size

and the alternative audio processing set refers to 44100 Hz

sampling rate and 64 samples frame size.



Table I
TRANSITION TABLE

Time (s) Current path Next path Action

161 - 1-3-5 Path assignment

280 1-3-5 1-4-5 Rerouting

319 1-4-5 1-2-5 Rerouting

377 1-2-5 1-3-5 Rerouting

446 1-3-5 1-4-5 Rerouting

493 1-4-5 1-2-5 Rerouting

564 1-2-5 1-2-5 Audio modification

B. Emulation results

In order to test the performance of our architecture, we

introduce latency increases at the paths of Fig. 4 sequentially.

Figure 5 describes the resulting mouth-to-ear delay, network

delay and blocking delay as a function of time. All rerouting

events are depicted as circles in the Figure.

In the described experiment, initially the SDN Controller

assigns the fastest path for audio transmission. This path

assignment takes place at t=161 s, selecting path 1− 3− 5

based on the minimum network delay. At t=200 s, the

Networked Music Performance starts using this selected path

for audio transmission. We used NETEM in order to add

delay to the path and we tested the rerouting process. By

increasing the delay of path 1 − 3 − 5, at t=280 s the

SDN Controller reroutes audio flows to path 1 − 4 − 5,

as the difference between its delay and initially selected

path is greater than 2 ms, which is selected as a threshold

value for rerouting decisions. The same process is repeated,

adding delay to path 1− 4− 5 with NETEM, resulting into

another rerouting of application traffic to path 1 − 2 − 5.

Table I describes the ensuing rerouting events and audio

modifications that took place.

Finally, when the network delay increase results in over-

EPT mouth-to-ear delay, the SIP module informs the appli-

cation side for audio modification. In this example, audio

modification decision is taken at t=564 s and instantly

the application switches from the default to the alternative

audio configuration set which introduces less blocking delay.

This results in decreasing the end-to-end delay despite the

network delay increase.

In Fig 5 we also compare our approach with the case

where the network does not inform the application for an

audio modification. It is shown that the interaction between

the application and the network benefits the mouth-to-ear

delay decrease by an average of 8.71 ms, without violating

the EPT constraint. As it is also shown, without the proposed

interaction, this would not be possible, resulting in over 30

ms mouth-to-ear delay, disrupting the NMP operation. In

order to quantify the degree that our system improved end-

to-end delay, we defined the gain metric. Gain value is given
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from equation (5):

gain =
daudio mode1 − daudio mode2

daudio mode1

∗ 100% (5)

where daudio mode1 and daudio mode2 denote the mouth-

to-ear delay with and without audio modification. In the

described process, the average gain was equal to 28.32%.

During the experimental evaluation, maximal results reach

up to 59% delay improvement. This value is a function of

the sampling rate and the frame size that will be selected in

order to decrease the blocking delay.

VI. CONCLUSION

This work introduced a novel framework for collaboration

between application and network. The goal of the framework

is to cope with sudden network changes and traffic con-

gestion problem offering guaranteed end-to-end delay. This

objective was formulated in terms of the basic factors that

affect delay in Networked Music Performance systems. The

employed system model provided insights on real time traffic

congestion detection and providing powerful solutions to its

mitigation via application and network interaction. The same

strategy can be applied in other extremely delay-sensitive

application types, such as online gaming. The insights were

validated realistically within an emulated, SDN setup.
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