
HAL Id: hal-01522953
https://hal.science/hal-01522953

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Steiner Tree Based Approach For The Efficient
Support Of Multipoint Communications In A

Multi-Domain Context
Lunde Chen, Slim Abdellatif, Thierry Gayraud, Pascal Berthou

To cite this version:
Lunde Chen, Slim Abdellatif, Thierry Gayraud, Pascal Berthou. A Steiner Tree Based Approach For
The Efficient Support Of Multipoint Communications In A Multi-Domain Context. The 22nd IEEE
Symposium on Computers and Communications ( ISCC 2017 ), Jul 2017, Heraklion, Greece. 6p.
�hal-01522953�

https://hal.science/hal-01522953
https://hal.archives-ouvertes.fr


A Steiner Tree Based Approach For The Efficient

Support Of Multipoint Communications In A

Multi-Domain Context

Lunde Chen∗†, Slim Abdellatif∗†, Thierry Gayraud∗‡, Pascal Berthou∗‡

∗ CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
† Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
‡ Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Abstract—This work proposes an approach based on Steiner
trees to efficiently support multipoint communications in a multi-
domain context, where each domain exposes a synthetic and
aggregated view of its network. The approach that we propose is
based on two pillars: The adoption of a topology aggregation of
each domain’s network as a Steiner tree and the use of a shortest
path heuristic for the calculation of these aggregated networks as
well as the global Steiner tree. An extensive experimental study
on random and real network topologies shows the gains made
by our approach in terms of both accuracy and computational
complexity.

Index Terms—Multipoint communication, Steiner tree, topol-
ogy aggregation, multi-domain network

I. INTRODUCTION

Network level multipoint communications are useful for

many applications and network operations as it reduces the

overhead of maintaining multiple one-to-one communications.

Establishing a multipoint communication is often modelled

as a Steiner tree that is a minimal cost tree connecting the

nodes (or edges) involved in the multipoint communication

[1]. For example, in wireless ad-hoc network [2], a Steiner

tree based multicast delivery structure is proposed to reduce

the number of forwarding nodes and hence the number of

redundant packets and collisions. In [3], a Steiner tree is

used to minimize the energy consumption of broadcast trans-

missions. Also, in Vehicular Ad-hoc Networks [4], a delay

constrained minimum Steiner tree is used as a routing strategy

for the dissemination of warning messages. In data centres,

[5] proposes using multiple edge-disjoint Steiner trees to data

delivery acceleration as well as to handle network failures.

With the emergence of Software Defined Network (SDN),

a better perspective of managing multipoint communications

emerges. In such cases, Steiner tree based techniques can

always be used. [6] proposes constructing bandwidth efficient

Steiner trees for multicast in a mobile network and efficient

tree morphing that can adapt to multicast group changes in real

time. [7] proposes to use k-Steiner tree for group multicast

of large traffic. Finally, [8] proposes using Steiner tree to

minimize the size of the routing tree for data centre multicast.

In this paper, we consider establishing multipoint com-

munications in a multi-domain context, which consists in

establishing a routing tree that spans multiple domains. In this

particular context, in practice [9] [10], the network operator

that operates a network domain hides the detailed topology

information and simply discloses and advertises to other do-

mains an abstracted view of its domain. Clearly, the abstracted

view has an impact on the convergence time of the algorithm

in charge of computing the global routing tree as well as the

optimality of the obtained tree (the extra cost with respect to

the optimal solution computed on the detailed view of each

domain).

Conventionally, full mesh is the most used topology aggre-

gation technique, which consists in aggregating the topology

with links connecting all pairs of border nodes. It is used as

a general-purpose aggregation technique, finds widespread us-

age in multi-domain networks. Recent works regarding multi-

domain SDN use full mesh as well, as presented in [11] [12].

However, this conventional topology aggregation technique

targets inter-domain one-to-one communication. Applying full

mesh as the topology aggregation technique, as we will present

in this paper, is not suitable for multi-domain multipoint com-

munications, the main pitfalls being a non-negligible loss of

accuracy and a significant computation complexity. Therefore,

an efficient and effective topology aggregation targeted for

multipoint communications should be proposed.

The approach proposed in this paper to efficiently support

multipoint communications in a multi-domain context relies on

the construction of an approximate global Steiner tree with the

following characteristics. First, our approach adopts a Steiner

tree based topology aggregation to abstract each domain’s

topology. The approximate global Steiner tree is hence derived

assuming a Steiner tree based abstraction of each domain.

We also adopt a shortest path heuristic to compute both the

Steiner tree abstraction of each domain and the global Steiner

tree. We show through experimentation that this heuristic is

robust, flexible and resilient. We also show that the Steiner tree

abstraction is significantly more effective than the full mesh

abstraction, for both randomly generated topologies and real

network topologies. Also, the Steiner tree abstraction requires

less computational time with less spacial complexity.

This paper is organized as follows. First, section II presents

the system model and introduces the notations used in this

paper. Section III defines the shortest path heuristic (SPH)

that we adopt in this paper for the construction of the Steiner

tree abstraction of each network domain as well as for the



computation of the global Steiner tree. Sections IV and V

respectively describe our proposed approach by presenting

the benefits of using SPH for topology aggregation and its

performance analysis. Section VI concludes the paper and

presents the perspectives to this work.

II. SYSTEM MODEL AND NOTATIONS

We consider a multi-domain network composed of multiple

network domains interconnected from their border nodes with

inter-domain links. The physical network of each domain

d ∈ D of the network is modelled as an undirected graph

Gp
d = (Nd, Ad) with non-negative edge costs. We denote

as Bd ⊂ Nd the set of border nodes of domain d. The

set of inter-domain links is denoted as Aedge, they are also

labeled with non-negative link costs. The global physical

network is noted as Gp, which is the union of all nodes

and arcs in d ∈ D, as well as inter-domain links. Therefore,

Gp = (
⋃

d∈D Nd,
⋃

d∈D Ad ∪ Aedge). This network has a

theoretical existence since in practice network domains only

reveal an aggregated vision of their network. Gp is used in

this paper to compute the optimal (minimum cost) global

Steiner tree T p spanning a set of node Z for performance

comparison reasons. Figure 1 presents the Gp of a network

with four domains a, b, c and d (link costs are omitted for

clarity reasons). It also shows the minimum cost global Steiner

tree T p(Z) that connects six end nodes Z (called target nodes)

spread over the four domains. Its total cost is denoted as

Lp(Z).
The aggregated network disclosed by a network domain d

is denoted as Ga
d = (Na

d , A
a
d), N

a
d (called terminal nodes) is

typically the set of domain d’s border nodes Bd, but could

also include some internal nodes (for instance, nodes that are

within N-hop to all other nodes, etc.). The links belonging to

Aa
d are typically logical, each is established on one or many

data paths (often multi-hop). Figure 2 presents two possible

examples of aggregated networks that could be exposed by a

network domain whose physical topology is given in Figure

2-A (the green nodes are the border nodes). In Figure 2-B, a

full-mesh topology between all its border nodes is exposed by

the domain. In Figure 2-C, a tree-based abstraction including

the border nodes but also some internal nodes (the two dark

nodes in the figure) is considered. Clearly, it is the prerogative

of each domain to choose the nodes (edge and potentially

internal) to include in the disclosed abstraction. It is also

the role of the domain to choose the appropriate topology to

expose. Finally, it is also the role of the domain to choose to

which disclosed node (i.e. ∈ Z) an end node participating to

a multipoint communication should be attached (one obvious

way is to attach to the nearest disclosed node).

We denote as Ga the global undirected graph obtained from

the network abstractions exposed by the different domains.

The Steiner tree computed for a set of nodes Z over Ga,

is denoted as T a(Z) with a corresponding cost La(Z). For

illustration purpose, Figure 3 shows the minimum cost Steiner

computed for the red nodes on Ga assuming two aggregation

techniques (full-mesh and a tree-based technique).

Fig. 1: A multi-domain network and the minimum cost global

Steiner tree

Fig. 2: Topology aggregation in full mesh and in Steiner tree

III. SHORTEST PATH HEURISTIC FOR STEINER TREE

CONSTRUCTION

Let’s consider a graph G = (N,A), each link e ∈ A labelled

with a cost c(e), with n = |N | and m = |A|, a Steiner tree

T = (NT , AT ) is defined as the tree that spans Z ⊂ N (called

Steiner nodes, q = |Z| ) with minimum total cost
∑

e∈AT
c(e).

Finding the optimal Steiner tree is well known to be NP-

hard [13]. Here in this paper, we propose using the heuristic

presented in Algorithm 1. We will show in the next section

that this heuristic is well adapted for our problematic.

The algorithm starts with a random node from Z and

chooses it as the Steiner tree T . At each iteration, T grows

by the shortest path from T to a next element of Z. When all

elements of Z are reached, the algorithm ends.

It is to be noted that the Step 2 in Algorithm 1 is essentially

Fig. 3: Minimum cost Steiner trees computed for the target

nodes (red nodes) with two aggregation techniques: (A) full

mesh and (B) Steiner tree



the Dijkstra’s algorithm, the difference being that the starting

point of Dijkstra’s algorithm is replaced by the tree T here.

In our implementation, we use the Fibonacci Heap instead

of a priority queue or a heap, which has the specificity that

the insert and decrease key operations take constant O(1). This

brings down the complexity of Step 2 to O(n log n+m). Since

the Step 2 is repeated q−1 times, the complexity of the whole

algorithm is O(qn log n+ qm).

Algorithm 1 Shorest Path Heuristic for Constructing Steiner

Tree

1: Step 1: Initialization. T = (z0, ∅), with z0 ∈ Z being a

random element of Z.

2: Step 2: Choice of a shortest path. Choose a node z of Z
that is the most in proximity to T . Add to T all the edges

of the path from z to T .

a. Consider the tree T as a super-node and of zero

cost. Add its neighbours to the set of nodes to be visited.

b. Repeat:

Choose the unvisited node with minimum cost. Add

its unvisited neighbours to the set of nodes to be visited

(as in Dijkstra’s algorithm).

Until we reach a node z of Z.

c. Add to T all the edges of the path from z to the

tree T (the new super-node).

3: Step 3: End of iteration. Repeat Step 2 as long as all

elements in Z are not connected.

The heuristic approximates the Steiner tree within ratio of

2, which means that the constructed tree is at most 2 times

the optimal solution, expressed as:

c(TSPH)

c(Texact)
≤ 2(1−

1

q
)

IV. SPH FOR STEINER TREE BASED APPROACH FOR

EFFICIENT SUPPORT OF MULTIPOINT COMMUNICATION IN

A MULTI-DOMAIN CONTEXT

The approach proposed in this paper promotes the use of

a Steiner tree network domain abstraction. We also proposes

using the shortest path heuristic (SPH) of Section III to

construct this topology abstraction as well as to construct the

Steiner tree that spans nodes belonging to different domains

(See Algorithm 2). Next, through experimentation, we show

that SPH presents multiple advantages for the support of multi-

point communication in a multi-domain context.

Algorithm 2 Constructing multi-domain multicast tree from

topology aggregation

1: For each domain Gp
d, construct an abstract network view

Ga
d using SPH (for Steiner tree aggregation) or using

Floyd–Warshall algorithm (for full mesh aggregation).

In each abstracted network view, the terminal nodes are

preserved. Those domains with border links form Ga.

2: Use the SPH to construct the new Steiner tree spanning

Z over Ga.

The performance evaluation is based on the networkx graph

generator [14]. Two types of graphs are formulated, namely

gnp (also known as an Erdos-Renyi graph or a binomial graph)

and grid2d (2-dimensional grid graph) graphs.

Some of the conducted experiments consider the case of a

single domain. In that case, the number of nodes composing

the domain is set to 100. The others consider a network with

20 domains, each consisting of 36 nodes. The domains are

connected via 80 inter-domain links. For each experiment,

the graphs are generated repeatedly at least 1000 times. The

number of nodes being fixed, links are generated randomly

following the gnp and grid-2d with an associated cost that is

varied from 1 to 20. The performance results are averaged on

all generated graphs.

A. Choice of the starting point

As the algorithm of SPH starts from a random node from

Z, the resulted Steiner tree constructed could be seriously

impacted by the choice of the initial node. It’s important to

make sure that the choice of the starting point has limited

impact on the performance of the heuristic.

We conduct a set of experiments, by changing the starting

point of the SPH each time and compare the total cost of the

constructed Steiner tree. More precisely, for each graph, we

vary the number of Steiner nodes in each domain and also the

starting point (there is as many different choices of starting

point as there are Steiner nodes), and calculate the resulting

coefficient of variance cv of the total costs, defined as the ratio

of the standard deviation σ to the mean µ.

The results for the single-domain case and the multi-

domain case are respectively plotted in Figure 4 and Figure

5. We observe that whatever the number of Steiner nodes

in the graph, the coefficient of variance of the Steiner trees

constructed from different starting points is always around

0.01% and never surpasses 0.02%, which is quite insignificant

and hence negligible. This observation is quite useful as this

leads to the effectiveness of starting from a random starting

node to construct the Steiner tree with SPH.

B. Constructing Steiner tree from multiple starting nodes

The very limited impact of choosing the starting node with

SPH leads to the consideration of having multiple starting

nodes, instead of one, so that for really large graphs and in

a multi-domain context, the calculation could be distributed

on multiple entities. Therefore, we investigate the possibility

of extending the heuristic of shortest path to start from

multiple starting nodes. With simple modifications, we have

the algorithm shown in Algorithm 3.

We vary the number of starting nodes ∈ [2, 16] for the

single-domain graphs. As is shown in Figure 6, for Gd,

constructing a Steiner tree from multiple starting points has

negligible impact on the total cost of the tree. On average,

we observe a variation within the scope of 0.05% in the

total cost of the constructed Steiner tree in comparison to the

tree constructed from a single starting node. We observe the
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Fig. 4: Coefficient of variance for total costs calculated with

SPH from different starting points (single-domain case)
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Fig. 5: Coefficient of variance for total costs calculated with

SPH from different starting points (multi-domain case)

same result for larger graphs (with number of nodes exceeding

100,000).

Therefore, while constructing a Steiner tree from multiple

starting points could be used to bring down greatly the

computation time (with paralleled computing), this is not in

the sacrifice of other performance indicators.

C. Addition of new Steiner nodes

Our approach is able to handle quite efficiently the case

where new nodes join the multipoint communication. Indeed,

the addition of a new Steiner node can be easily handled

with the SPH heuristics as explained in Algorithm 4. As the

experiments from the previous section show, the impact of

starting from multiple nodes have negligible impact on the

overall cost.

D. Recovery of Steiner tree and Re-aggregation

On the advent of a link or node failure, two recovery

alternatives can be adopted:

– either we can reconstruct a new complete Steiner tree with

SPH following Algorithm 1.

– or, consider the two broken parts of the Steiner tree as

two super-nodes, and use the SPH to connect them (Algorithm

5).
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simulated topologies: performance degradation

Algorithm 3 SPH with multiple starting point

1: Step 1: Initialization. T = (Z, ∅)
2: Step 2: Choose a set of s ⊂ Z as the starting nodes (super-

nodes). For each starting point, make them zero-potential.

3: Step 3: For each super-node si:
1. increment its potential.

2. If one node z ∈ Z is reached:

a. add to si z as well as all the nodes in the path

from si to z.

b. make si zero potential.

3. Or if one node s′ ∈ sj is reached:

a. add to si s′ as well as all the nodes in the path

from si to s′.
b. Union si and sj as one super-node.

c. make si zero potential.

4: Step 4: End of iteration. Repeat Step 3 as long as T is

not connected.

Algorithm 4 Addtion of a new Steiner node

1: Use the SPH presented in Algorithm 1 (Step 2) to reach

out, until the newly to-be-added multicast node is reached.



In comparison to the former method, the second one re-

quires less computation time (O(Nlg(N)) v.s. O(qnlog(n)+
qm)), and have less impact on the recomputed Steiner tree, but

it implies an increase in the total cost. Our experiments show

that the increase remains under 0.04%. This is why we adopt

the second method which is typically used as the recovery

mechanism by a domain each time a node failure or link failure

occurs.

Algorithm 5 SPH Recovery of broken link & node

1: Step 1. When there is a broken link & node, the Steiner

tree constructed is broken into two parts. Identify the one

of two broken part sb1 as a super-node with zero potential

and the other part as sb2.

2: Step 2. Using the Algorithm 1 (Step 2) to incrementally

increase the potential of the super-node sb1, till the mo-

ment when the other part sb2 is reached.

V. PERFORMANCE COMPARISON WITH FULL MESH

AGGREGATION

We have shown that SPH can effectively support multipoint

communications in a multi-domain context. However, one

of the most important evaluation metrics for an aggregation

technique is the degradation of performance, which is the

difference ratio between the total cost of the Steiner tree

constructed with the global view and that constructed with the

abstracted view, defined as 100 ∗ (La(Z)− Lp(Z))/Lp(Z).
In fact, as an aggregated topology hides the details about

the intra-domain connectivity, inter-domain links with the

aggregated topologies often don’t lead to the optimal solution.

And this holds true both for multi-domain one-to-one commu-

nications and multi-domain multipoint communications.

The intuition behind using a Steiner tree as topology ag-

gregation is that a Steiner tree is the minimum spanning tree

covering a set of target nodes. When all of those target nodes

are included in the computed global Steiner tree, the total cost

of the Steiner tree is less than the one obtained with a full

mesh aggregation. However, in most cases, only some of those

target nodes are covered by the computed Steiner tree. In the

opposite extreme case where only two edge nodes are included

in the Steiner tree, the full mesh is better. For this reason, we

assess the performance degradation and the computation time

of each aggregation technique as a function of the number of

target nodes.

A. Simulated topologies

For each Gp
d, we have the choice to aggregate the topology

of each domain in Steiner tree or in full mesh. We vary the

number of Steiner nodes in each domain and compare the

average degradation of performance (as well as its standard

variance) and time complexity in constructing minimum-

weight multicast trees, with the two techniques of topology

aggregation, as presented in Algorithm 2.

Performance degradation: The result for performance

degradation is shown in Figure 7, which varies around 1%
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(gnp) to 3% (grid2d) with the Steiner tree as topology aggre-

gation. When network domains are aggregated in full mesh,

the performance degradation increases from 3% (grid-2d) to

5% (gnp).

Time complexity: In fact, the time complexity for building

the Steiner tree abstraction is O(qnlog(n)+qm) and the space

complexity of the Steiner tree abstraction is O(q). We can

see clearly that the time complexity of building multicast tree

grows linearly as the number of Steiner nodes of each domain

increases.

With full mesh as topology aggregation, the computation

complexity increases quadratically as the number of terminal

nodes for each domain increases. In fact, the time complexity

for building full mesh abstraction is O(q3) and the space

complexity of the full mesh abstraction is O(q2). With Steiner

tree as topology aggregation, however, the increase is in a

quasi-linear manner. The result is shown in Figure 8.

B. Real topologies

We also measure the performance based on real topologies,

with every Gp
d being ESNET [15] or GEANT [16]. As we

can see in Figure 9 and Figure 10, for both topologies, the

Steiner tree always has better results than full mesh based

topology aggregation. Our experiments with the topology of

INTERNET2 [17] also confirm this result.

As a conclusion, it’s safe to say that Steiner tree is a better

candidate than full mesh based topology aggregation, with

the aim of constructing an approximate minimum-cost multi-

domain multipoint communication trees.

As a complementary result, from our experiments, the

Steiner tree based aggregation is always better than full mesh

when we target multi-domain broadcast. However, when we

target point-to-point communications, full mesh is better than

the Steiner tree.

VI. CONCLUSIONS

We have proposed in this paper a Steiner tree based ap-

proach to efficiently support multipoint communications in

a multi-domain context. Our approach advocates the use of

a Steiner tree topology aggregation of domains’ networks

in replacement of the commonly used full mesh topology

aggregation. We also propose to use the SPH heuristic for

building the topology aggregations as well as the global Steiner

tree that supports the multipoint communication. Through

experimentations, we have shown that our algorithms are

efficient in terms of computation time and induced total

cost and exhibit some interesting properties that make them

scalable and cope with the dynamicity of both the network and

the multipoint communication. The main perspective to this

work is to adapt the proposed algorithms to address multipoint

communications with Quality of Service requirements.
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