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Abstract—The core innovation in future 5G cellular networks-
network slicing, aims at providing a flexible and efficient frame-
work of network organization and resource management. The
revolutionary network architecture based on slices, makes most
of the current network cost models obsolete, as they estimate
the expenditures in a static manner. In this paper, a novel
methodology is proposed, in which a value chain in sliced
networks is presented. Based on the proposed value chain,
the profits generated by different slices are analyzed, and the
task of network resource management is modeled as a multi-
objective optimization problem. Setting strong assumptions, this
optimization problem is analyzed starting from a simple ideal
scenario. By removing the assumptions step-by-step, realistic but
complex use cases are approached. Through this progressive anal-

ysis, technical challenges in slice implementation and network
optimization are investigated under different scenarios. For each
challenge, some potentially available solutions are suggested, and
likely applications are also discussed.

Index Terms—network slicing, cost model, 5G network, net-
work optimization, resource management

I. INTRODUCTION

Higher system scalability and flexibility, calls for better

energy, cost and resource utilization efficiencies in future 5G

mobile communication networks [1], [2]. As an architectural

answer to this, network slicing is considered as the most

important and innovative concept in 5G, and has been in-

tensively discussed in recent years [3]–[5]. With the idea of

organizing physical networks in the form of logically separate

and independent slices, network slicing enables a flexible and

polymorphic network customization according to the specific

use case. This concept is changing the network configuration

process. Instead of generally optimizing the entire network

for all customers and services, the operators are now able to
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separately optimize each slice with an individual configura-

tion. To implement network slices efficiently, a cost function

must be constructed for each slice. Classical mobile network

cost models that are based on long-term capital expenditures

(CAPEX) and operating expenditures (OPEX), as in [6] and

[7], cannot support modeling costs of logical network slices.

Till now, no appropriate cost model for sliced networks has

been proposed. In this paper, we propose a novel methodology

of analyzing and optimizing the business profit generated by a

network slice. Through the discussions under different cases,

we try to reveal the key challenges in slice implementation,

and suggest several candidate solutions to them. The paper

is structured as follows. In Sec. II we briefly introduce the

concept of network slicing. Then in Sec. III we propose a

novel profit model, which maps the slice properties, such as

key performance indicator (KPI) requirements and size, to the

profit generated by the slice. Based on this model, in Sec. IV

we analyze the sliced network optimization problem, so as to

maximize the profits of network operator. We set several strong

assumptions to initiate the analysis under simple and ideal

conditions, and progressively approach to the complex realistic

case by removing the assumptions step-by-step. By the end

we close this paper with Sec. V, where some conclusion and

outlooks to future studies are given.

II. NETWORK SLICING FOR FLEXIBILITY AND EFFICIENCY

The modern mobile communication technologies have been

providing various types of services, such as video streaming,

mobile cloud storage, mobile online gaming, etc. Nevertheless,

the quality of service (QoS) is usually limited in existing

cellular networks. Consider a common scenario: a user is

playing an online game with his mobile phone, while listening

to online music with the same device. Meanwhile, the mobile

phone is downloading a large file from a cloud storage

server. Here, three data services are sharing the same radio

access network (RAN). Due to the limitations in the network

resources, the user may suffer from an intermittent music, a
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significant delay in the game interaction and a low speed in

downloading a file.

However, the lack of resources is not the real problem. As a

matter of fact, purpose-built applications usually have specific

performance demands that highly depend on the use case. For

example, the online music streaming service can tolerate a rel-

atively high buffering time at the the beginning, but it requires

a certain level of data rate with high availability and retain-

ability to promise the continuity of music. In contrast, online

games commonly require low latency, high retainability and

high reliability to guarantee a smooth game experience, despite

their low data size. Cloud storage synchronization, differing

from them both, usually asks for a high channel capacity, while

having lenient requirements on latency. Most modern cellular

networks possess enough resources to fulfill the demands of

an arbitrarily selected service, especially when optimizing the

network resources correspondingly. Nevertheless, the current

network architecture is not capable to support all new kinds of

services and scenario. Therefore, the aforementioned scenario,

can result in a regrettable QoS, regardless of the richness in

network resources. Furthermore, to enhance the performance

in one particular use case, a network usually has to be solely

scaled up, which often implies an exorbitant investment.

As one of the key enablers of future 5G networks, net-

work slicing can help solve this problem with a much more

flexible and efficient resource allocation. A network slice

is an abstracted connectivity service, i.e. a logical network,

which is defined by a number of customizable software-

defined functions [3]. Resources of a physical network can

be logically allocated to different slices. According to the

performance demands, various use cases can be categorized

into several services. For each service, a network slice can

be abstracted and a software-defined implementation can be

optimized. With respect to the requirement, each slice can

be separately scaled, in order to adjust the corresponding

service performance, independently of other slices. Hence, the

network configuration can be executed in the form of slice

size configuration. In this way, the network resources can be

flexibly organized and efficiently managed, to fulfill different

demands of various services. An example is presented in Fig.

1, by which three slices are defined and optimized for audio-

streaming, online gaming and could storage, respectively.

III. THE SLICE BUSINESS MODEL:

FROM SLICE PROPERTIES TO PROFIT

Constrained by the overall resource limits, the network has

to compromise among the sizes of different slices, which

leads to an optimization problem. According to the network

operators, it is usually the business profit to maximize. To

achieve this, a value chain in the network slicing process must

be built.

Classical network cost models are typically built based on

CAPEX and OPEX, which are estimated according to the

number of base stations (BSs), the transmission power and the

traffic volume [6], [7]. For sliced networks, this methodology

is not appropriate any more. As each resource can be shared

Fig. 1. Slicing an omni-functional network into three specialized network
slices

by several network slices, and the slicing scheme varies from

one resource to another. Hence, OPEX cannot be generally

estimated for the entire physical network. A novel slice-

oriented cost model is therefore needed.

As we already discussed, every slice is specified for a

particular pre-defined service, which covers a group of use

cases with similar demands for the QoS. Therefore, a slice

can be identically defined by a set of KPI requirements,

as referred to in many 5G research projects [8], [9]. The

complete mapping chain from slice requirement to operator’s

profit is illustrated in Fig. 2. Given a set of KPI requirements

k = [k1, k2, . . . , kL], a virtual network function (VNF) can be

designed in the specification phase to achieve them. According

to the VNF implementation V and the slice size s (the

maximal number of user applications that can be served by

the slice), the required volume of network resources can be

estimated. Various kinds of resources can be enumerated,

e.g. spectrum/bandwidth, time, power, infrastructures, human

resource etc. Let us record the required amount of them in a

vector r = [r1, r2, . . . , rN ], where N is the number of resource

types. According to the cost of each resource, the resource

requirements can be further converted into the expenditure

EXP, in a similar way as in classical network cost models.

So that we have

EXP = EXP(r), (1)

r = r(k, s,V). (2)

On the demand side, meanwhile, a certain price p must be

paid by the network customers for each service. Therefore,

given the service price, the slice size s and the customer size

c (the number of user applications requesting service from the

slice), the revenue of a slice can be straightforwardly modeled

as

REV = REV(p, s, c). (3)

By subtracting the cost from the revenue, the profit generated

by the slice can be computed as

w = REV(p, s, c) − EXP(r) = w(r, p, s, c). (4)

It is worth to note, that the KPI-to-resource mapping

r(k, s,V) is not only very complex, but also highly dependent



Fig. 2. A mapping chain that converts the properties of a slice into the slice
profit step-by-step

on the selection of VNF implementation V. Nevertheless, as

the network operator is responsible for the VNF implemen-

tation, it always holds a full knowledge about it. Therefore,

in the operator’s point of view, it is reasonable to assume the

function r(k, s,V) as a-priori known.

IV. NETWORK OPTIMIZATION: MAXIMIZING THE PROFITS

In a network with multiple slices i = 1, 2, . . . ,M, the

operator aims to maximize the profits wi of all M slices

simultaneously by allocating N different resources to them.

This is a multi-objective optimization problem (MOOP):

arg max
R

w(R),

where w(R) = [w1(R),w2(R), . . . ,wM (R)]T,

R = [r1, r2, . . . , rM ]T,

ri = [ri,1, ri,2, . . . ri,N ].

(5)

Here, ri, j indicates the volume of the j th resource allocated to

the ith slice. The optimization is constrained by two kinds of

boundary conditions:

• The utilized resource bundle is physically limited by the

total volume of resource pool rΣ.

• The lower boundaries of slice sizes are manually estab-

lished according to the network service policies. So that

each slice i must at least be provided with a pre-defined

minimum level of resources r
min
i

, even if some slices

appear commercially unattractive to the operator.

To study this problem progressively, in this section we first

simplify it with some strong assumptions on the use scenario

and the VNF implementation, then we relax the assumptions

step-by-step to approach the complex realistic use cases.

A. Start with the Ideal Model: Assumptions

For a strong simplification, we set the following assump-

tions:

1) Resource shortage: the user demands are heavy while

the network resources are limited, so that the network

cannot satisfy all the service demands simultaneously.

2) Single operator: no multi-operative service is supported,

i.e. the network is operated by a single operator, which

holds the complete network information.

3) Static slices: the KPI requirements, the customer size

and the service price of every slice remain constant.

4) Open-loop system: the configuration of network slices

does not have any unexpected short-term impact on the

network environment.

5) Orthogonal slices: all the slices are orthogonal to each

other, i.e. no resource can be shared by two or more

different slices, and the VNF implementation of a slice

only depends on its own KPI requirements and size.

These assumptions together set up a classical Multi-Objective

Optimization Problem (MOOP), where the single network

operator tries to maximize the profits wi made by all slices

i = 1, 2, . . . , N simultaneously.

A variety of methods have been developed to solve MOOPs

[10]–[12]. The most common one of them is the weighted

sum method, which transforms the target MOOP (5) into a

conventional single-objective optimization problem (SOOP):

arg max
R

M∑

i=1

giwi(ri, si, ci, pi), (6)

where si , ci and pi are the size, the customer size and the

service price of slice i. gi is a weight factor, which represents

the importance preference of slice i. If the operator has no

special preference for any slice, we can take gi = 1 for all i,

to maximize the overall profit:

arg max
R

M∑

i=1

wi(ri, si, ci, pi), (7)

which is known as the objective sum method.

As mentioned before, the resources ri needed by slice i are

determined by the corresponding KPI requirements ki , si and

the VNF implementation Vi , i.e.

ri = ri(ki, si,Vi),

where ki = [ki,1, ki,2, . . . , ki,L].
(8)

Here, ki, j indicates the j th KPI requirement of the ith slice

and L the dimension of the KPI requirements. Under the

assumption of orthogonal slices, Vi is a function of ki and

si . Hence, wi(ri, si, pi) can be represented as wi(ki, si, pi).

Furthermore, the static slices assumption suggests that ki , ci
and pi are constants, so that both ri and wi can be considered

as functions of si . Hence, the SOOP (7) turns into

arg max
s

M∑

i=1

wi(si),

where s = [s1, s2, . . . , sM ]T.

(9)



And the boundary constrains can be represented as:

M∑

i=1

ri, j ≤ rΣ, j, j = 1, 2, . . . , N; (10)

ri, j ≥ rmin
i, j , i = 1, 2, . . . ,M, j = 1, 2, . . . , N, (11)

where rΣ, j represents the total volume of resource j and rmin
i, j

the minimal volume of resource j reserved for slice i.

B. Sharing for Good: Slice Multiplexing

In real implementation, different slices are usually sharing

some resources to achieve multiplexing, if not always. For

example, a massive Machine-Type-Communication (mMTC)

slice and an ultra-reliable MTC (uMTC) slice can share the

same base stations, some network functions such as radio

scheduler, or even the same band in spectrum (under time

division). In this case, one slice may benefit from a size

decrease of another slice. Furthermore, to achieve a higher

multiplexing gain, the multiplexing scheme should be carefully

planned before the network function virtualization (NFV),

which impacts the VNF implementation of every slice. To

reveal these effects, we remove the assumption of orthogonal

slices from our list.

This complicates the problem dramatically in two aspects.

First, the SOOP simplification from (7) to (9) is no more valid,

with the assumption Vi = Vi(ki, si) removed. Instead, due to

the multiplexing scheme selection stage, the implementation

Vi of every slice i must be jointly selected with the others

Vj, j,i , according to the global network requirements, i.e.

Vi =Vi(K, s),

where K = [k1, k2, . . . , kM ]T.
(12)

Hence, the SOOP (7) turns into

arg max
s

M∑

i=1

wi(s), (13)

In (9), the profit function w(s) can be decomposed into

M independent functions wi(si), each of only one variable.

Compared to the simple case, the profit function under slice

multiplexing can only be jointly optimized with respect to

M variables. Second, besides the slice sizes, the volume of

utilized resources strongly depends on the multiplexing mode,

i.e. the VNF implementations. Hence, instead of the simple

linear function (10), the resource pool boundaries must be

described by

UV(r1, j, r2, j, . . . , rM, j ) ≤ rΣ, j, j = 1, 2, . . . , N, (14)

where UV is a function with form depending on the VNF im-

plementations V = [V1,V2, . . . ,VM ]T. Fig. 3 briefly illustrates

these effects.

Certainly, the operator still holds full knowledge about

the VNF implementation, so that the SOOP (13) can still

be solved in a centralized approach, and a Pareto optimum

is theoretically available. However, the high ranks of the

cost function (13) and the boundary constraints (14) can

Fig. 3. Slice multiplexing dramatically complicates the mapping chain for
profit optimization. Under multiplex, the size of each slice impacts the VNF
implementations of all the other slices that are multiplexed with it, and the
total resource cost is a VNF-dependent function of different slice resource
costs.

significantly raise the computational cost, probably to a level

beyond an operator could afford.

To reduce the computational cost, one simple solution is

to limit the number of available slice-multiplexing modes,

i.e. the candidate VNF implementations V. The candidate set

should be small enough to traverse, and carefully selected,

to guarantee a reasonable efficiency. As a trade-off, the slice

multiplexing gain will be reduced. Besides, it is doubtful if

any universal approach is available to define such a candidate

VNF set.

Another possible approach would be to decompose the

multi-dimensional optimization into two separate levels and

solve it iteratively. First, the VNF scheme is initialized to a

blueprint, under which the slice sizes are optimized. Next, the

slice sizes are fixed at the optimization result, while the VNFs

are reimplemented to further improve the network profit. These

two steps repeat recursively until the network configuration

converges, or after a given threshold of iteration loops. This

approach follows the idea of Block Coordinate Descent (BCD)

method [13], which is widely used in MOOPs. However,

differing from standard applications of BCD methods, the

VNF implementations Vi are not variables of real value, but

parameters that determine the mathematical representation of

the cost function. This nature of V can significantly impact the

converging ability of the method, which must be investigated

before any application.

Considering the absence of gradient information with re-

spect to V, and our aim at global optimum instead of local

ones, genetic algorithms (GAs) exhibit an ubiquitous advan-

tage in exploring the Pareto front of the SOOP (13) [11].

The basic idea of genetic algorithms is to generate new

solutions from an initial solution population, in a recursive and

evolutionary manner. According to the fitness value, which can

be computed for every solution to evaluate its degree of opti-

mum, different solutions have their individual opportunities to

produce posterities in further iterations. After enough number

of generations, the remaining solution population is expected

to converge at the Pareto front. This class of algorithms are

able to search the solution space in multiple and random

directions in every single iteration, and hence show high



efficiency in solving MOOPs with large degree of freedom,

such as the slice optimization. Detailed tutorials of applying

GA in MOOPs can be found in [14] and [15].

C. Environment Responses: Iterative Optimization

Permitting different slices to multiplex benefits with a

multiplexing gain, but it also leads to a much more complex

network environment. As long as slices are allowed to share

spectral and time resources, they are no more physically

isolated from each other. Instead, each slice can become

part of the environment for other slices. For example, if the

mMTC and uMTC slices share the same spectrum and time

by using different BS antennas or by applying code division,

when we raise the transmission power of mMTC signals, the

interference strength is increased for uMTC. Therefore, the

slice configuration now impacts the network environment, so

the network is a closed-loop system where K = K(R). Hence

the assumption of open-loop system should be removed.

Practically, there are plenty potential sources of such inter-

slice impacts, that cannot be completely known beforehand but

can only be measured posteriorly. In this case, the optimum

can only be solved in iterative approaches. An initial optimiza-

tion should first be executed under given KPI requirements

K = K0. Then network measures the environment after

applying the optimization, and respectively update the KPI

requirements to K = K1. Afterwards, the network optimization

is repeated under the updated K. This process continues

iterating, until it converges.

D. Optimization Validity versus Configuration Cost: Long-

Term Optimization

Besides the short-term variations caused by the network

configuration, the environment also exhibits middle-term and

long-term fluctuations in nature. For example, for a given

slice i, the customer size ci often keeps varying through a

day, because the user activity highly depends on time. The

channel conditions also usually change due to the unstable

electro-magnetic environment, which leads to fluctuating KPI

requirements ki . Even the service price pi can be occasionally

adjusted by the operator for business reasons as well. These

facts suggest to cancel our assumption of static slices, and to

keep dynamically updating the slices in real time.

However, it must be considered that the updating process of

slice configuration generates extra cost itself. To accomplish

such an update, lot of measurements and signaling are es-

sential, which cost network resources, especially power. So

far, we are now facing a new compromise: with a shorter

period of slice update, the profit loss caused by the outdated

slice configuration can be reduced, while the reconfiguration

cost increases; and vice versa. To achieve an ideal balance, a

long-term optimization respecting to the update period should

be implemented, based on the reconfiguration cost and the

historical short-term optimization results.

E. Multi-operator and Sub-operator: Game Theoretic Ap-

proaches

So far, we have been working with the slice scaling

optimization, in order to maximize the resource utilization

efficiency and the overall profit within a network owned by

a single operator. Yet, such an optimization cannot guarantee

a full resource utilization. Even after a complete optimization

there are usually network resources that still remain idle and

cannot support additional slice implementation. On the other

hand, there are also some use cases with extremely specialized

KPI requirements, which can be hardly fulfilled by any single

operator, even if a plenty of resources are available. A typical

example is the Public Protection and Disaster Relief (PPDR),

which demands very low data rate but ultra-high availability.

Although the service availability can be improved in some

order by increasing the transmission power, the only effective

approach to achieve a significant enhancement in availability,

as the PPDR demands, is to deploy more access points. It

leads to a huge CAPEX, if a network operator has to invest

all the infrastructures for new APs by itself. Meanwhile, the

revenue generated by the PPDR service may be quite limited,

so far as it only utilizes a very narrow band in the spectrum.

Therefore, multi-operative service can be a win-win so-

lution. In the multi-operative framework, several network

operators are able to trade their idle resources with each other

for certain prices. For example, an operator A can rent an

under-utilized small band in the spectrum at all its base stations

to another operator B, in order to support an ultra-available

PPDR service of operator B. In this way, operator B can extend

its resource pool with slight increase in OPEX but without any

increase in CAPEX. Also, operator A can now generate an

additional profit by sharing idle resources. The multi-operator

framework, hence significantly increases the overall network

resource utilization factor.

Nevertheless, to realize multi-operative services, the prices

of resources in trade must be reasonably and flexibly decided.

This is also a MOOP, where the profit of every operator gained

from the trading is to maximize. However, differing from the

cases above, no SOOP can be generated here to solve it,

because the operators are not sharing their internal business

information such as slice size or resource cost. Hence, in

absence of global system knowledge, no centralized decision

making mechanism is available.

This condition, where different operators make their own

decisions in purpose of profit maximization, self-evidently

encourages to apply game theory (GT) methods. A simple

mechanism, for example, is to let the operators offer their

prices for their lacked/idle resources in a transparent market.

According to the available market information, every operator

makes rational trading decisions for its own profit. Generally,

in such kind of scenarios, the game is non-cooperative and

with imperfect information.

Another possible multi-operative scheme is that, one net-

work operator can run its business through several sub-

operators, each one is responsible for a different slice. The



main operator owns all network resources and dynamically

allocate them to its sub-operators. In this way, a game is

settled where the sub-operators compete for network resources

as individual players. Differing from the case discussed above,

as all the sub-operators belong to the same operator, the game

can be designed as cooperative and with perfect information.

GT methods helps to make decisions in a decentralized

way, which enables multi-operative services, and reduces the

computational complexity of network optimization in the sub-

operator case. However, when applying GT methods, it is

critical to distinguish the Pareto optimum, which is efficient

and expected, from the Nash equilibrium, which is only

strategical feasible and usually obtained. A Nash equilibrium

is not necessarily a Pareto optimum.

V. CONCLUSION AND OUTLOOKS

In this paper, we have analyzed the impact of network

slicing on resource management and profit generation. We

have proposed a novel methodology of modeling profit gen-

erated by 5G network slices. The expenditure and revenue of

a network can be estimated according to its slice properties,

such as KPI requirements and service prices. Based on this,

the slice implementations can be optimized to maximize the

profit . Through case studies under different assumptions, we

have set a MOOP model for the sliced network optimization,

and revealed the technical challenges in this task. For each

challenge, we have suggested some candidate approaches for

eventual solution.

In future, the proposed framework can be extended in

various aspects, including but not limited to the following

ones. The contents of KPI and resource requirements should be

well defined to achieve a possibly simple and clear mapping.

Realistic models of resource cost and service revenue with

detailed parameters shall be developed and integrated into the

proposed framework, in order to support quantitative simula-

tions for evaluation of the suggested solutions. As the final

target, the most appropriate solutions can be implemented, to

overcome the technical challenges and to realize the envisaged

network optimization.
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