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Abstract

One significant challenge in cognitive radio networks is to design a framework in which the selfish

secondary users are obliged to interact with each other truthfully. Moreover, due to the vulnerability

of these networks against jamming attacks, designing anti-jamming defense mechanisms is equally

important. In this paper, we propose a truthful mechanism, robust against the jamming, for a dynamic

stochastic cognitive radio network consisting of several selfish secondary users and a malicious user. In

this model, each secondary user participates in an auction and wish to use the unjammed spectrum, and

the malicious user aims at jamming a channel by corrupting the communication link. A truthful auction

mechanism is designed among the secondary users. Furthermore, a zero-sum game is formulated between

the set of secondary users and the malicious user. This jointproblem is then cast as a randomized two-

level auctions in which the first auction allocates the vacant channels, and then the second one assigns

the remaining unallocated channels. We have also changed this solution to a trustful distributed scheme.

Simulation results show that the distributed algorithm canachieve a performance that is close to the

centralized algorithm, without the added overhead and complexity.
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I. INTRODUCTION

Spectrum scarcity has been a major problem for the existing wireless networks which motivated

researchers to investigate new intelligent paradigm to manage available spectrum. Cognitive

radio (CR) has thus emerged as a promising approach to improve spectral efficiency in wireless

networks. In CR networks, secondary users (SUs) may cognitively access unused spectrum that

is not currently occupied by licensed users, namely primaryusers (PUs) under the condition that

the PUs’ transmission will not be interfered [1].

Spectrum management in CR networks has been considered in many recent works such as

[2] and [3] (and references therein). One important technique that enables CR-oriented spectrum

allocation is to consider spectrum auction among SUs that seek to idle channels [4]. Auction

theory, which is rooted in economics, offers a promising solution for intelligently allocating

resources, such as power and spectrum, in CR networks. Thereare different approaches for

implementing auction theory in wireless networks, which have been investigated in [5]. In

general, in such scenarios, users are rational and have their own strategies in order to get more

resources. Extensive existing works are available on different auction approaches for spectrum

allocation (e.g., see [6]). For instance, the authors in [7]find the maximization of the PUs’

expected profit by proposing the leasing based spectrum allocation for SUs. In addition, the

first price auction to optimize both the total payoff of SUs and revenue of auctioneer is studied

in [8]. One drawback of the suggested scheme is that SUs mightreveal wrong to further improve

their utilities. The work in [9] provides a spectrum allocation based upon a double-sided auction

mechanism. In this scheme, an untruthful behavior also brings suboptimal solutions.

Competition among the selfish SUs is crucial to use rare resources in the spectrum market

framework [10]. More importantly, non-cooperative users have intentions to cheat so as to gain

more benefits. The Vickrey Clarke Groves (VCG) auction mechanism is commonly used in the

auction games in order to provide not only the assurance of truthfulness but also the maximization

of the social welfare [11]. For example, the authors in [12] and [13] proposed the incentive

mechanism to encourage users to contribute truthfully their resources by forming coalitions.

Moreover, because of selfishness of SUs, each user attendingin the auction has incomplete

information about the other users. Hence, selecting a proper learning task is a big challenge for

designing the distributed game. A Bayesian nonparametric belief update scheme is suggested to
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solve this issue in [14].

In CR networks, SUs are susceptible to several malicious attacks. Several anti-attack mecha-

nisms have been proposed in existing literature [15]. For example, the problem of PU emulation

attack on CR networks has been investigated in [16] in which amalicious user can send

signals with the same PU transmission characteristics in order to mislead the SUs. Instead,

SUs can recognize PUs’ transmission by adapting a favorableverification protocol. In addition,

a game-theoretic approach based upon the concept of secrecycapacity is proposed to model

eavesdropping attacks on CR networks in [17]. In [18], a set of SUs is available in a stochastic

medium and they select randomized channel hopping as the defensive strategy. This framework

falls into the category of the zero sum stochastic game and the authors propose a minimax-

Q learning to find the related solution. Besides, the randomized defense strategy for channel

hopping and power allocation with learning algorithms is suggested in [19]. However, in a

spectrum auction, users act selfishly and these defense strategies are not fully applicable.

The main contribution of this paper is to jointly consider truthful spectrum auction and the

presence of a jamming attack. In this scenario, two types of users exist: selfish SUs participating

the auction and a malicious jamming user that wishes to reduce the social welfare as much as

possible. Our key contributions can therefore be summarized as follows:

• To model the mentioned scenario, we formulated two inter-related games: a zero-sum

stochastic game between the CR network and the jammer, and anassociated mechanism

design among the SUs at each stage of the game. Indeed, the zero sum game exists between

the CR network and the malicious user, while mechanism design is considered among the

SUs. Using our proposed framework, the SUs do not show their selfishness and at the same

time cooperate with each other to get higher profits against the malicious user.

• In order to realize the joint games, we propose an algorithm based on zero-sum game which

can extensively reduce the complexity of solving the game with an asymmetric number of

actions for the players. The proposition is a basis for the work because the malicious user

and the SUs are unequal in the number of actions.

• Using the derived proposition, we show that the zero-sum stochastic game and spectrum

auction game can be converted to a centralized two-level spectrum auction in which SUs

send their bids to a coordinator and the coordinator confronts against the malicious user.

More specifically, the coordinator initially allocates spectrum to the first level bids, and
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then the remaining spectrum is allocated by the second auction. Indeed, the main idea of

the centralized two-level auction is inspired from the randomized auction which is common

in combinatorial auction theory such as [20] and [21]. However, our considered scenario

significantly differs from those existing works.

• A decentralized method based upon the centralized two-level auction is examined. The

proposed algorithm use the proven interesting properties of the centralized game which

extremely reduces the complexity of the game. Simulation results show that the loss in per-

formance for the decentralized method in comparison with the centralized one is negligible.

• Due to the fact that SUs have no knowledge about the states of other SUs and jammer,

the parameters for the decentralized scheme must be learnt from a proper scheme like the

one proposed in [22]. We propose a Boltzmann-Gibbs algorithm to estimate the unknown

parameters for each users. Simulation results show that this method yields considerable

performance gains. Moreover, the convergence of the proposed decentralized game can be

controlled by learning parameters.

The rest of this paper is organized as follows. The system model is presented in Section II.

In Section III, a centralized algorithm based on a two-levelauction is described. In Section IV,

we propose a truthful decentralized method in accordance with the proposed centralized auction.

The simulation results are given in Section V. Finally, in Section VI, we conclude the paper.

II. SYSTEM MODEL AND PROTOCOL DESCRIPTION

We consider a CR network consisting ofM channels having a slotted-time structure indexed

by j ∈ {1, 2, . . . ,M}. Moreover, the duration of each time-slot is assumed to beTs. There are

N ≥ M SUs that seek to access the vacant channels to send their data. Moreover, these users are

selfish and non-cooperative. The primary network consists of a number of PUs who have a have

priority to use the channels in a slotted-time manner. We consider an on-off scheme to model

the channel usage, in whichyj(t) = 1 andyj(t) = 0 indicate that channelj is idle and busy at

time t, respectively [18] and [19]. The transition probabilitiesfrom on-to-off and off-to-on are

αN2F,j andαF2N,j, respectively. Without loss of generality, we assume that every SU can only

use one channel at timet [23]. In order to avoid the conflict with the PUs transmission, each

SU knows the availability of all the channels before transmitting. This can be done by using

wideband sensing or cooperative sensing techniques [24].
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Fig. 1. The system model including SUs, PUs and a malicious user.

The state of channelj for SU i is assumed to be the received signal-to-noise-ratio (SNR)

γij(t), following an exponential distribution with mean ofγij. Similar to [25], we represent

γij(t) by discrete states to attain a finite Markov chain. In addition, let bti indicate the buffer

state of useri at timet andbti ∈ {0, 1, . . . , Bmax} whereBmax is the maximum buffer size. Thus,

the state of SUi at timet is si(t) =
(
γi1(t), γi2(t), . . . , γiM(t), bti

)
and the state of the stochastic

game is described as follows:

S(t) =
(
y1(t), . . . , yM(t), s1(t), . . . , sN(t)

)
, (1)

where the state of the gameS(t) consists of the state of each SU and the occupancy state of

each channel. The assigned channel to thei-th SU is denoted byAi(t). Moreover, it is possible

that no channel is assigned to the SU, i.e.,Ai(t) = 0. Thus, we haveAi(t) ∈ {0, 1, . . . ,M}.

Assume there is a malicious attacker in this scenario which attempts to interrupt the com-

munication links of the SUs by inserting interference. The action of malicious user is to jam

L channels chosen from the vacant channels. Indeed, if the malicious user jams channelj,

the communication link is assumed to be disrupted at that time. We assume that the jammer

knows the channel occupancy states at each stage time. For simplicity, we assumeL = 1, and

our approach can be extended toL > 1 case. The action of jammer,A0(t) ∈ {1, 2, . . . ,M},
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indicates the jammed channel by the attacker. Fig. 1 shows the proposed system model and

illustrates how users occupy the time-frequency resources.

Notice that the availabilities of the channels are only imposed by PUs, and hence, they are

independent of the attacker’s action and SUs’ actions. Consequently, we can now derive the

transition probability of the states as

P
(
S(t+ 1) | S(t), A0(t), A1(t), . . . , AN(t)

)
= (2)

P
(
y1(t+ 1), . . . , yM(t+ 1) | y1(t), . . . , yM(t)

) N∏

i=1

P
(
si(t+ 1) | si(t), A0(t), . . . , AN(t)

)
,

si(t+ 1) includes information about the channels’ conditions and the buffer state. The channel

conditions do not depend on the SUs action. Besides, the buffer state,bi(t + 1), is affected by

the jammer action,A0(t), the action of SUi, Ai(t), andsi(t). Hence, we can express the last

term of (2) as

P
(
si(t + 1) | si(t), A0(t), A1(t), . . . , AN(t)

)
= P

(
si(t + 1) | si(t), A0(t), Ai(t)

)

= P
(
bi(t+ 1) | bi(t), A0(t), Ai(t)

)
×

M∏

i=1

P
(
γij(t+ 1) | γij(t)

)
. (3)

We denote the incoming traffic of SUi at timet asf t
i wheref t

i ∈ {0, 1, . . . ,∞}. It is assumed

thatf t
i has the Poisson distribution with the averagefi [23]. Moreover, the buffer state is derived

from bi(t+1) = min
(
(bi(t)− gAi,A0(t))

++ f t
i , Bmax

)
. Hence, we have the following expression

for its transition probability

P
(
bi(t+ 1) | bi(t), A0(t), Ai(t)

)
= (4)





(fi)xefi

x!
, 0 ≤ x < −(bi(t)− gAi,A0(t))

+ +Bmax,
∑∞

x=B
(fi)xe

fi

x!
, x = −

(
bi(t)− gAi,A0(t)

)+
+Bmax,

where (c)+ = max(c, 0) and gAi,A0(t) indicates the transmission bit rate if channelAi(t) is

selected and channelA0(t) is jammed. Therefore,gAi,A0(t) can be calculated as [32]

gAi,A0(t) =

⌊
TsW log2

(
1 +

1.5γi,j
ln( 0.2

BERtar
)

)⌋
I(Ai 6= A0), (5)

whereTs, W and BERtar are the time duration, bandwidth of each channel and target bit error

rate, respectively. In (5),⌊X⌋ andI(Y ) indicate the largest integer number which is lower than

X and the sign ofY , respectively. When thei-th SU selects channelAi(t) and the jammer selects
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theA0(t)-th channel at the same time, the utility function of useri at timet is characterized as

follows

ri
(
S(t), Ai(t), A0(t)

)
= −

(
bi(t)− gAi,A0(t)− Bmax + f t

i

)+
. (6)

In our scenario, we consider the presence of a coordinator that allocates spectrum to the SUs

according to the submitted bids while maximizing the worst-case social welfare corrupted by

the attacker. Hence, the interactions between the coordinator and the SUs are cast as anauction

with the following elements:

• The auctionees are the SUs which aim at using the vacant channels.

• The auctioneer is the coordinator which allocates the channels to SUs. Afterwards, the

auctioneer and coordinator are used interchangeably.

• Each bid is denoted byaij,k, where1 ≤ j, k ≤ M . Here,aij,k indicates the proper bid for

SU i to use channelj while the attacker jams channelk.

• The following constraints must be satisfied at each stage of the auction:
M∑

j=1

zij(t) ≤ 1

∑N

i=1 zij(t) = 1, if channelj is idle,
∑N

i=1 zij(t) = 0, if channelj is busy,
(7)

in which zij(t) ∈ {0, 1} shows that channelj is allocated to thei-th SU if zij(t) = 1; and

is not allocated otherwise.

In order to combat the jammer, the coordinator should assignthe channels to the SUs via a

random strategy. In the next section, we will investigate this optimal strategy.

III. A NTI-JAMMING DECENTRALIZED GAME BASED ON LEARNING PROCESS

In the previous section, the PC-game is proposed in order to extract the anti-jamming mecha-

nism under the condition that all SUs and the auctioneer act as one player to defeat the malicious

user. However, this assumption may not hold in general sincethe SUs are selfish and maybe

untruthful. Unreliable information may lead to an improperstrategy for protection of the SUs

against the jammer. Besides, the SUs send theirM ′2 bids to the coordinator, which has the high

complexity. Due to these drawbacks, this section suggests adecentralized method according to

the framework provided by the PC-game.
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In the PC-game, we use a two level auction, and our aim is to specify a distribution function

to the actions. These actions can be recognized by the first and second preferences of all the

SUs. First, pay attention top∗T
1 Up∗

2 =

(∑ N!
(N−M′)!

l=1 p∗
1,lU

l

)
p∗
2 wherep∗

1 andp∗
2 are the optimal

policies of the auctioneer and the jammer, respectively. Moreover,p∗
1,l andU l are thel-th entry

of p∗
1 and thel-th row of payoff matrixU of the original game inDefinition 1. If we extend

eachU l into its elements, we have the following formulation:

( N!
(N−M′)!∑

l=1

p∗
1,lU

l

)
p∗
2 =

( N∑

i=1

M ′∑

j=1

p∗
u(i,j)[ai,j,1, . . . , ai,j,M ′]

)
p∗
2, (8)

in which p∗
u(i,j) is equal to the probability of selection of thej-th channel for thei-th user.

Every policy, which yields the samep∗
u(i,j), is the optimal strategy against the attacker. This fact

motivates us to move from the PC-game to a distributed game. In the PC-game, we specify a

probability to each action distinguished by the first auction or equivalently the first preferences

of the SUs. By truthfulness assumption and help of the mentioned fact, if each SU individually

estimate the probabilities connected with the preferencesover the channels, then the value of

the PC-game obtained from (14) can be approximated by the following formulation:

M ′∑

l1=1

. . .

M ′∑

lN=1

Ql1 . . . QlNU l1,...,lNp
∗
2 ≅ p∗T

1 Up∗
2, (9)

whereQli andU l1,...,lN are the estimated probability related to the first preference by thei-th

SUand the value of the game when the SUs’s preferences arel1, . . . , lN , respectively.

Each auction consists ofM ′ allocations to the SUs. Note that fromProposition1, we only

needM ′ auctions to reach to the best response against the jammer. Thus, there are at mostM ′2

important probabilities,p∗
u(i,j), at each stage of game. Moreover, it can be easily demonstrated

that every policy, which has theseM ′2 probabilities, is optimal from the perspective of the

zero-sum game. On the other side, each SU has control overM ′ probabilities for stating its

first preference over the channels. From this point of view, the SUs haveN ×M ′ variables for

estimations ofM ′2 important probabilities which are improved with increasing N compared to

M .

At this time, by applying the auction feature to the game, thecoordinator can get payments

from the SUs. The payment of each SU is constructed from two parts. One payment part is related
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to the first-auction and the other part is associated with thesecond-auction. The computation

approach of the payment for the first-auction which is similar to [23]is stated as

pti =

N∑

(k=1,k 6=i)

M ′∑

j=1

zt,optkj a′kj(t)− max
(zkj |a

′

ij=0,∀j)

N∑

(k=1,k 6=i)

M ′∑

j=1

ztkja
′
kj(t), (10)

in which zt,optkj is the solution of the first auction. For the second-auction,this payment can also

be computed by the same procedure while the selected SUs in the first-auction and their corre-

sponding announced bids are omitted by the coordinator. ThePD-game procedure is described

in Table I. We show these payments oblige the SUs to bid truthfully. In order to prove that

the proposed distributed game (PD-game) contains the truthful mechanism, first we define the

concept of truthfulness in expectation.

Definition 1: Assumevi, v′i, v−i and pti are the real value of bid for useri, the announced

value of bid for useri, the value of bids for other users and the payment assigned touser i,

respectively. A mechanism is truthful in expectation when for any useri and anyv−i ∈ V−i

of other users, the expectation of profit attained by useri, E{vi′ − pti(vi
′, v−i)} is maximum if

v′i = vi [28].

We now focus on a proposition which states that the PD-game istruthfulness in expectation.

Proposition1: The proposed procedure for assigning payment satisfies truthfulness in the

expectation criterion.

Proof: The proof is given in Appendix C.

Note that the payment of each SU, which is dependent on all theSUs’ bids, converts the

profit gained by each SU into a notion of the overall value of the zero-sum game. Thus, we are

trying to model the game between each SU and the attacker as the zero-sum game separately

so that the separate game for each SU has some external factors related to other SUs, and each

SU is effective only on a certain amount of the profit.

By doing so, every SU computes the distribution of stating its preference over the channels.

In addition, the communication burden of stating its bids obviously plummets. Since, the SU

only sendsM ′ bids instead of statingM ′2. Duties of the coordinator decreases since it only

computes the first and second-auctions and their related payments. Indeed, the utility matrix of

the separate game between each SU and the attacker is modeledas a(M ′×M ′) matrix because

the SU hasM ′ choices for the announcement of its first preference. Note that our algorithm

is distinct from work suggested in [30] in which authors employ a factored approximation of
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TABLE I

THE PROPOSED DECENTRALIZED GAME

Step 1. The SUs submit the bid based upon (12) to the coordinator. Atthe same time, the SUs announce their preferences over

channels in order to be used in the first and second auctions.

Step 2. First auction is computed for the first preferences of the SUs. Then, allocation and payment for each SU is assigned to

them by using (7) and (16).

Step 3. Similarly, the second auction is computed for the remaining channels and the SUs.

the overall Q-function based upon the linear combination ofusers’ Q-function for the stochastic

game. The proposed algorithm is not applicable in our scenario because the SUs are selfish and

interested in benefiting further. Indeed, the payment structure makes the profit of SUs’ network

directly relevant to each individual profit due toProposition3. Instead,p∗1 is estimated by SUs’

probabilities,Ql1 , . . . , QlN .

The fundamental difficulty of the PD-game is that each SU doesnot know enough about

its related separate utility matrix. Remembering that the game will be repeated infinitely, and

therefore, the SUs can learn their utilities by a certain learning scheme. We employ the scheme

proposed in [22]. The advantage of this scheme is that each SUcan adapt different patterns

of learning. The probabilistic strategy over the actions and utility of each stage can be learned

through the game. First, we apply an iterative Boltzmann-Gibbs strategy which is stated as

σi

(
qt
1i, û1i,t,S(t)

)
(j) =

qt
1i

(
j,S(t)

)
e

û1i,t

(
j,S(t)

)
ǫ

∑M ′

j=1 q
t
1i

(
j,S(t)

)
e

û1i,t

(
j,S(t)

)
ǫ

(11)

whereqt
1i

(
j,S(t)

)
and û1i,t are distribution of selecting channelj as the first preference of SU

i and the estimated average payoffs updated at iterationt, respectively [22]. Next, we update
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distribution and payoff, respectively, as

q
(t+1)
1i

(
S(t)

)
= (1− λ1i,t)q

t
1i

(
S(t)

)
+ λ1i,tσi

(
qt
1i, û1i,t,S(t)

)
(j) (12)

û1i,t+1

(
S(t)

)
= û1i,t

(
S(t)

)
+

µ1i,t

qt
1i

(
j,S(t)

)
(
U1i,t

(
S(t)

)
− û1i,t

(
S(t)

))
. (13)

in whichU1i,k,t is the profit gained by SUi at timet when selecting channelj as its preference,

which is zero when no channel is assigned to it, and isa′ij,k − pi(t) when channelj is assigned.

Furthermore,µ1i,t andλ1i,t are the learning rates indicating players’ capabilities ofinformation

retrieval and update. Therefore, each SU can learn the distribution over its preference from

implementing a Q-learning based method. It can be proved that Q-learning method converges

to the optimal solution for only single-agent case; However, there is no such a guarantee for

multi-agent cases [29]. In the next section, simulation results illustrate the convergence of the

PD-game to the sub-optimal solutions.

IV. SIMULATION RESULTS

In this section, we provide simulation results to verify thetruthful anti-jamming network. We

consider a cognitive radio environment withM channels,N secondary users and a malicious user.

We assume that the state of signal to noise ratio for SUi and channelj, γij, has three values10, 30

and 50. The probability of state transitions from these states arep(γij = 10|γ1
ij = 10) = 0.4,

p(γij = 30|γ1
ij = 10) = 0.3, p(γij = 10|γ1

ij = 30) = 0.3, p(γij = 30|γ1
ij = 30) = 0.4,

p(γij = 10|γ1
ij = 50) = 0.3, and p(γij = 30|γ1

ij = 50) = 0.3. In addition,αN2F,j = 0.3 and

αF2N,j = 0.4 for 1 ≤ j ≤ M . We set also BERtar for all the users in (5) as10−5.

A. Convergence

The convergence speed of the PC-game and the PD-game for three SUs are investigated in

Fig. 2 and Fig. 3 whenM = 2 andM = 3, respectively. Besides,Bmax = 2 and fi = 0.5 for

all SUs for the either case. The normalized cumulative valueof SUs is used as a convergence

comparison tool. As Fig. 2 and Fig. 3 report, both algorithmsconverge; however, the PD-game

takes longer time to reach the stable solution. The PD-game is done in the decentralized scheme

with incomplete information. Therefore, it needs more times to learn the unknown parameters.
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Fig. 2. The convergence of the normalized cumulative value of SUs in the PD-game and PC-game in a networks withM = 2

andN = 3.

In particular, the convergence rates in Fig. 3 for both the PC-game and PD-game are quite slower

than those in Fig. 2. Indeed, increase inM leads to rises in the numbers of the states and the

complexity of the system. Consequently, the required numbers of iterations in Fig. 3 explicitly

becomes greater.

The learning parametersλ1i,t, µ1i,t and ǫ in (17), (18) and (19) play important roles in the

convergence of the PD-game. In [22], it is shown thatλ1i,t

µ1i,t
→ 0 for assurance of the convergence.

Hence, we considerλ1i,t

µ1i,t
=

1

T
(1+β)
S

1
TS

whereTs is the repetition numbers of state occurrence, where

β > 0. Fig. 4 depicts the effect of differentβ andǫ on the iterations required for the convergence

under the mentioned condition whenM = 2. It is clear that when these parameters increase,

the convergence speed decrease, since the impact of instantaneous utilities on current strategy

decreases.

B. The effects of SU parameters on performance

In this part, the effects of the maximum allowableBmax, the number of channelsM , and the

number of usersN on the PD-game and the PC-game are evaluated. In order to havea similar
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benchmark for comparison of two methods, we define a new parameterθ based on (6) as,

θ =
∑

t=0

N∑

i=1

−ri(t)/N.
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Fig. 5. The effect of differentBmaxs andǫs on the performance of the PD-game.

Fig. 5 and Fig. 6 illustrate the performance of the PC-game and the PD-game byθ for variable

Bmax andN whenM = 2 andM = 3, respectively. The other parameters are set alike to the

previous part. In Fig. 5, the SU with the greaterBmax is able to hold the data for a longer time.

Thus, the increment inBmax decreasesθ. In other words, it can improve the performance of the

system. However, increase inN has opposite impact on theθ which is result of increasing the

dropping probability of data. Moreover, Fig. 6 shows the performance whenM = 3. Note that

both the PC-game and PD-game in Fig. 6 have lowerθ rather than those in Fig. 5 for the same

condition. Indeed,M = 3 increases the opportunities of available vacant channels for each SU;

therefore, decreases the numbers of unsent buffered information.

The performance of the scenario for different average of incoming trafficfi and the numbers of

SUs is shown in Fig. 7 and Fig. 8. The results are obtained forM = 2 andM = 3, respectively.

Rise in fi means that the average of incoming traffic increase. The outcome of the rise is to

receive more traffic data at each stage of the game; as a result, the average unsent trafficθ

increase. Finally, Fig. 9 displaysθ versusfi whenN = M . Notice that increase inN along with

M causesθ to be lower which validates our discussion about the performance of the scheme.V. CONCLUSION

Spectrum management among the SUs is a vital issue for CR networks, and auction theory

provides a helpful tool to allocate spectrum to SUs. In this article, first, we proposed a centralized
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two-level auction which combined both the advantages of efficient resource assignment to SUs

and acting against the malicious user. Next, a proposition for the zero-sum game was given which

can be applied in a game with the non-uniform number of users’actions. More importantly,

we introduced a decentralized protocol based upon the centralized method properties and the
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mentioned proposition. The decentralized scheme obliges SUs to bid truthfully because SUs can

gain higher profit in expectation for the long-term interaction. Simulation studies show that both

the centralized and decentralized scheme converge in the limited numbers of stages. Moreover,

the performance of the proposed approach are comparable with the efficient centralized solution.

APPENDIX A

PROOF OFPROPOSITION1

Consider a zero-sum game with payoff matrixO as follows
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O =




o1,1 · · · o1,l2
...

. . .
...

ol1,1 · · · ol1,l2




(14)

in which on,m shows that player1 and player2 obtain on,m and−on,m profitwhen they select

their n-th andm-th actions, respectively. To attain the optimal solution [26], we should consider

mixed strategy with the help of the following equation:

max
p1

min
p2

pT
1Op2 = min

p2

max
p1

pT
1Op2 = v (15)

wherep1 andp2 indicate the probability distributions over the related actions of player1 and

player2, andv is the value of the game. Moreover,O can be expressed as,

O =
[
oT
1 ,o

T
2 , . . . ,o

T
l1

]T

whereoi is 1× l2 vector for i ∈ (1, . . . , l1). Hence,v1 = pT
1O =

∑N

i=1 p1,ioi and v= v1p2. In

addition, we consider all the entries of matrix are more thanzero. The value of the game, which

containsl1 actions with vectorso1, . . . ,ol1, is denoted by zerosum(o1, . . . ,ol1). First, we state

a lemma in order to prove the proposition.

Lemma1: If the following relationship exists betweeno1, . . . ,ol1 , player 1 can play the

game without thel1-th action while it gets the same value,

ol1 = λ1o1 + λ2o2 + . . .+ λl1−1ol1−1

l1−1∑

i=1

λi = 1, −∞ < λi < ∞, ∀i. (16)

Proof: First, assume that player1 has optimal probabilitiesp∗1,1, . . . , p
∗
1,l1−1 overo1, . . . ,ol1−1,

respectively. Equation (22) can be rewritten by the following representation,

ol1 =

((((
(h11o1 + h12o2)h21 + h22o3

)
h31 + h32o4

)
+ . . .

)
hl1−2,1 + hl1−2,2ol1−1

)
,

where the following relationships exist between the set ofhk,1s andhk,2s

hk,1 + hk,2 = 1, 1 ≤ k ≤ l1 − 2.
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Moreover, we have the next equations between{hk,1, hk,2} and{λk} for 1 ≤ k ≤ l1 − 2,

hl1−2,2 = λl1−1, hl1−2,1 = 1− λl1−1,

hl1−3,2(hl1−2,1) = λl1−2, hl1−3,1 = 1− hl1−3,2,

. . . . . .

h2,2

∏l1−2
i=3 hi,1 = λ3, h2,1 = 1− h2,2

h1,2

∏l1−2
i=2 hi,1 = λ2, h1,1

∏l1−2
i=2 hi,1 = λ1.

(17)

Afterwards, we introduce a game containingl1 actions with vectorso1, . . . ,ol1−1 and o′
l1

=

h1,1o1+h1,2o2. Besides, the optimal probabilities of the new game are assumed asq∗1,1, . . . , q
∗
1,l1−1

andq
′∗
1l1

. The value of game to which thel1-th action is added is not less than the game without

the l1-th action according to [31], meaning that,

zerosum(o1, . . . ,ol1−1) ≤ zerosum(o1, . . . ,ol1−1,o
′
l1
= h11o1 + h12o2). (18)

In other words, for the new game, we have the following results,

zerosum(o1, . . . ,ol1−1) ≤ zerosum(o1, . . . ,ol1−1,o
′
l1
= h11o1 + h12o2)

= min
v
(q∗11o1 + . . .+ q∗1,l1−1ol1−1 + q

′∗
1l1
o

′

l1
)

= min
v
((q∗11 + h11q

′∗
1l1
)o1 + (q∗12 + h12q

′∗
1l1
)o2 + . . .+ q∗1,l1−1ol1−1),

whereminv finds the entry with the minimum value of vectorv. If both h1,1 andh1,2 are not less

than zero, set(q∗11 + h1,1, q
∗
12 + h1,2, . . . , q

∗
1,l1−1) can be interpreted as a distribution vector over

l1 − 1 actions of player1. Notice that each probability distribution over these selected actions

brings the value not greater thanv. Thus, we can conclude that

zerosum(o1, . . . ,ol1−1) ≥ zerosum(o1, . . . ,ol1−1,o
′

l1
= h11o1 + h12o2). (19)

Due to (24) and (25), we have

zerosum(o1, . . . ,ol1−1) = zerosum(o1, . . . ,ol1−1,o
′

l1
= h11o1 + h12o2). (20)

In other words, if the actionl1 with vectoro
′

l1
= h1,1o1 + h1,2o2 is eliminated, we will gain the

same value. However, if one of them is less than zero, we cannot get the above formulation.

Without loss of generality, we assume thath1,1 < 0 and−α = q∗11 + h1,1q
′∗
1l1

< 0. Remind that
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h1,1 + h1,2 = 1, thush1,2 > 0 and thereforeq∗1,2 + h1,2q
′∗
1,l1

> 0 . Because the summation over

probabilities is 1, hence,

l1−1∑

i=1

q∗1,i + q
′∗
1,l1 = 1

(q∗1,1 + h1,1q
′∗
1l1) + (q∗1,2 + h1,2q

′∗
1l1) + . . .+ q∗1,(l1−1) = 1,

(q∗1,2 + h1,2q
′∗
1,l1

) + · · ·+ q∗1,(l1−1) = 1 + α.

Now, consider distribution vector[T2, T3, . . . , Tl1−1] which is constructed by the following,




(q∗1,2+h1,2q
′
∗

1,l1
)

(1+α)
= T2

q∗1,3
(1+α)

= T3

. . .

q∗
1,(l1−1)

(1+α)
= Tl1−1

(21)

whereT2 + T3 + · · ·+ Tl1−1 = 1. Again, we have the following inequality:

min
v
(o2T2 + . . .+ ol1−1Tl1−1) ≤ zerosum(o2, . . . ,ol1−1) ≤ zerosum(o1,o2, . . . ,ol1−1). (22)

To put it differently, (28) can be reformulated as

min
v

(
o2p

∗
12 + · · ·+ ol1−1p

∗
1(l1−1)

1− p∗11

)
≤ zerosum(o2, . . . ,ol1−1) ≤ zerosum(o1,o2, . . . ,ol1−1).

Besides, (24) gives that

min
v

(
(1 + α)(o2T2 + · · ·+ ol1−1Tl1−1)− αo1

)
> zerosum(o1,o2, . . . ,ol1−1),

and,

min
v

((
o2p

∗
12 + · · ·+ ol1−1p

∗
1(l1−1)

1− p∗11

)
(1− p∗11) + p∗11o1

)
> zerosum(o1,o2, . . . ,ol1−1).

If bk, ck anddk are thek-th the entries of(o2T2+ · · ·+ol1−1Tl1−1),

(
o2p

∗

12+···+ol1−1p
∗

1(l1−1)

1−p∗11

)
and

o1, respectively, we could obtain the following result,

bk >
dk

α + 1
+

zerosum(o1,o2, . . . ,ol1−1)

α + 1
>

α(zerosum(o1,o2, . . . ,ol1−1)− p∗11ck)

(α + 1)(1− p∗11)
+

α(zerosum(o1,o2, . . . ,ol1−1))

α+ 1
=

zerosum(o1,o2, . . . ,ol1−1)

(
α

(1 + α)(1− p∗11)
+

1

α + 1

)
−

αp∗11)ck
(1 + α)(1− p∗11)

. (23)
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Consequently,

zerosum(o1, . . . ,ol1−1)

(
α

(1 + α)(1− p∗11)
+

1

α + 1

)
<

αp∗11ck
(1 + α)(1− p∗11)

. (24)

This suggests the following inequality forbk, ck anddk

w1ck + w2bk > dk st. w1 + w2 = 1. (25)

Therefore, consideration of both (30) and (31) gives us the following inequality,

zerosum
(
o1,o2, . . . ,ol1−1

)
<

min
v

(
w1

(
o2p

∗
12 + · · ·+ ol1−1p

∗
1,l1−1

1− p∗11

)
+ w2(o2T2 + · · ·+ ol1−1Tl1−1)

)

= min
v

(β2o2 + · · ·+ βl1−1ol1−1) (26)

in which β2+ β3+ · · ·+ βl1−1 = 1 , β2, β3 ,. . . , βl1−1 ≥ 0. We know that the minimum entry of

vectorβ2o2 + · · ·+ βl1−1ol1−1 is not higher than zerosum(o1,o2, . . . ,ol1−1) for any set ofβ2,

β3 ,. . . , βl1−1. Therefore, our initial assumption is not correct. In otherwords,q∗1,1 + h1,1q
′∗h1,l1

is not less than zero, and we can obviateo
′

l1
. It means that

zerosum(o1, . . . ,ol1−1) = zerosum(o1, . . . ,ol1−1,o
′

l1
= h1,1o1 + h1,2o2). (27)

Returning to the general case in (22), it can be concluded from (33) that

zerosum(o1, . . . ,ol1−1) = zerosum(o1, . . . ,ol1−1,o
′

l1
= h1,1o1 + h1,2o2) =

zerosum(o1, . . . ,ol1−1,o
′

l1
, h2,2o3 + h2,1o

′

l1
) = zerosum(o1, . . . ,ol1−1, h2,2o3 + h2,1o

′

l1
) =

zerosum

(
o1, . . . ,ol1−1, h22o3 + h21o

′

l1
, h3,1(h2,2o3 + h2,1o

′

l1
) + h3,2o4

)
= . . . =

zerosum

(
o1, . . . ,ol1−1, h31(h22o3 + h21o

′

l1
) + h32o4

)
=

zerosum

((((
(h11o1 + h12o2)h21 + h22o3

)
h31 + h32o4

)
+ . . .

)
h(l1−2)1 + h(l1−2)2ol1−1

)
=

zerosum(o1, . . . ,ol1−1,ol1). (28)

The expression in (34) states that ifol1 satisfies the conditions ofLemma1, we can omit it.

Here, we return to proveProposition1. Eachoi hasl2 entries, so we can represent all of thel1
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vectors by at mostl2 vectors of them. These basic vectors are linear and independent. Without

loss of generality, we assume that these vectors areo1, . . . ,ol
′

2
, wherel

′

2 ≤ l2. Based upon the

vector representation, all{oi}s are classified into three groups.

Now, we assume that eachoi can be displayed byoi = λ1,io1 + · · · + λl
′

2,i
ol

′

2
. Also, the

coefficients are unique due to linearity and independency. These groups are stated as follows:

Group I: If
∑l

′

2
j=1 λj,i = 1, we can obviateoi and get the same value as inLemma1.

Group II: If
∑l

′

2
j=1 λj,i < 1, we have the following facts:

We assume that the optimal probability distributions over the l1 actions arep∗1,1, . . . , p
∗
1,l1

.

zerosum(o1, . . . ,ol1) ≥ zerosum(o1, . . . ,oi−1,oi+1, . . . ,ol1)

where the second term does not includeoi. From [26], we know that

zerosum(o1, . . . ,ol1) = min
v

(p∗1,1o1 + · · ·+ p∗1,l1ol1). (29)

Now, we extend (35) as

p∗1,1o1 + · · ·+ p∗1,ioi + · · ·+ p∗1,l1ol1 = p∗1,1o1 + · · ·+ p∗1,i(λ1io1 + · · ·+ λl′2i
ol′2

) + · · ·+ p∗1,l1ol1

< p∗1,1o1 + · · ·+ p∗1,i(λ1,io1 + · · ·+ λl′2i
ol′2

) + · · ·+ p∗1,l1ol1 +

(
1−

l′2−1∑

j=1

λji − λl′2i

)
ol′2

= p∗1,1o1 + · · ·+ p∗1,i

(
λ1,io1 +

(
1−

l′2−1∑

j=1

λi,j

)
ol′2

)
+ . . .+ p∗1,l1ol1

in which we call the expression stated in parenthesis in the last term aso′
i. The value of the

game when playing witho′
i instead ofoi is given via

zerosum(o1, . . . ,o
′

i, . . . ,ol1) ≥ min(p∗11o1 + · · ·+ p∗1io
′

i + · · ·+ p∗1l1ol1) >

min(p∗11o1 + · · ·+ p∗1l1ol1) = zerosum(o1, . . . ,ol1).

Now,oi can be represented by basic vectors{o1, . . . ,o
′

i, . . . ,ol1} in which the sum of coefficients

becomes1. Thus, we can obviateo′
i and at the same time get the same value. In other words,

we have

zerosum(o1, . . . ,oi−1,o
′

i,oi+1, . . . ,ol1) = zerosum(o1, . . . ,oi−1,oi+1, . . . ,ol1).

Moreover, we have

zerosum(o1, . . . ,ol1) ≥ zerosum(o1, . . . ,oi−1,oi+1, . . . ,ol1).
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Then, we can remove all of vectors which have coefficients satisfying the following inequality

without loss in the value of the game,v.

l′2∑

j=1

λji < 1. (30)

Group III: If
∑l′2

j=1 λji > 1, we can showoi by the following equation

oi = λ1,io1 + λ2,io2 + · · ·+ λ
l2

′

,i
ol′2−1. (31)

In this case, there exists at least one coefficient, e.g.,λl′2,i
, which is greater than zero. Now, we

try to showol′2
by o1, . . . ,ol′2−1 includingoi. Indeed,

ol′2
=

−(λ1io1 + λ2io2 + · · ·+ λl′2−1iol′2−1)

λl′2i

+
1

λl′2i

oi = µ1o1 + µ2o2 + · · ·+ µl′2−1ol′2−1.

However, we know that

µ1 + · · ·+ µl′2−1 =
−(λ1i + λ2i + · · ·+ λ

l2
′

−1,i) + 1

λl′2i

> 1. (32)

Therefore, we can removeo
l2

′ according to the second group. As a result, we only need thel2

actions among thel1 onesand get the same value. Similar classification can be applied to vectors

of o1, . . . ,ol1 and at each stage one vector is removed. Finally,l′2(l
′
2 6 l2) actions (vectors)

remain for playing the game.

APPENDIX B

PROOF OFPROPOSITION2

First, we consider an assumption for each allocation to continue our proof.

Assumption 1:If the following relation exist between vectors of allocations,{h1,h2, . . . ,hM ′,

hM ′+1},
M ′∑

i=1

λihi = hM ′+1,
M ′∑

i=1

λi = 1, (33)

for 1 ≤ i ≤ M ′ + 1, EL{hi} * EL{h1, . . . ,hi−1,hi+1, . . . ,hM ′+1},

then the occurrence probability of all relations is zero.

Indeed, eachhi hasM ′ entries. Accordingly, the allocation vectors constructM ′ equations,

and we haveM ′ − 1 parameters involvingλ1, . . . , λM ′−1. For (39), we haveM ′ − 1 parameters

satisfyingM ′ equations. This situation makes hard to yield theseM ′ − 1 parameters out of

M ′ equations. For instance, if eachaij,k is independent with respect to the otherai′j′,k′ with
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the uniform distribution, this assumption is precise. Also, our simulation result certifies the

assumption. We assume that the attackers strategy is the same as the strategy of the original

zero-sum game. In the original form, we have the following equation

p∗T
1 Up∗

2 = max
p1

min
p2

pT
1Up2,

Up∗
2 =




u1

. . .

u N!
(N−M′)!


 ,

in which p∗

1 and p∗

2 are the optimal action probabilities of the coordinator andattacker,

respectively, andU is the payoff matrix in accordance with the zero-sum game between the

coordinator and the attacker.

The relatedui’s to the allocations with the non-zero probabilities, which are named as the

proper allocations, are the same as the overall value of the game andmax(u1, . . . ,u N!
(N−M′)!

).

According toProposition1, we only needM ′ proper allocations, namely complete allocations,

to obtain the similar value when using all actions. Hence, wemust show that each complete

allocation is surely selected as the solution of the PC-gameat least one action by means of

contradiction. Notice that if more than one proper allocations exist in the first-auction, only

one of them is randomly selected as the solution of auction. Furthermore, we know that each

allocation of channels can be foundM ′(N−M ′) times at the first auction. The worst case occurs

for a complete allocation, for exampleJ , when at least one of the other proper allocations

always exists in the first auction including this allocation. For simplicity, we assume thatJ is

(1, 2, . . . ,M ′). Now, consider the following first auctions:



1 : (1, 2, . . . ,M ′, 1, . . . , 1)

2 : (1, 2, . . . ,M ′, 2, . . . , 2)

. . .

M ′ : (1, 2, . . . ,M ′,M ′, . . . ,M ′)

(34)

where (1, 2, . . . ,M ′, j, . . . , j) means that this first-auction includes allocationJ , and the co-

ordinator selects channelj for the remaining users as well. Hence, we have at leastM ′ + 1

proper allocations among the above actions. These vectors cannot be linearly independent since

dimension of vectors isM ′. Therefore, we have the following according toProposition 1.

J = λ1ho1 + λ2ho2 + . . .+ λM ′hoM′
λ1 + . . .+ λM ′ = 1, (35)
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wherehoi
s are the proper allocations. Also, any two allocations ofM ′ + 1 allocations differ

from two elements so that the conditions ofAssumption 1are satisfied, and the probability of

this occurrence is zero. Hence, our initial assumption about the concurrent existence of these

allocations, is not correct and the PC-game is equal to the original game.

APPENDIX C

PROOF OFPROPOSITION3

In the PD-game, payment for useri has two parts,pi,1 andpi,2, which are related to first and

second auctions. If we assume that the SUs choose preferences l1, . . . , lN as their actions and

channelj is dedicated to thei-th SU while the attacker jams channelh, we have the following

formulation for the average profit of SUi.

E
(
vi − pti1(v̂i, v−i)− pti2(v̂i, v−i) | l1, . . . , lN

)

= aij,hQ2,h(t) +

M ′∑

h=1

([ N∑

k=1,k 6=i

zt,optklk
a′klk(t)− max

Z|aij′=0∀j′

N∑

k=1,k 6=i

ztklka
′
klk(t)

])
Q2,h(t)

+
M ′∑

h=1

[ N∑

k=1,k 6=i,k∈S1

M ′∑

j′=1,j′∈S2

zt,optkj′ a′kj′(t)− max
Z|aij′=0∀j′

N∑

k=1,k 6=i,k∈S1

M ′∑

j′=1,j′∈S2

ztkj′a
′
kj′(t)

]
Q2,h(t)).(36)

In (42), vi and v̂i are the actual and submitted bid for SUi. Moreover,Q2,h, S1 and S2 are

the probability for jamming of channelh by the jammer, the set of SUs and channels remained

from first auction, respectively. To attain thei-th user’s profit, we should apply the probability of

preferences for all the SUs. Moreover,p2(t) ≅ Q2(t), therefore,
∑

hQ2,h(t)aij,h = a′ij similar

to (12). Hence, the expectation profit can be stated as follows,

E
(
vi − pti(vi, v−i)

)
=

M ′∑

o1=1

Ql1

M ′∑

o2=1

. . .

M ′∑

oN=1

Ql2 . . . QlN

[ N∑

k=1

zt,optklk
a′klk(t)− max

Z|aij′=0∀j

N∑

k=1,k 6=i

ztklka
′
klk(t)

]
+

[
N∑

k=1,k 6=i,
k∈S1

M ′∑

j=1,j 6=j′

j∈S2

zt,optkj a′kj(t)− max
Z|aij=0∀j

N∑

k=1
k∈S1

M ′∑

j=1,
j∈S2

ztkja
′
kj(t)

]
. (37)
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Equivalently,

E
(
vi − pti(vi, v−i)

)
=

M ′∑

o1=1

Ql1

M ′∑

o2=1

. . .

M ′∑

oN=1

Ql2 . . . QlN

[ N∑

k=1

zt,optklk
a′klk(t)

︸ ︷︷ ︸
1

+

N∑

k=1,k 6=i
k∈S1

M ′∑

j=1,j 6=j′

j∈S2

zt,optkj a′kj(t)

︸ ︷︷ ︸
2

]

−
[

max
Z|aij′=0∀j

N∑

k=1
k 6=i

ztklka
′
klk(t)

︸ ︷︷ ︸
3

+ max
Z|aij=0∀j

N∑

k=1
k∈S1

M ′∑

j=1
j∈S2

ztkja
′
kj(t)

︸ ︷︷ ︸
4

]
. (38)

The third and fourth terms are not function of thei-th SU. Therefore, we can disregard them

to further analysis. But, the summation over the first and second terms are equal to the total

profit of the SUs according to(15). In other words, the individual profit is equivalent to the total

profit. For this reason, the rational SUs must bid truthfully.
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