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Abstract—A three-hop AF MIMO relay system with tensor 

coding at the source and the relays is considered in this paper. The 

signals received at destination form a fifth-order tensor that 

satisfies a high-order nested Tucker decomposition, characterized 

by the concatenation of three Tucker models. We propose a 

receiver based on an alternating least square algorithm to jointly 

estimate the symbol matrix and the channels of each hop. Monte 

Carlo simulation results are provided to illustrate the behavior of 

the proposed system and of the semi-blind receiver. These 

simulation results show a performance closest to the one of the 

zero-forcing receiver, yielding a significant SER improvement due 

to the relay-assisted link when compared to the direct link. 

Keywords—MIMO systems; nested Tucker decomposition; semi-

blind receivers; tensor coding; tensor models; three-hop relaying. 

I.  INTRODUCTION 

The exploitation of multiple-input multiple-output (MIMO) 
relay systems has been prominent in the development of new 
signal processing techniques for 5G communication systems. In 
the last two decades, the application of tensor models to wireless 
systems [1]-[2] has allowed the processing of multimodal 
signals exploiting several diversities like space, time and coding 
diversities [3]-[6]. In addition, tensor models have interesting 
uniqueness properties that allow the design of semi-blind 
receivers, presenting advantages over other approaches that 
require the use of training sequences [7]-[8].  

In the context of cooperative networks [5]-[6],[9]-[10], the 
use of tensor coding at the transmitting nodes and an amplify-
and-forward (AF) relaying protocol (where the relay retransmits 
data without decoding) leads to received signals that form high-
order tensors. A tensor space-time coding (TSTC) was 
introduced in [3] and applied to a non-cooperative MIMO 
system, allowing spreading and multiplexing the transmitted 
symbols, in both space and time domains. In [5], TSTC at the 
source and the relay was applied to a two-hop MIMO relay 
system whose signals received at destination satisfy a fourth-
order tensor model based on a nested Tucker decomposition 
(NTD). In [6]-[9], three-hop MIMO systems were addressed 
exploiting the structure of a Khatri-Rao space-time (KRST) 
coding to derive semi-blind receivers based on parallel factor 
(PARAFAC) models. However, there are still few results on 
tensor approaches for multi-hop scenarios.  

In this paper, we propose a three-hop AF MIMO relay 
system with tensor coding at the source and the relays, which 
yields a received signals model that satisfies a fifth-order NTD 

[5]. This system generalizes two other systems introduced in [5] 
and [6] by the use of links assisted by multiple relays and tensor 
coding, respectively. Considering the coding tensors known at 
destination, we propose an alternating least squares (ALS)-based 
semi-blind receiver to jointly estimate the symbols and the 
individual channels. We provide Monte Carlo simulation results 
to illustrate the impact of design parameters on the system 
performance and the behavior of the proposed receiver in terms 
of symbol-error-rate (SER), normalized mean square error 
(NMSE) of the estimated channels and speed of convergence. 
The simulation results show a significant performance 
improvement in the estimation of symbols and channels when 
compared with the estimation based on signals received with the 
direct link. 

Notation: Scalars, column vectors, matrices and tensors of 
order higher than two are denoted by lowercase ��, �,⋯ �, 
boldface lowercase ��, �,⋯ �, boldface uppercase �	, 
,⋯ � and 

calligraphic ��, ℬ,⋯ � letters, respectively. 	
  and 	� denote 
the transpose and the Moore-Penrose pseudo-inverse of 	. 
Given a fourth-order tensor � ∈ ℂ��×��×��×��, the third-order 
tensor ���×�×� is a contracted form obtained by combining two 
modes of �, where ��, �,�, ! is any permutation of �"#, "$, "%, "&!. The matrix '���×� denotes a tall unfolding of � 
whose the entries are (),*,+,, = .'���×�/�)0#���1�*0#��1+,,. 

The Kronecker product is denoted by ⊗ and the operator vec�∙� 
transforms a matrix into a column vector by stacking the 
columns of its matrix argument.  

Given two tensors � ∈ ℂ��×⋯×�7 and ℬ ∈ ℂ8�×⋯×89 such 
that the last mode of � is equal to the first mode of ℬ, i.e. ": =;#, we define the following contraction operation 

< = � ×� ℬ ∈ ℂ��×⋯×�=>�×8�×⋯×8? , (1) 

where the entries of the tensor < are given by 

@A�,⋯,A=>�,B�,⋯,B? =C �A�,⋯,A=�A=,B�,⋯,B?
�=
A=D#

	. (2) 

II. THREE-HOP MIMO RELAY SYSTEM 

We consider a three-hop MIMO relay system composed of a 
source (S), two relays (R1 and R2) and a destination (D), as 
illustrated in Fig. 1. �) denotes the number of antennas at node G, with G ∈ �0,1,2,3!, and the superscripts L or M are used for 
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receiving or transmitting antennas. The nodes indexed by G = 0 
and G = 3 correspond to the source and the destination, 
respectively.  

The transmission is carried out in three steps. In the first one, 
the source sends the coded data to R1. Then, in the second one, 
R1 transmits the received information to R2. Finally, R2 forwards 
the signals to the destination. In this transmission scheme, we 
make the following assumptions: 

• the source and the relays encode the signals to be 
transmitted by means of a TSTC [3]; 

• the relays operate in half-duplex mode and use the AF 
protocol, retransmitting the received signals without 
decoding; 

• synchronization is at the symbol level; 

• all the channels are frequency-flat fading. 

In the sequel, we describe the signal models for all the steps 
of transmission. Additive white Gaussian noises (AWGN) are 
omitted to simplify the presentation.  

Let us define the symbol matrix N ∈ ℂ�×O, where P is the 
number of data streams transmitted at each symbol period Q, 
with Q = 1,⋯ , , where   is the number of symbols per data 

stream. The coding tensor <�R� ∈ ℂ�ST×US×O used by the source 

leads to the coded signals ��R� = <�R� ×% N ∈ ℂ�ST×US×�. 

Considering the channel matrix V�)� ∈ ℂ�WX�Y ×�WT  between the 
nodes G and G + 1, the tensor of signals received at the relay R1 
satisfies the following Tucker model 

��#� = ��R� ×# V�R�																														 
														= <�R� ×# V�R� ×% N ∈ ℂ��Y×US×�	. (3) 

The relays reencode the received signals by means of a coding 

tensor <�)� ∈ ℂ�WT×UW×�WY , for G ∈ �1,2!. The signals coded at 

the relay R1 define the tensor [�#� = <�#� ×% ��#� ∈
ℂ��T×U�×US×� to be transmitted to the relay R2. The signals 
received at the relay R2 can be written as follows 

��$� = [�#� ×# V�#� = \<�#� ×% ��#�] ×# V�#� 
											= \<�#� ×# V�#�] ×% ��#� ∈ ℂ��Y×U�×US×�	. (4) 

 The tensor (4) satisfies a fourth-order NTD, or NTD(4), 

defined in [5]. Analogously, R2 encodes ��$� and forwards the 
coded signals to the destination 

��%� = \<�$� ×# V�$�] ×% ��$� ∈ ℂ��Y×U�×U�×US×�	. (5) 

From the received signals (4)-(5), we define the following 
Tucker models 

^�#� = <�#� ×# V�#� ∈ ℂ��Y×U�×��Y 	, (6) 

^�$� = <�$� ×# V�$� ∈ ℂ��Y×U�×��Y , (7) 

and we rewrite the received signals tensor ��%� as the following 
fifth-order NTD 

��%� = ^�$� ×% ^�#� ×% ��#�. (8) 

The entries of the tensor ��%� are given by 

(+�Y,_�,_�,_S,,�%� = C C C C C Cℎ+�Y ,+�T�$�
O

aD#

�ST

+STD#

��Y

+�YD#

��T

+�TD#

��Y

+�YD#

��T

+�TD#
 

∙ @+�T ,_�,+�Y�$� ℎ+�Y ,+�T�#� @+�T ,_�,+�Y�#� ℎ+�Y,+ST�R� @+ST ,_S,a�R� b,,a	. (9) 

III. ALS RECEIVER 

 In this section, we develop an ALS-based semi-blind 
receiver to estimate the symbols and the channel matrices.  

A. Three-hop system 

 We now establish four matrix unfoldings of the tensor ��%� 
of signals received via relay-assisted link that will be used to 
derive the LS cost functions of the ALS algorithm for estimating 

the unknown matrices V�$�, V�#�, V�R� and N. We assume that 

the coding tensors <�$�, <�#� and <�R� are known at the 
destination.  

 From (8), we define the auxiliary tensors 

��#� = ^�$� ×% ^�#� ∈ ℂ��Y×U�×U�×��Y , (10) 

��$� = ^�#� ×% ��#� ∈ ℂ��Y×U�×US×� , (11) 

such that we can rewrite ��%� as 

��%� = ^�$� ×% ��$� = ��#� ×% ��#�. (12) 

By combining some modes of ��%�, we define three contracted 

forms of ��%� satisfying a Tucker-(2,3) model 

���YU�U�×US×��%� = ��#� ×# 	��YU�U�×��Y�#�
 

= <�R� ×# 	��YU�U�×��Y�#� V�R� ×% N	,										 (13) 

���YU�×U�×US��%� = ^�#� ×# c��YU�×��Y�$� ×% 'US�×��Y�#�
 

= <�#� ×# c��YU�×��Y�$� V�#� ×% 'US�×��Y�#� 	,	 (14) 

 

Fig. 1.  Three-hop MIMO relay system. 
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���Y×U�×U�US��%� = ^�$� ×% 	U�US�×��Y�$�
 

= <�$� ×# V�$� ×% 	U�US�×��Y�$� 	,														 (15) 

where 'US�×��Y�#�
 and c��YU�×��Y�$�

 are matrix unfoldings of ��#� and 

^�$�, and 	��YU�U�×��Y�#�
 and 	U�US�×��Y�$�

 are unfoldings of ��#� 
and ��$�, given by 

	��YU�U�×��Y�#� = dc��YU�×��Y�$� ⨂fU�g c��YU�×��Y�#� 	, (16) 

	U�US�×��Y�$� = dfU�⨂'US�×��Y�#� g cU���Y×��Y�#� 	. (17) 

Taking tall mode-1 unfoldings of (13)-(15) and a tall mode-3 
unfolding of (13), we get respectively 

'US�×��YU�U��%� = hfUS⨂NijUSO×�ST�R� d	��YU�U�×��Y�#� V�R�g
 , (18) 

'U�US�×��YU��%� = dfU�⊗'US�×��Y�#� g jU���Y×��T�#� dc��YU�×��Y�$� V�#�g
 , 
 (19) 

'U�U�US�×��Y�%� = dfU�⊗	U�US�×��Y�$� g jU���Y×��T�$� V�$�
 , (20) 

'��YU�U�US×��%� = d	��YU�U�×��Y�#� V�R�⊗ fUSg j�STUS×O�R� N
 . (21) 

 Equations (20)-(21) are useful to estimate V�$� and N, while 

(18)-(19) can be used to estimate V�R� and V�#� under vectorized 
form. Indeed, applying the property vec�	
j
� = �j ⊗	�vec�
� to (18) and (19) gives 

k��YU�U�US��%� = vec l'US�×��YU�U��%� m = d	��YU�U�×��Y�#� ⊗ 

n\fUS⊗N]jUSO×�ST�R� op vec lV�R�
m, 
 

(22) 

k��YU�U�US��%� = vec l'U�US�×��YU��%� m = dc��YU�×��Y�$� ⊗ 

nlfU�⊗'US�×��Y�#� m jU���Y×��T�#� op vec lV�#�
m. 
(23) 

 Note that the vectorizations in (22)-(23) perform the same 

mode combinations of ��%�, thus producing the same vector.  

 The ALS receiver consists of alternately minimizing (in an 
iterative way) the LS cost functions derived from (20)-(23) with 

respect to V�$�, N, V�R� and V�#�, respectively. The algorithm is 

summarized in Table I, where qM denotes the iteration number 

and the matrices 'rU�U�US�×��Y�%�
, 'r��YU�U�US×��%�

 and ks��YU�U�US��%�
 are 

noisy versions of 'U�U�US�×��Y�%�
, '��YU�U�US×��%�

 and k��YU�U�US��%�
, 

respectively. 

 The uniqueness of NTD models was discussed in [5]. It is 

ensured by the knowledge of the core tensors (<�R�, <�#� and <�$�) at the destination, and the unknown factors are affected 
only by scaling ambiguities, i.e. 	t = u		, where 	t is an 
alternative solution for the matrix factor 	 to be estimated. These 
ambiguities are eliminated by assuming a priori knowledge of 
one pilot symbol and one channel coefficient in two of the three 

hops. We assume the knowledge of b#,#, ℎ#,#�#� and ℎ#,#�$�.  
 Thus, to eliminate the scaling ambiguities on the estimated 
parameters, we use the following equations 

Nv ← uNNv														 (24) 

Vx �$� ← uV���Vx �$�									 (25) 

Vx �#� ← uV���Vx �#�									 (26) 

														Vx �R� ← \uNuV���uV���]0#Vx �R�, (27) 

where uN = b#,# b̂#,#⁄ , uV��� = ℎ#,#�$� ℎv#,#�$�{  and uV��� = ℎ#,#�#� ℎv#,#�#�{ .  

TABLE I. ALS RECEIVER FOR RELAY-ASSISTED LINK 

1. Randomly initialize NvA|DR, VxA|DR�#�
 and VxA|DR�R�

. 

2. qM = qM + 1. 

3. Update the tensors ��A|��#�, �̂A|��#� and ��A|��$�
 using (3), (6) and (17). 

4. Calculate the LS estimate of V�$�: 
\VxA|�$�]
 = ldfU�⊗ l	xU�US�×��Y�$� mA|gjU���Y×��T�$� m� 'rU�U�US�×��Y�%�

 

5. Update the tensors �̂A|��$� and ��A|��#�
 using (7) and (16). 

6. Calculate the LS estimate of N: 

NvA|
 = ldl	x��YU�U�×��Y�#� mA|VxA|0#�R� ⊗ fUSgj�STUS×O�R� m� 'r��YU�U�US×��%�
 

7. Calculate the LS estimate of V�R�: 
vec lVxA|�R�
m = dl	x��YU�U�×��Y�#� mA|⊗\fUS⊗NvA|]jUSO×�ST�R� g� ks��YU�U�US��%�

 

8. Update the tensor ��A|��#� using (3). 

9. Calculate the LS estimate of V�#�: 
vec lVxA|�#�
m = 

nlcx��YU�×��Y�$� mA|⊗ }dfU�⊗l'xUS�×��Y�#� mA|g jU���Y×��T�#� po
�
ks��YU�U�US��%�

 

10. Return to step 2 until convergence. 

11. Eliminate the scaling ambiguities using (24)-(27). 

12. Project the estimated symbols onto the symbol alphabet. 



 The system identifiability depends on the uniqueness of the 
LS solutions. For computing the pseudo-inverses in Table I, their 
arguments must be left-invertible, i.e. they must be full column 
rank. This implies the following necessary conditions 

~R ≥ maxn�R
|
P , P�R| ,

�#a o , ~# ≥ maxn
�#a�$a ,

�$a�#ao 

~$ ≥ �$a �%a⁄ , �#a ≥ �R| ,  ≥ P. (28) 

B. One-hop system 

 For the sake of comparison, we consider a one-hop system 
using TSTC at the source. In this subsection, we present this 
system and develop the corresponding ALS receiver to compare 
with the proposed three-hop system. We assume a one-hop 

MIMO system where the same encoded signals ��R� =<�R� ×% N are sent directly from the source to the destination 

through the channel V�R↦%� ∈ ℂ��Y×�ST . The signals received at 
destination satisfy a Tucker–(2,3) model 

��R↦%� = <�R� ×# V�R↦%� ×% N ∈ ℂ��Y×US×�	, (29) 

which can be written in scalar form as 

(+�Y ,_S,,�R↦%� = C Cℎ+�Y ,+ST�R↦%� @+ST ,_S,a�R� b,,a
O

aD#

�ST

+STD#
	. (30) 

We consider tall mode-1 and -3 unfoldings of this Tucker model 

'US�×��Y�R↦%� = hfUS⊗ NijUSO×�ST�R� V�R↦%�
 , (31) 

'��YUS×��R↦%� = hV�R↦%�⊗ fUSij�STUS×O�R� N
 . (32) 

From these unfoldings, we propose a two-step ALS-based 
algorithm minimizing two LS cost functions built from (31)-

(32), with respect to V�R↦%� and N, respectively. The ALS 
receiver for the direct link is summarized in Table II. 

 The uniqueness of the Tucker model is ensured by the 

knowledge of the core tensor <�R� at the destination. The 
estimated parameters are affected by scaling ambiguities that 
can be eliminated by assuming a priori knowledge of one pilot 
symbol (b#,#). The ambiguities on the estimated parameters are 

eliminated using the following relations:  

Nv ← uNNv (33) 

									Vx �R↦%� ← �uN�0#Vx �R↦%�, (34) 

where uN = b#,# b̂#,#⁄ .  

 The left-invertibility of the pseudo-inverse arguments in the 
algorithm of Table II requires the following conditions: 

~R ≥ maxn�R
|
P , P�R|o,					�%

a ≥ �R| ,					 ≥ P. (35) 

IV. SIMULATION RESULTS 

 Monte Carlo simulations were performed to illustrate the 
behavior of the proposed receiver. The performance is evaluated 
in terms of symbol-error-rate (SER) and channel normalized 
mean square error (NMSE) versus symbol energy to noise 
spectral density ratio (��  R⁄ ).  

 The simulations results were averaged over 2.5 × 10& 
Monte Carlo runs. The transmitted symbols were randomly 
generated from a unit energy 4-QAM alphabet. The elements of 
the coding tensors have unit amplitude and random phase drawn 

from a uniform distribution between 0 and 2π. Each tensor <�)� 
was multiplied by a fixed scalar gain so that the mean power at 
each transmission is controlled. Thus, the coding tensors become 

<�)� ← ���)�<�)�, for G ∈ �0,1,2!, with ��)� given by: 

��R� = ~
 P�R|⁄ 	, (36) 

��#� = ~
 �#a�#|�~
	u� +  R�⁄ , (37) 

��$� = ~
 �$a�$|�~
	u� +  R�⁄ , (38) 

where ~
 , u� and  R are the transmission power, channel 
attenuation and noise variance, respectively. For the three-hop 
system, we use ~
 = ~|�|�* 3⁄ , where ~|�|�*  is the power fixed 
for the system and arbitrarily chosen equal to 1. In the case of 
the single-hop system, we keep the system total power and we 
assume ~
 = ~|�|�*  at the source in order to compare the 
systems.  

 Additive white Gaussian noise tensors were simulated at 
each receiving node with the same noise variance  R for all 
nodes. At each Monte Carlo run,  R was fixed according to the 
desired ��  R⁄  value.  

TABLE II. ALS RECEIVER FOR DIRECT LINK 

1. Randomly initialize NvA|DR. 
2. qM = qM + 1. 

3. Calculate the LS estimate of V�R↦%�: 
\VxA|�R↦%�]
 = lhfUS⊗NvA|0#ijUSO×�ST�R� m� 'rUS�×��Y�R↦%�

 

4. Calculate the LS estimate of N: 

NvA|
 = lhVxA|�R↦%�⊗ fUSij�STUS×O�R� m� 'r��YUS×��R↦%�
 

5. Return to step 2 until convergence. 

6. Eliminate the scaling ambiguities using (33)-(34). 

7. Project the estimated symbols onto the symbol alphabet. 



 The channels are assumed flat-fading and quasi-static, with 
i.i.d. (independent and identically distributed) complex 
Gaussian entries with unit variance. The channel attenuation u� 
depends on the distance � between two nodes, taking into 
account an exponential path-loss model, i.e. u� = 1 �&⁄ . The 
distance � (between relays, source and destination) was 
considered the same and equal to �R 3⁄ , where �R is the distance 
of the direct link (source-destination) arbitrarily chosen equal to 
1.  

 The impact of the choice of the design parameters was 
evaluated in the case of perfect channel knowledge using a zero-
forcing (ZF) receiver, derived from step 6 of the algorithm in 
Table I and given by: 

Nv
 = }d	��YU�U�×��Y�#� V�R�⨂fUSg j�STUS×O�R� p
�
'r��YU�U�US×��%�

 (39) 

For all the simulations, we have considered a same number of 

receive and transmit antennas at the relays, i.e. �)a = �)| . The 
design parameter values used in the simulations are indicated 
above each figure. 

 As a first result, we show the impact of the number P of data 
streams on symbol estimation performance. Fig. 2 shows the 
SER versus ��  R⁄  for P ∈ �2,4,8!. As expected, one can note 
an increase of the SER when the value of P is increased. 
However, a greater number of data streams improves the spectral 
efficiency by sending more symbols in the same time block.  

 Fig. 3 shows the SER versus ��  R⁄  for different time-
spreading lengths ~R, ~# and ~$ of the coding tensors. The 
significant gain of the configuration �~R, ~#, ~$� = �4,2,2� 
shows that it is more efficient to have higher time-spreading at 
the nodes closest to the source. This result comes from the fact 
that the time-spreading at these nodes is repeated by all the 
nodes, improving the transmission.  

Fig. 4 shows the SER versus ��  R⁄  for different numbers of 
antennas. One can note better results when increasing the 
number of antennas at the nodes closest to the source. These 
results corroborate the conclusions obtained in [5] concerning a 
greater efficiency in the exploitation of the space diversity at the 
source. This is due to the dependency of the coding tensors of 
each node with respect to the number of antennas. As expected, 
the case �4,4,4,4� yields better performance than all the other 
cases, due to a greater number of antennas globally used at the 
source, the relays and the destination, while the case �2,2,2,2� 
provides the biggest SER among the tested configurations. 

 The next results evaluate the performance of the 
proposed semi-blind ALS receiver. Fig. 5 shows the SER 
versus ��  R⁄  for the proposed receiver with the three-hop 
scenario (Table I) and for the ALS receiver of the direct link 
(Table II). One can conclude that the proposed three-hop 
system provides a significant gain over the estimation with the 
one-hop link. That comes from the multiple TST coding and 
from the fact that for the three-hop system the path-loss of 
each hop is smaller than the one of the single-hop system, due 
to the proportionality of the path-loss to �&. For a fixed SER 

value (100%),  it can be observed that the ��  R⁄  gap is around 

5 dB and 20 dB for the ALS receivers of the three-hop and one-
hop systems, respectively, when compared with the ZF 
receiver. Despite this degradation, the proposed semi-blind 
ALS receiver has for advantages on the ZF receiver not to 
require a training sequence and also to allow a joint estimation 
of the symbols and the channels. 

 Fig. 6 shows the number of iterations versus ��  R⁄  needed 
to achieve the convergence with the iterative receivers. One can 
note the fastest convergence of the three-hop link for low ��  R⁄  

 
Fig. 2.  ZF receiver performance for different numbers of data stream.  

 
Fig. 3.  ZF receiver performance for different values of ~R, ~# and ~$.  

 
Fig. 4.  ZF receiver performance for different numbers of antennas. 



values, showing the advantage of the cooperative network in an 
adverse situation. However, for high ��  R⁄  values, the smaller 
number of parameters to be estimated in the direct link increases 
the speed of convergence, overcoming the one obtained with the 
relay-assisted link. 

 In order to evaluate the estimation of the individual channels, 
Fig. 7 shows the channel NMSE versus ��  R⁄  for all the hops 
of the relay system. The NMSE has been computed as: 

 ��� = 1
��Cl�V+� −Vx+���$ 	 	‖V+�‖�${ m

+�
	, (40) 

with �@ = 1,⋯ ,��, �� corresponding to the number of 
Monte Carlo runs, and ‖∙‖� being the Frobenius norm. One can 
note that the channel estimation is improved for the nodes 
closest to the destination. Moreover, we can conclude that the 
channel estimation is better with the cooperative link than with 
the direct link. 

V. CONCLUSION 

 We have proposed a three-hop AF MIMO relay system with 
tensor space-time coding (TSTC) at the source and the relays. 
The signals received at the destination form a fifth-order tensor 
that satisfies a nested Tucker decomposition. We have derived a 
semi-blind receiver based on a four-step ALS algorithm that 
jointly estimates the symbols and the channels. Simulation 
results have shown the performance of the proposed three-hop 
system is better than that of the direct link. Perspectives of this 
work include an extension to the case with � > 2 relays and the 
development of a closed-form receiver. 
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Fig. 5.  SER performance for the proposed ALS receiver.  

 
Fig. 6. Convergence of the proposed ALS receiver.  

 
Fig. 7.  Channel NMSE for the proposed ALS receiver. 


