

Sagkriotis, S., Anagnostopoulos, C. and Pezaros, D. P. (2020) Energy

Usage Profiling for Virtualized Single Board Computer Clusters. In: IEEE

ISCC Symposium on Computers and Communications, Barcelona, Spain,

29 June - 03 July 2019, ISBN 9781728129990

(doi:10.1109/ISCC47284.2019.8969611).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/184023/

Deposited on: 15 April 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ISCC47284.2019.8969611
http://eprints.gla.ac.uk/184023/
http://eprints.gla.ac.uk/

Energy Usage Profiling for Virtualized
Single Board Computer Clusters

Stefanos Sagkriotis
School of Computing Science

University of Glasgow, UK
s.sagkriotis.1@research.gla.ac.uk

Christos Anagnostopoulos
School of Computing Science

University of Glasgow, UK
christos.anagnostopoulos@glasgow.ac.uk

Dimitrios P. Pezaros
School of Computing Science

University of Glasgow, UK
dimitrios.pezaros@glasgow.ac.uk

Abstract—With Network Function Virtualization (NFV) plat-
forms gaining ground, we question the combination of NFV
and Single Board Computers (SBCs) in terms of compatibility,
reliability, and energy consumption. A mini cluster of SBCs
is used to develop a scalable and resilient energy monitoring
application. The application is employed to discover the energy
demands of a NFV platform in modern SBCs, and build the
energy profile of the devices and the deployed services. We
use the results and the added knowledge from building the
application to strengthen the argument that SBC clusters can
support virtualized service deployment. This evidence, alongside
the rich gamut of characteristics that SBCs hold, proves that they
are a viable option for edge components of a fog network. Our
results show that running different virtualised processes offers
added functionality, resilience and scalability without heavily
sacrificing energy consumption.

Index Terms—Single Board Computer, Energy Monitoring,
nergy Profiling, Container, Fog Computing, IoT, Edge Cluster

I. INTRODUCTION

A plethora of modern applications e.g., smart city ap-
plications, connected vehicles, smart grids, that require a
large number of nodes in combination with characteristics
like interoperability, mobility, deployment in distant locations,
and integration with sensors, rely on the adoption of fog
computing platforms whose capabilities are shaped by among
other factors, the specifications of devices located at the edge
of the network [1]. Modern SBCs present a wide range of
characteristics that satisfy the requirements posed by modern
applications, thus classifying them as a choice for the edge
components of fog computing networks, either as standalone
devices or as clusters of devices. SBCs have been used in
smart meter applications, energy management platforms, and
as a key-device for e-Health monitoring systems [2] [3] [4].

SBCs are, in most cases, low-cost devices with a small
form factor, low energy and passive cooling requirements.
They offer connectivity with a wide range of sensors and
devices [5]. IoT devices like the Raspberry Pi [6], present
enough processing and storage resources to allow formation
of small clusters with the potential of processing data as close
to the edge as possible, reducing bandwidth consumption and
offering a better Quality of Service (QoS) [3] [7].

Virtualization, by offering the necessary level of hardware-
abstraction, allows stable development of applications across
a variety of devices and is a key enabler for the deployment of
multiple services to a cluster [8]. However, full machine virtu-
alization results in high demand for computing resources. This
can be a significant barrier for the deployment of virtualized
applications in SBCs. A solution that mitigates this problem by
reducing resource requirements is containers. Containers en-
close only the necessary code dependencies for the execution
of a program, omitting the overhead imposed by a complete
virtualized OS. The Docker container platform [9] is one of the
most renowned container development frameworks and offers
a wide set of images designed for the architecture of Raspberry
Pi’s Central Processing Unit (CPU), the Arm architecture,
allowing the development of a variety of applications while
maintaining compatibility with SBCs.

Virtualized Network Functions (VNFs) can be deployed in
the form of docker containers, facilitating a seamless virtual-
ization for the entire network and maximizing the utilization
of the various hardware combinations that constitute a Fog
cluster. While containers are lightweight, their lack of guest
OS results in a lack of resilience [10] and, consequently, they
cannot be orchestrated and managed effectively throughout the
cluster. Therefore, a platform that ensures a normal life-cycle
for VNFs and deals with the networking requirements for VNF
scaling is required.

One of the most prominent platforms that uses Software
Defined Networking (SDN) to alleviate the issues of VNF
management is Kubernetes [11]. Kubernetes supports the
deployment and management of pods, a collection of one
or more containers that share the same resources. Pods offer
the necessary level of abstraction for easy management and
resilience of multiple containers. Kubernetes supports the inte-
gration of SDN frameworks like Flannel [12] for orchestrating
the pods that host the deployed containers.

Contribution: We contribute with a virtualized, scalable,
and fault-tolerant energy monitoring application for SBC clus-
ters through which one can derive an energy profile for the de-
ployed services. This evidence can be integrated into network
planning or used for further research into optimizing energy
consumption. Furthermore, we showcase the adaptability of
SBC clusters to versatile computing environments and make
their use more appealing as parts of a fog computing network.

The key arguments and motivation on why energy resources
monitoring is important for SBC clusters are described in
Section II-A. A proposal for a virtualized and scalable moni-
toring application for small SBC clusters is analyzed in Section
II-B. An evaluation of the proposed method of monitoring is
reported in Section III. A brief survey on the work conducted
on the topic, as well as suggestions for future work can be
found in Section IV. Section V concludes the paper.

II. METHODOLOGY & DESIGN

A. Rationale

Sensor nodes are typically powered by batteries, which on
many applications are not replaceable after their depletion and,
thus, can restrict the lifetime of both individual nodes and
the network [13]. Hence, the need to monitor the remaining
battery capacity to predict node failures due to depletion. It
is important to identify and stop the applications or services
that increase consumption and can put a node at the risk of
energy starvation. Energy draining can be detected through
identifying patterns of high consumption and correlating that
to a specific application. In that essence, system administrators
can be notified about processes that damage the lifetime of
nodes and take appropriate action.

An approach to analyze data as close to the harvesting point
as possible (as stated in Section I) is the development of edge
cloud architectures that accommodate both data collection and
data processing needs [14]. On that account, data processing
establishes an additional energy requirement for the sensor
nodes. The significance of this requirement has to be examined
on top of the virtualization framework energy overhead posed
to the sensor nodes. To accomplish this, a monitoring appli-
cation needs to be employed and enable the energy profiling
of the processes and the cluster nodes’ consumption.

Automating the placement of services in a virtualized
network is an upcoming field of research in the networking
community. The measurements provided by monitoring appli-
cations can be among the various constraints integrated in a
mapping policy that will distribute the energy consumption
evenly across all nodes, maximizing the network lifetime.
To make this possible, the monitoring application should be
virtualized in order to be easily distributed across all the
nodes. By prolonging the lifetime of the network and reducing
failures, the posibility of reducing the Capital Expenditure
(CAPEX) of the edge cluster is revealed, making SBC clusters
appealing to service operators.

Based on the aforementioned arguments, the development
of applications for SBC clusters for the edge of fog networks
will benefit from an energy monitoring system. To further
investigate this, we have developed a testbed comprised of
commodity SBCs (more details in Section II-B) to explore
and showcase the functionality behind integrating mini clusters
at the edge of the network. A virtualized energy monitoring
application is deployed to the cluster, to help us gather
measurements for building the energy profile of the devices
and the monitoring application itself.

B. Design & Implementation

To explore the feasibility of a virtualized SBC cluster, we
have built a testbed of SBCs and deployed a NFV framework.
To validate that the cluster is able to support both the gathering
of the measurements and their processing, we paired the SBCs
with sensors that measure each node’s power consumption. A
virtualized application is responsible for processing measure-
ments and figure out the State of Charge (SOC) of the battery
alongside maintaining a database with the measurements. The
details of the testbed as well as the design decisions for the
application are described in the sections following.

1) Testbed: To explore the real potential of an edge SBC
cluster, we have implemented a testbed comprised of four
Raspberry Pi 3 Model B devices [6]. These devices are a
typical representation of an IoT device, commonly used as
the core devices for many SBC clusters built in the past [5].
By being compatible with a wide range of sensor devices,
the Raspberry Pi can function both as a sensor device and
a processing node. The Operating System (OS) of choice is
Raspbian OS, a variation of Debian that is officially supported
by the manufacturer of Raspberry Pis.

The energy source for each device is a battery rated at
the capacity of 5200mAh [15]. The sensor device for the
electric measurements of the power consumption for each
node is the UM24C module [16], which offers bluetooth
connectivity with the Raspberry Pi. Among the goals of this
paper is to investigate the current state of NFV platforms in
terms of compatibility with bluetooth modules and similar
external devices. A diagram depicting the connections among
the devices can be seen in Figure 1.

Fig. 1. Overview of the system architecture.

As mentioned in Section I, virtualization is a key-enabler
for utilizing every device in the cluster. To satisfy the need
for developing a virtualized application, we have selected
Docker containers [9]. Even though Docker provides rich
documentation that aids in the development process of appli-
cations, when these applications are scaled to many devices,
their management and orchestration can be a demanding task.
Kubernetes [11] can help alleviate the problems that occur
when managing scaled containerized applications.

Kubernetes provides an Application Programming Interface
(API) that helps customize the distribution of the contain-
ers, reschedule them on fail and monitor their behavior and
diagnose any failures. An SDN component orchestrates and
manages the pods that host the containers. In our case, this
SDN component is Weave-net, which was found to require
little set up time and presented full compatibility with the
Arm architecture as well as reliability.

2) Energy Monitoring Application: The energy monitoring
must be handled by a virtualized application that will commu-
nicate with the UM24C module to obtain the measurements.
The application pods should have the ability to recover from
errors as pods have the tendency to fail frequently. The
application must also process the measurements and calculate
an estimation of the remaining capacity of the battery. This
metric, called State of Charge (SOC), will be updated on a
database table separate for each of the nodes. The database
must be maintained in more than one node for data recovery
in case of battery depletion or failure of the pods.

Obtaining the values that the UM24C broadcasts was not a
trivial task as there is no documentation on how to communi-
cate with the device besides the Windows OS restricted GUI
application. As a result, bluetooth communication had to be
deciphered through a reverse engineering process. Communi-
cation with the UM24C device was achieved through serial-
over-bluetooth connectivity. The communication is based on a
simple message exchange. There is an initial message which
the application must send to UM24C in fixed time intervals
to trigger the broadcast of the measurements. The required
measurements are acquired by investigating the 130 bytes
returned message.

The SOC estimation of a battery, depending on the estima-
tion model in use (e.g., [17]), can be dependent on factors like
the state of health of a battery, the specific battery model, etc.
These factors are typically hardware related and estimations
that integrate them have to be considered coupled with the
hardware under use. In such cases, they have to be re-estimated
upon hardware change. Such complications are less present
in the coulomb counting method [18]. By using the coulomb
counting method, the total electric charge that a battery absorbs
while being charged is monitored and the same stands for
the total charge that is released when the battery is used to
depletion. In principle, the SOC is estimated according to the
percentage of the electric charge that exited the battery over
the electric charge that entered the battery:
With Qreleasable denoting the released capacity when the
battery is completely discharged, and Qrated depicting the

rated capacity of the battery, SOC percentage is given by:

SOC =
Qreleasable

Qrated
(1)

Because of its simple yet accurate approach, we decided
to adopt the coulomb counting method for our application.
To get more accurate results, we decided to evaluate the
Qrated capacity by examining the actual electric charge that
the battery is able to deliver over a number of charge-discharge
cycles. We followed a process similar with the coulombic
efficiency estimation that authors proposed in [18]. Coulombic
efficiency, denoted with η, was found to be ≈ 57.69% of
the rated capacity, or around 3000mAh in total capacity. To
increase the accuracy of the SOC estimation, Qmax was used
to denote the maximum releasable capacity and eq. 1 was
adjusted to:

SOC =
Qmax

η ·Qrated
=

Qmax

0.576923 · 5200mAh
(2)

The formula used in our case is quite similar with the
formula used in the original coulomb counting method.

• When fully charged, the SOC is given by eq. 2.
• During discharge for an operating period T , the Depth

Of Discharge (DOD) number is used to denote the
percentage of the discharged capacity. DOD is measured
and then subtracted from the total SOC. Ib states the
discharging current in amperes:

∆DOD(T) =
−
∫ t0+T

t0
Ib(t) dt

η ·Qrated
(3)

DOD(t) = DOD(t0) + ∆DOD(T) (4)

SOC(t) = 1 −DOD(t) (5)

Estimated SOC values must be stored in the database
after being written in a Redis cache. The pods responsible
for these operations are always considered prone to failure.
Therefore, the application must be designed according to a
resilient architecture. Replicas of the database have to be
stored in multiple nodes, so that it can be recovered in case
of unexpected failures. Equally, a caching mechanism is used
to ensure that services are able to restore their last state
before failure. If the pod hosting the cache and the application
container fails, the application uses the database to restore its
last state. The final architecture of the application can be seen
in Figure 2. Each dotted rectangle represents a node. Inside
each node there are pods, represented by black rectangles. The
collection of pods necessary for the execution of Weave-net
are represented with green rectangles. The colored rectangles
inside the pods depict the containers running in each pod.

The pod named double-pod is the main component of the
application. Inside double-pod there is a Redis container,
which functions both as a cache for the data and a safety
measure in case of failure. Data can be requested from the
Redis cache of each node in case of high traffic on the
database. This can help reduce load from the database at times

Fig. 2. Overview of application architecture

of congestion, when for example an administrator performs
demanding tasks, and save the database pod from failure.

In the double-pod there is also the application container
which performs data gathering, SOC estimation, and saves
the measurements in the Redis container and in the Postgres
database (located in the db-pod). Double-pod is deployed
in every worker node and measures their energy requirements.
The database is replicated through the db-replication
pod, which holds the replica database and a container respon-
sible for updating the replica. The db-replication pod
can easily scale to allow higher safety levels.

The redundancy characteristics of our architecture are not
bound to energy monitoring applications and could be equally
used for other applications that make use of sensing devices
and need redundant storage of the measurements. These fault-
tolerant characteristics can be combined with the scalable
properties of the design to make it appealing for applications
with dynamic node numbers. NFV on top of IoT devices
allows altering the processing of the measurements to employ
various processing routines. For example, regression models
or similar statistical methods can be used. Our design is
applicable to cases like that of Unmanned Vehicles to facilitate
fault-tolerant data gathering and processing [19].

III. PERFORMANCE EVALUATION

The NFV platform, despite realiably working and sup-
porting the developed application, does not currently provide
an official method for mounting host devices like UM24C
to pods. The same stands for Docker. Nonetheless, the
volumeMounts feature of Kubernetes in combination with
a privileged execution of the necessary pods were enough to
resolve the issue. The fact that the cluster is fully functional
proves that such combinations of software and hardware can be
used to host virtualized applications in SBC clusters. However,
a way to support device mounting in pods without granting
generic rights, like rights for manipulation of the network
stack, is an addition that will enhance security control.

The application presented a small amount of fails. On more
than 40 hours of testing, pods failed 3 times and were able

to recover without loosing any data. Its resilient architecture
seems mandatory as pod failures are likely to happen in a
platform under development, like Kubernetes. The observed
failures were not linked to development mistakes. Instead,
platform related errors were the main source of pod failures.

To obtain an insight on the energy requirements of a
standalone Raspberry Pi, we performed a CPU stress test
and measured the voltage, and the current drained from the
battery until depletion. The voltage graph of Figure 3 reveals a
sawtooth function whose period gets shorter near the depletion
time of the battery. This sawtooth behaviour is due to the
voltage regulator circuit that is used in the Anker Astro E1,
which ensures that the voltage never drops bellow a certain
value.

The graph of current, in Figure 4, displays a peak current of
≈ 0.750A at the beginning of the measurements subsequently
remaining between 0.6A - 0.68A. This comes as a result of the
thermal throttling that the Raspberry Pi experiences. As CPU
temperatures raise above 83.5 degrees Celsius, the frequency
of the CPU drops from 1.2GHz to 600MHz which results in
the aforementioned average of power consumption.

Fig. 3. Voltage of the Raspberry Pi’s battery under CPU stress.

Fig. 4. Current usage by the Raspberry Pi battery under CPU stress.

The SOC estimation method is evaluated by checking for
a synchronization between the estimated remaining capacity

and battery depletion. This was found to be accurate in most
cases, an example of which is shown in Figures 5 and 6.
Differentiation occurred when batteries with different states
of health and age were tested.

To demonstrate the SOC estimation method, we test it
against unsteady current values, expecting a change of be-
havior in accordance to the fluctuation of current. The input
values of current are shown in Figure 5 and the corresponding
output in Figure 6. Opposite to the expected output, the SOC
estimation is linear without presenting any major changes that
correspond to the varying values of current. The hypothesis
behind this observation is that the changes in the current
are neither big nor long enough to cause such change when
compared with the capacity of the battery.

Fig. 5. Input of current values to the SOC estimation algorithm.

Fig. 6. Response of the coulomb counting method to the input of Figure 5

Another area of investigation is the average energy con-
sumption of nodes depending on the tasks that are executed
on them. The measurements for the nodes were obtained while
the monitoring application was at full scale for 1.5 hours on
the testbed. The task allocation for each node was: the master
node executing weave-net and managing the running pods, a
worker performing energy measurements and logging, another
worker performing measurement and logging while running

the database where measures are stored. The results are shown
in Figure 7.

Idle Electric
logging

Electric logging
& db

Master

Tasks performed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
rre

nt
 (a

m
pe

re
) 5.0% 8.0% 26.0%

Average current consumption for 1.5 hour
Current when idle
Consumption overhead per task

Fig. 7. Average current measurement per activity.

Our comparison basis for energy needs is an idle Raspberry
Pi which was found to consume an average of 0.281A.
The node responsible for the logging of energy measure-
ments displayed an increase of ≈ 5%, reaching 0.295A. The
combination of database and logging services was found to
consume an average of 0.304A, or ≈ 8% growth from the
baseline measurements. The master node was found to be the
most energy-demanding node, with an average consumption
of 0.379A which translates to ≈ 26% increase in power
consumption compared to our basis. The explanation behind
this result is that the pod orchestration and management for
the entire network is mainly executed on the master and this is
likely to cause a greater energy demand. What this concludes
is that the master node seems to be the most affected node from
the execution of Kubernetes in terms of energy consumption.

Overall, the successful deployment of the testbed proved
that SBC clusters are ready to be used in conjunction with
NFV platforms to host custom-made applications intercon-
nected with sensor hardware. The lack of an official method to
mount host devices to VNFs is not a limiting factor, at least
for the development stage of applications. Additionally, the
overall stability of the hardware, the OS, and the NFV platform
is sufficient to claim that SBC clusters have the potential to
be considered as trustworthy edge devices when a resilient
application design is employed. Even when executing NFV
platforms, their small energy footprint remains. This justifies
their suitability for applications that run on batteries and have
mobility or distant location characteristics. The NFV support
makes the management of such networks even easier, espe-
cially if resilient and scalable monitoring applications ensure
the normal operation of the network. All these contribute
towards the use of SBC clusters as the infrastructure to develop
fog-oriented applications.

IV. RELATED WORK

VNFs allow migrating functions to other devices on the
context of a network-wide policy. This possibility results in a

new area of research aiming at the optimal placement of VNFs
according to a certain policy or constraint.

In [20], a heuristic algorithm was used for optimizing VNF
placement. Work in this field will enable a certain level
of automation in VNF mapping which in turn can reduce
Operating Expenditure (OPEX) and improve parameters of
the network like energy efficiency, throughput, etc. Our future
work aims at integrating electric measurements to various
optimization algorithms responsible for VNF mapping and
observe whether this type of optimization is feasible and
realistic in modern networks.

Another proof of concept for using SBCs with containers
to build edge clouds is that of [14]. In this work, the authors
have built an edge cloud and verified that it is feasible.
Even more, they identified that higher level VNF management
platforms still need improvements and further development
which comes to support our findings as stated in Section
II-B. On the opposite, the authors described that lower level
container platforms, like Docker, are fairly well established.
The OpenMANO [21] community has been working closely
with the ETSI body [22] to improve VNF management and
orchestration. Part of our future work will be on examining
and working on the OpenMANO framework to discover how
higher level VNF management platforms can be improved.

Energy consumption of Raspberry Pis that run containers
has been measured and analyzed in [23]. Specific benchmarks
have been conducted for CPU, Memory, Network Input/Output
(I/O), and Disk I/O. The results verify that the energy require-
ment of the device is not heavily affected by the execution of
the Docker platform. This consolidates our argument about the
deployemnt of NFV platforms for low-power IoT applications
without the need for excessive power or high-end hardware.

Energy consumption of Raspberry Pis that run containers
has been measured and analyzed in [24].

V. CONCLUSIONS

We demonstrated a fully functional cluster of SBCs that
is running a NFV framework for application deployment. We
have developed an application for energy monitoring of the
network, and revealed the energy profile of the nodes and the
overhead posed by the NFV framework. We have argued that
such infrastructures can be considered as an option for place-
ment at the edge of Fog networks, since their compatibility,
reliability, mobility and small energy footprint characteristics
are now combined with NFV support, making it an appealing
option for fog applications. The outcome of our work indicates
that virtualized service execution can be handled by SBCs
while preserving their low-energy consumption characteristic.

ACKNOWLEDGMENTS

This research has been supported in part by the UK En-
gineering and Physical Sciences Research Council (EPSRC)
projects EP/R511936/1, EP/N033957/1, and EP/P004024/1;
by BT (Voucher No. 17000117); by the Huawei Innovation
Research Program (Grant No. 300952); by the European
Cooperation in Science and Technology (COST) Action CA

15127: RECODIS – Resilient communication and services;
and by the EU H2020 GNFUV Project RAWFIE-OC2-EXP-
SCI (Grant No. 645220) under the EC FIRE+ initiative.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[2] S.-Y. Chen, C.-F. Lai, Y.-M. Huang, and Y.-L. Jeng, “Intelligent home-
appliance recognition over iot cloud network,” in Wireless Communica-
tions and Mobile Computing Conference (IWCMC), 2013 9th Interna-
tional. IEEE, 2013, pp. 639–643.

[3] M. A. Al Faruque and K. Vatanparvar, “Energy management-as-a-service
over fog computing platform,” IEEE Internet of Things, vol. 3, no. 2,
pp. 161–169, 2016.

[4] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang,
and P. Liljeberg, “Exploiting smart e-health gateways at the edge
of healthcare internet-of-things: A fog computing approach,” Future
Generation Computer Systems, vol. 78, pp. 641–658, 2018.

[5] S. J. Johnston, P. J. Basford, C. S. Perkins, H. Herry, F. P. Tso,
D. Pezaros, R. D. Mullins, E. Yoneki, S. J. Cox, and J. Singer,
“Commodity single board computer clusters and their applications,”
Future Generation Computer Systems, vol. 89, pp. 201–212, 2018.

[6] “Raspberry Pi 3,” https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/, accessed: 2018-10-20.

[7] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S.
Obrien, “Iridis-pi: a low-cost, compact demonstration cluster,” Cluster
Computing, vol. 17, no. 2, pp. 349–358, 2014.

[8] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-oriented
network virtualization toward convergence of networking and cloud
computing,” IEEE Transactions on Network and Service Management,
vol. 9, no. 4, pp. 373–392, 2012.

[9] “Docker Containers,” https://www.docker.com/resources/what-container,
accessed: 2018-10-20.

[10] D. K. Rensin, Kubernetes - Scheduling the Future at Cloud Scale.
1005 Gravenstein Highway North Sebastopol, CA 95472: O’Reilly
Media, 2015. [Online]. Available: http://www.oreilly.com/webops-
perf/free/kubernetes.csp

[11] “Kubernetes,” https://kubernetes.io/, accessed: 2018-10-20.
[12] “Flannel,” https://coreos.com/flannel/docs/latest/, accessed: 2018-10-20.
[13] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless

sensor networks: A top-down survey,” Computer Networks, vol. 67, pp.
104–122, 2014.

[14] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-
based edge cloud paas architecture based on raspberry pi clusters,”
in Future Internet of Things and Cloud Workshops (FiCloudW), IEEE
International Conference on. IEEE, 2016, pp. 117–124.

[15] “Anker Astro E1,” https://www.anker.com/products/variant/astro-
e1/A1211012, accessed: 2018-10-20.

[16] “UM24C,” https://www.mediafire.com/folder/0jt6xx2cyn7jt, accessed:
2018-10-20.

[17] F. Huet, “A review of impedance measurements for determination of
the state-of-charge or state-of-health of secondary batteries,” Journal of
power sources, vol. 70, no. 1, pp. 59–69, 1998.

[18] K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, “Enhanced coulomb
counting method for estimating state-of-charge and state-of-health of
lithium-ion batteries,” Applied energy, vol. 86, no. 9, pp. 1506–1511,
2009.

[19] “GNFUV,” https://sites.google.com/view/gnfuv/home, accessed: 2018-
10-20.

[20] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in Network Softwarization (NetSoft),
2015 1st IEEE Conference on. IEEE, 2015, pp. 1–9.

[21] “OpenMANO,” https://osm.etsi.org/, accessed: 2018-10-20.
[22] “ETSI body,” https://www.etsi.org/, accessed: 2018-10-20.
[23] R. Morabito, “A performance evaluation of container technologies on

internet of things devices,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2016 IEEE Conference on. IEEE, 2016, pp.
999–1000.

[24] R. Oma, S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa, “An
energy-efficient model for fog computing in the internet of things (iot),”
Internet of Things, vol. 1, pp. 14–26, 2018.

