A Network Service for Preventing Data Leakage
from IoT Cloud-assisted Equipment

Vitor A. Cunha*, Eduardo da Silva*T, Marcio B. de Carvalhot, Daniel Corujo*, Joao P. Barraca*, Diogo Gomes*,
Alberto E. Schaeffer-Filho*, Carlos R. P. dos Santos®, Lisandro Z. Granville*, Rui L. Aguiar*
*Instituto de Telecomunicacdes, Portugal
TDepartment of Informatics — Catarinense Federal Institute — Araquari, Brazil
nstitute of Informatics — Federal University of Rio Grande do Sul — Porto Alegre, Brazil
§Department of Applied Computing — Federal University of Santa Maria — Santa Maria, Brazil
*{vitorcunha,dcorujo,jpbarraca,dgomes,ruilaa} @av.it.pt, ‘Leduardo.silva@ifc.edu.br,
i{mbcarvalho,alberto, granville } @inf.ufrgs.br, §csantos @inf.ufsm.br

Abstract—The fact that most IoT solutions are provided by
third parties, along with the pervasiveness of the collected
data, raises privacy and security concerns. There is a need to
verify which data is being sent to the third party, as well as
preventing those channels from becoming an exploitation avenue.
We propose to use existing API definition languages to create
contracts which define the data that can be transmitted, their
format and constraints. To verify the compliance with these
contracts, we propose a Network Service architecture which
validates REST-like API requests/responses against a Swagger
schema. We deal with encrypted traffic using an Service Function
Chaining (SFC)-enabled Man-in-the-Middle (MITM), allowing
verifications in ‘“real-time.”” We devised a Proof of Concept and
showed that we were able to detect (and stop) contract violations.

I. INTRODUCTION

The pervasiveness of the data gathered by solutions of the
Internet of Things (IoT) allows tackling today’s challenges
holistically, as seen in Smart Cities, Smart Crops, or richer
augmented reality interactions [1]. The IoT systems are com-
posed of appliance-like physical devices (things) and network
connectivity. By collecting, exchanging, and acting upon data
the things can deliver smarter, more personalized services
and applications [2]. Over the last years, these IoT systems
started being built using cloud-based infrastructures to cope
with the increasing number of services offered [3], as the cloud
significantly improved a multitude of IoT-centric operations,
such as service management, data storage, or analysis of
data [4]. The IoT gateway equipment became commonplace,
bridging different communication technologies to the things,
aggregating data, and then sending it to the cloud.

In such scenarios, the IoT solutions are usually controlled
by a third-party, which installs its equipment in the premises
of the costumer, and then uses its cloud to power the IoT
application. Encryption is typically employed to safeguard
privacy when sending data to the cloud, but this also hinders
the ability to audit, because the end-user usually does not
hold the keys. Consequently, there is the threat that a solution
provider (who may have been compromised) might abuse the
regular communications between the IoT equipment and the

cloud to exfiltrate more data than allowed or even subvert
this channel to do Remote Code Execution (RCE) in its
customer-premises equipment, facilitating the exploitation of
other machines in customer’s local private network(s).

To address these issues, without fundamentally rebuilding
the existing IoT systems to be privacy-preserving by de-
sign, with auditable Open-Source code, and enhanced anti-
exploitation mechanisms, we propose a network-level safe-
guarding approach. The core component of this proposal is the
Contract Validator Network Function (NF), which can inspect
the messages between the IoT cloud and the gateway(s) in
the user’s premises against a previously agreed upon contract,
negotiated between the end-user and the IoT provider. To
model the contract, and describe the data validation mecha-
nisms, we employ the same specification languages used for
Application Programming Interface (API) documentation and
compliance, such as Swagger or RAML. Thus, professionals
can easily audit the reach of the terms, while our function can
automatically validate the API’s requests/responses according
to the contract, detecting and stopping violations, such as
attempts to leak information or facilitate RCE.

The crux to any network-level approach is how to re-
liably intercept the traffic and ensure the validation NF
can verify it. We propose an Network Service (NS) which
packages our Contract Validator function together with an
SFC-enabled Man-in-the-Middle (MITM) [5], that acts as a
generic SSL/TLS offloader, allowing our solution to verify
HTTPS encrypted calls, as well as chaining any additional
network functions. The NS design allows our architecture
both to integrate with the costumer’s infrastructure or to
offload its deployment to a Multi-Access Edge Computing
(MEC)-like environment. The latter may be more suitable for
power constrained premises (e.g., remote location that only has
battery power), as the power consumption should not change
significantly with the introduction of the NS. The MEC-like
environment also allows tackling the traffic interception issue
regardless of the topology on the customer’s premises, in a
Security-aaS model. Additionally, it provides cloud computing
capabilities (to scale instantly and on-demand) and built-in

traffic offloading functions. Because MEC is right at the
edge of the consumer’s network, it allows for good perimeter
defense (if operated by a trusted fourth-party). Nevertheless,
as long as the premises are not power constrained, the same
feature-set is still possible within the customer infrastructure,
just at a higher effort.

The paper is structured as follows. First, we will briefly
introduce the current alternatives to tackle this problem and
present background information about our approach (Section
II). Then we will present our solution architecture (Section III).
The Proof of Concept and evaluation results are described in
Section IV. Finally, we present the conclusions (Section V).

II. RELATED WORK AND BACKGROUND

In this section, we will start by presenting the different
approaches which were already proposed to address the need
to audit data in existing IoT systems. Then, we will present
new cryptographic technologies that allow redesigning IoT
systems to be privacy preserving. Finally, we present some
background which relates to the network-level approach.

A. Related Work

The TLS-Rotate and Release (TLS-RaR) [6] system pro-
vides a way to audit IoT traffic, without having to modify
the TLS protocol and disrupt the IoT solution, but at the cost
of traffic inspection not being done in real-time. It requires
cooperation from the IoT solution provider, but that cooper-
ation may be selective. For instance, it may use additional
encryption (to hide data/activities) when it suits its interests.

In turn, the Multi-Context TLS (mcTLS) [7] protocol allows
real-time traffic inspection (and modification). Previously au-
thorized middleboxes will be given an additional key which
will grant them either read-only or read/write permissions over
the flow. Despite having as drawback a compatibility break
with the current TLS endpoints, mcTLS derivate protocols like
Transport Layer MSP (TLMSP) are already being drafted by
normative bodies such as European Telecommunications Stan-
dards Institute (ETSI). Much like TLS-RaR, these protocols
also require cooperation from the IoT solution provider.

In order to attempt to bypass the need for cooperation with
the IoT solution provider, more direct TLS MITM solutions
exist, such as BlindBox [8], SGX-Box [9], or mitmproxy [10].
These solutions either exploit the faulty verification of trusted
roots or require the insertion of a self-signed certificate as a
trusted root. This raises some concerns, as failure to comply
with proper Certification Authority (CA) practices may pave
the way for malicious actors to gain an even larger foothold
over the data transacted within the network. A practical con-
cern is that the NFs performed within these middleboxes need
specific development for that middlebox. We have tackled this
issue in [5] using an Service Function Chaining (SFC)-enabled
MITM which allowed to process HTTPS traffic in functions
that already worked as plain HTTP proxies (decoupling the
SSL/TLS layer from the actual HTTP contents).

Newer cryptographic technologies, such as blockchain and
Smart Contracts as in the Ethereum framework [11], allow

building entirely new IoT platforms that may already have
different built-in checks over the transacted data.

B. Background

Network Function Virtualization (NFV) brings cloud com-
puting into the Telecom world, allowing for greater flexibility,
lower time-to-market, and ways to reduce the Capital Expen-
diture (CAPEX) and Operating Expense (OPEX) of operators.
The ETSI specifies an NFV framework [12] which normalizes
the requirements, interfaces, and description of virtualized
NFs. More than just virtualization of functions, ETSI NFV
paves the way to the Management and Orchestration (MANO)
of complex automatic, self-provisioned, and on-demand NSs
(as normalized in ETSI NFV-MANO [13]).

The ETSI MEC architecture [14] allows to run applications
closer to the end-user (the Edge), improving performance with
latency sensitive applications, providing consistent user experi-
ence (e.g., late transmuxing), reducing the back-haul utilization
(e.g., content caches), and enhancing network security by stop-
ping attacks when they are ingressing the network. MEC is an
integral part of 5G technologies. Earlier works already shown
the use of NFV alongside MEC [15], leveraging the Traffic
Offloading Function (TOF) to run network services on the
Edge. Lastly, the composition of an SFC by concatenating NFs
in a given order has already been standardized by IETF [16].

III. THE APPROACH

We propose an NS to validate the IoT gateway communi-
cations (with the Cloud) against a previously agreed speci-
fication. We start by presenting our IoT message validation
architecture, also describing the means to define the contract
used for message validation. Then, we propose an approach
to validate the contract, which is our Contract Validator NF,
that completes the NS required functionality.

A. Message Validation Architecture

Our main contribution is the NS as shown in Fig. 1, which
depicts an architecture allowing to open SSL/TLS ciphered
communications (through an MITM NF, since we may not

Customer
Premises

Internet
GW
loT
GW

Traffic Offloading
Function

SFC-enabled

MITM

'
'
'
'
H]
H]
'
: |
1| Log& Contract | !
,))] . i
1 L1 Validator | !
I

: N ;
Purpose-specific Data :— I S ":
Verification Functions ! - '

Fig. 1: Proposed IoT messages validation architecture

rely on IoT provider cooperation in our solution) and then
processes them in plain-text by an SFC of NFs. Since most
gateway to cloud communication is usually done through a
REST API, it is at stake handling HTTP(S) in the SFC-enabled
MITM (which was already explored in [5]). Each NF will only
handle the part of the HTTP stack that it needs to process,
minimizing data exposure and overheads. As an NS, the ar-
chitecture may be deployed both on user’s premises (enterprise
users) or on a delegated infrastructure (MEC-like or cloud).
Because some locations may have electric power constraints,
such as being battery powered, our proposal emphasizes the
option of offloading the verification functions to a fourth-
party Edge/Cloud (independent of the contracted third-party
IoT solution provider) as a strategy to avoid increasing the
power consumption in the premises of the IoT system.

The rise of Test Driven Development (TDD) methodologies,
and its applications in DevOps, already drove the need to cre-
ate specification languages defining the desired functionality,
as well as tools to verify the compliance of code/functions
against a given specification. We propose to take advantage of
the same API specification languages that are already available
to test the system during its development. This will minimize
development overheads, while still providing means to reliably
verify the implementation against the well-behaving interface
specification (called schema). If the schema only allows secure
and private communications, then that becomes a verifiable
contract that prevents abuse from the IoT vendor. Therefore,
a trusted NS can enforce the contract by verifying the API
interactions against the schema. In turn, by being built as an
NS, the architecture allows offloading the contract verification
to a trusted party, removing additional hardware costs or large
impacts over existing [oT solutions.

In order to define the verifiable contracts, we propose the
use of Swagger. This enables specifying the allowed API
endpoints, paths, methods, expected headers, and key-values.
Swagger also permits some data verifications, such as numeric
boundaries checks, or value-based format verifications.

Tools such as Swagger-Proxy allow validating responses
from a running REST service which has its API schema pub-
lished. However, only verifying the response messages would
be unsuitable for our purpose, as the data being sent from the
IoT gateway to the cloud can be exfiltrated without any check.
Thus, in order to enforce the verification of HTTP Requests,
we developed a new NF. Besides, particular data-types that
may require additional validation that would fall outside of
the capabilities of a schema validator. So, we proposed an
extra layer of NFs that communicate directly with the Contract
Validator and perform data specific validations. We chose to
make clear that each of these NFs could themselves be an SFC
of more specialized units.

In the next subsections (III-B and III-C) we will further
elaborate the way the 10T contract can be defined using this
schema, as well as define how the Contract Validator must
function in order to prevent API abuse.

B. Defining the Contract

We propose the use of Swagger to define the interface
contracts between the IoT customer and the IoT solution
provider. These are already de facto standards to disseminate
the API documentation/specification across multiple parties.
The schema can define all paths, methods, parameters, headers,
accepted content formats, most authentication requirements,
the host that must be contacted, API versioning and allowed
transport protocols. It also provides the most usual verifica-
tions over data-types, such as boundaries check (in integers
and floats), enumerated items, and format checks (for strings).

Definition 1 presents an excerpt from the Swagger schema
created to evaluate our proposal. In this example, it is des-
cribed the POST method sendTemperature of a given path
/temperature. By invoking this method, the IoT sensors can
feed the cloud with the current temperature data.

Note that on line 17 of Def. 1, there is a reference to #/def-
initions/TemperatureData to define the parameters’ schema
of the path. Its definition is presented on Def. 2, in which the
temperature data must provide two fields, id and value. The
former must be a string in UUID format, while the latter must
be a float number, ranging from -99.9 to 99.9.

1 swagger: "2.0"
2 paths:
3 /temperature:
4 post:
5 tags:
6 — "temperature"
7 operationld: "sendTemperature"
8 consumes:
9 — "application/json"
10 produces:
11 — "application/json"
12 parameters:
13 — in: "body"
14 name: "body"
15 required: true
16 schema:
17 $ref: "#/definitions/TemperatureData"
18 responses:
19 200:
20 description: "OK"
21 (.0d)
Def. 1: Excerpt from Swagger schema
1 definitions:
2 TemperatureData:
3 type: object
4 required:
5 — llid"
6 — "value"
7 properties:
8 id:
9 type: string
10 format: uuid
11 value:
12 type: number
13 format: float
14 minimum: —99.9
15 maximum: 99.9

Def. 2: TemperatureData definition

C. Verifying the Contract

We have designed a Contract Validator NF (Fig. 2) which,
before doing any standard schema validation over the mes-
sages arriving from the chain, performs a whitelist check for
every key, parameter name, and header of the message. This
procedure allows tackling abuses through the use of extra data
(or meta-data) which may not break the specification, while it
still allows leveraging the standard validation tools to perform
the checks that fall within the standard specification validation.

While the combination of the whitelisting with the standard
schema checks already delivers an effective mechanism to
verify the compliance of the contract, there is still one fun-
damental limitation to beware. The validation process verifies
if the data is in a valid format, according to the specification.
However, that does not mean the data is correct or untampered.
For instance, an adversary may use steganography to establish
a covert channel, encoding rogue data over a valid format [17].
Additionally, we may have a stream of data (audio, video, or
other binary data) which, despite being valid in its formatting,
is still leaking private information.

Thus, our design allows using external purpose-specific
functions to perform further validations after the standard
schema checks. Sample functions could be a Kalman Filter to
protect user privacy [18], a method to detect LSB steganog-
raphy on images [19], the IloT-SIDefender to detect and
defend against sensitive information leakage [20], or others.
The MEC-like offloading allows chaining these more powerful
verification functions on-demand, as resources can be pooled
like in cloud computing. We can even add extra functionality
without disrupting the system. For instance, we could live-test
machine learning classification [21] functions.

Propagate Backwards in SFC_‘

Continue
Request / SFC
response

Reject Message

A { - A

Yes. Approved?
External
Validation NFs

Yes
Additional
Functions?
Standard Yes
Schema Check

Fig. 2: Proposed Contract Validator Function

from SFC
| Allow Message

A

\J

Whitelist
Check

Correct
Data?

IV. EVALUATION

In this section, we detail the design and implementation of
our PoC, along with its metrics, and finally the results.

A. Proof of Concept

1) Scenario: Our Proof of Concept (PoC) considers a
smart-home scenario where a cloud-assisted IoT application
adjusts a window’s blinds position according to the data
gathered by temperature and luminosity sensors. The objective
is to optimize sunlight, e.g., heating the room in the winter.

The smaller sensors (and actuators) use heterogeneous ac-
cess technologies, relying on the IoT gateway to communicate
with the cloud. The gateway gathers the data from sensors and
sends it to the cloud, using the defined APIs. Then, the IoT
application processes the received data and makes decisions
(e.g., blinds target position). Also, the IoT gateway is aware
of the application and polls the cloud API — with a variable
rate — to adjust the position of the blind to a given target.

2) Evaluated Exploit: We modeled our qualitative evalua-
tion after the exploitation of the EthernalBlue vulnerability',
against a victim system within the home’s private network.
Being a more complex attack, that requires pivoting to a
private network and exploiting an otherwise hidden target,
it highlights throughout its different stages different kinds
of IoT API abuses, which the Contract Validator Function
should stop. The scenario was evaluated as depicted in Fig. 3.
Following the API’s Def. 1 and 2, Fig. 3a shows the expected
interaction. Fig. 3b to Fig. 3d illustrate the three stages of a
pivoting attack that abuses the first valid interaction.

The IoT gateway has “undocumented features” which al-
lows the provider to execute a command sent in the key cmd,
as well as overriding the next value to be sent to the Cloud
with exfiltration data stored in the sample /tmp/exfiltrate.file.
For brevity, the base64 encoded data has been replaced with
shortened dummy values. In the first stage (Fig. 3b), the
provider leverages an extra key (invalid as per contract) in
the response message to execute a nmap® command which
finds all machines in the private network which are vulnerable
to EthernalBlue, and stores the output in the exfiltration file.
In the second stage (Fig. 3c), the temperature reading of
the sensor is replaced with a base64 encoded version of the
exfiltration file, which contains all vulnerable machines within
the private network. Lastly, in the third stage (Fig. 3d), the
provider uses the information gathered in the second stage to
send in-line with the command a base64 encoded malicious
payload that will exploit one of the targets. This is made
easy using the Metasploit framework® and adapting publicly
available PoCs*. In particular, a reverse meterpreter shell
payload will allow direct access to the target machine, having
the highest system privileges available to execute commands in
its victim (due to the nature of the EthernalBlue vulnerability).

Uhttps://technet.microsoft.com/library/security/MS17-010
Zhttps://nmap.org

3https://www.metasploit.com/
“https://github.com/worawit/MS17-010

3) Implementation: We have performed our PoC using
containers (LXD) in a larger VM (8 vCPUs with 8 GiB RAM).
We had four containers: the gateway, the simulated cloud, the
SFC-enabled MITM [5], and the Contract Validator.

The Contract Validator function was implemented in
Python 3, being the HTTP socket handling done with the built-
in HTTP module (acting as a proxy), the white-listing process
done with custom code, and the standard validation performed
with a slightly modified FLEX library [22].

For evaluation, the IoT gateway simulated the sensor events,
data, and subsequent calls to the cloud. The API used by the
gateway to communicate with the cloud is built atop HTTP(S)
in a REST-like fashion. The IoT providers’ cloud was built
using a REST server auto-generated from the Swagger de-
scriptor, in Python-Flask code. This server reacts with crafted
responses for each method of the APIL. By the end, SSL/TLS
was added to this server using Nginx as a reverse proxy.

Although our PoC relies on HTTPS as an underlying proto-
col for communication, the architecture and concepts discussed
in Section III could be used to build similar systems for the
IoT APISs that rely on proprietary protocols for communication.
However, departing from JSON and REST-like interfaces
causes significant shortcomings in the definition languages
available to define the contracts, and will require extra work
to perform the automatic verification of the contract.

B. Results

We focused the evaluation on our main contribution, the
Contract Validator NF. The other architectural modules were
either already evaluated (e.g., traffic offloading [15]) or too
specific to the particular deployment (e.g., extra validation
functions). We considered two metrics to evaluate the Contract
Validator: effectiveness and processing time. As HTTPS is
widely adopted to secure these communications, we have also
evaluated the impacts caused by using the Contract Validator
in conjunction with the SFC-enabled MITM. Therefore, a third
metric arose to evaluate this scenario: end-to-end delay.

The effectiveness is qualitative, to prove that the solution
can stop data-leakage or RCE attempts made through the abuse
of the APIL. Thus, we need to verify whether the solution stops
the requests containing the exploits detailed in Section IV-A2.

The Contract Validator was effective in stopping the ex-
ploitation attempts of the scenario. All requests (and replies)
which contained more keys than allowed in the specification
were blocked. It was also able to stop the messages which
had data in a non-compliant format. Blocked messages events
were signaled back by returning the HTTP status code 403.

Processing time measures the times each operation took
inside the Contract Validator function. Three meta-times were
measured: building the whitelist, whitelist checking, and stan-
dard schema check. Build whitelist is the time to build,
from the swagger schema, the proper keys whitelist for the
incoming message. Whitelist Check is the time to process
the request/response and check if all keys complied with the
whitelist. Finally, Standard Schema Check time represents
the time to validate the whole request/response.

POST /temperature

{“id”: “00112233-4455-6677-8899-
aabbccddeeff”,
“value”:23.1}

g - -,

loT Gateway < I

Cloud-Powered

200 OK

<< empty >>

(a) The expected interaction with the provider’s Cloud
(send the temperature measured by a given sensor)

POST /temperature

{“id”: “00112233-4455-6677-8899-
aabbccddeeff”,
“value”:23.1}

i = -

loT Gateway < T

Cloud-Powered

200 OK

{“cmd”: “nmap -p445 --script smb-
vuln-ms17-010 x.x.x.x/24 -oN
Jtmp/exfiltrate.file” }

(b) Attack Stage 1: Provider uses the response of a valid
interaction to send a rogue command to the gateway

POST /temperature

{“id”: “00112233-4455-6677-8899-
aabbccddeeff”,
“value”: “aGVsbhG8="}

loT Gateway < I 7 J

200 OK

Cloud-Powered
1oT Provider

<< empty >>

(c) Attack Stage 2: Provider uses a valid request field to
exfiltrate rogue data (e.g., targets list)

POST /temperature

{“id”: “00112233-4455-6677-8899-
aabbccddeeff”,
“value”:23.1}

loT Gateway < T H :

200 OK

Cloud-Powered
1oT Provider

{“cmd”: “baseb4 -d <<<
‘ZXhwbG9pdA==" | sh” }

(d) Attack Stage 3: Provider uses Remote Code Execution
(RCE) to run an in-line encoded exploit against a target

Fig. 3: Qualitative Evaluation Scenario

The results of the processing time are presented in a plot,
as shown in Fig. 4. The left portion shows valid requests with
different data-types. The right portion shows the measurements
taken with requests that were valid, added an extra key, or

w

[¥]

uuid floa nt rvalid irvalid

key data

ocation ema valid

Build Whitelist Whitehst Check Standard Schema Check
Fig. 4: Processing Times inside the proposed Contract

Validation NF (ms)

had valid keys with invalid data. Such scenarios are denoted
as valid info., invalid key, and invalid data, respectively.
The experiments were repeated 100 times each, bars show the
average value, interval shows the distance to min./max., and
outliers of the 95% confidence interval are not considered.

Note that building the whitelist is proportionally so fast
(0.014+0.006 ms) that its graphical representation is virtually
invisible in the plot. The results have shown that building the
whitelist takes about the same time regardless of data type,
or the validity of the message to be checked. The whitelist
check takes the same time when all keys are in the whitelist.
However, it will be slower when it has to block that transaction
(0.27 ms vs. 0.04 ms), due to termination overheads of the
inspection for that flow and the generation of the block
message. Finally, the standard schema check execution times
are very similar regardless of the message validity (1.76 ms
for valid data vs. 1.87 ms with non-compliant content).

The last metric, end-to-end delay measures the time elapsed
after the request is sent until the response is received. The
aim is to measure the impact of performing the MITM plus
the outbound message validation solution when processing
HTTPS flows. We considered three times: direct, sfc-short, and
sfc-swag. Direct corresponds to the regular end-to-end Round-
Trip Time (RTT). Sfe-short denotes the RTT when adding the
SFC-enabled MITM solution to open encrypted data and re-
encrypt before sending to the destination. Finally, sfc-swag
measures the end-to-end RTT when using our message verifi-
cation solution in conjunction with the SFC-enabled MITM.

The evaluation results about end-to-end delay are presented
in Fig. 5. Like before, the left portion of the plot shows the
impact on the end-to-end delay when transmitting different
data-types. The right portion shows the measurements consid-
ering also requests that were valid, but compared to those that
had extra keys or invalid data. Such scenarios are denoted
as valid info., invalid key, and invalid data, respectively.
The experiments were repeated 100 times each, bars show the
average value, interval shows the distance to min./max., and
outliers of the 95% confidence interval are not considered.

The results show that the transmission of different data-
types does not present a significant time variance on end-to-

w IR AR 0N AR L i | B |
uuid floa e ocation emai valid rvalid invalid
key data
direct sfc-short sfC-swagger

Fig. 5: End-to-End Connection Times using HTTPS
encrypted flows (ms)

end delay within the same scenario. We can note this in the
direct (around 9 to 10 ms), sfc-short (around 43 to 45 ms),
and sfc-swag (around 49 to 51 ms) scenarios. This observation
confirms that the previous findings of the processing time of
different data-types also hold true when the Contract Validator
is deployed with SFC-enabled MITM.

When introducing the SFC-enabled MITM (sfc-short), we
observe that the times rise to above 40 ms. This overhead was
expected given the additional cryptographic processing, which
includes generating on-the-fly server certificates to imperson-
ate the IoT cloud. This could be avoided if the IoT solutions
adopted secure communication protocols more suitable for
middlebox inspection, such as the mcTLS. However, as the use
of such protocols is not yet widespread amongst existing IoT
vendors, we only evaluated the standard TLS in HTTPS. Thus,
by using already in place protocols, our proposal evaluates
more accurately the reality of adding verification capabilities
to the existing TLS based IoT solutions.

Finally, adding our message verification solution (sfc-swag),
we see an increase of about 5 ms, which is consistent with the
previous results (Fig. 4) as we have double processing time
(request + response) and a few connection handling overheads.
It is important to note that despite a considerable rise in the
end-to-end time comparing direct access to sfc-swagger (from
10 ms to 50 ms), most of the overhead (around to 35 ms)
was introduced by the SFC-enabled MITM. This observation
highlights the need for a more suitable and standardized
HTTPS middlebox traffic inspection protocol.

We then evaluated our solution in scenarios where compro-
mised or malicious internal devices are sending non-compliant
data to the cloud of the solution provider. We considered three
scenarios (right portion of Fig. 5). Note that when our message
verification solution blocks a request (invalid key and invalid
data scenarios), the end-to-end time will be half the regular
time, approximately 25 ms. This is an expected consequence
of blocking a request message, the fact that the remote cloud
is no longer contacted, therefore all those overheads avoided.

The proposal was effective at stopping the abuse of the
communications API, as shown by the multi-stage attack
(exploiting the EthernalBlue vulnerability) performed against

an otherwise inaccessible target system within the private
network of the customer. The quantitative evaluation showed
the overheads introduced by the Contract Validation function
paled in comparison to those introduced by the MITM. Despite
the cryptographic overheads of the MITM, the End-to-End
connection times show the architecture is suitable to common
IoT applications. Nevertheless, highly interactive applications,
such as cloud-assisted Augmented Reality experiences, would
likely face difficulties due to the near 40 ms of added delay
(against the times measured without our solution).

V. CONCLUSION

We have successfully designed an IoT messages verification
architecture which, using standard API description models, al-
lows to create and enforce message contracts between the IoT
solution provider and its customer. The use of existing libraries
(flex), coupled with a custom-made whitelisting method, and
a custom proxy wrapper that turned the validator into an NF,
allowed to demonstrate the concept experimentally. The PoC
prevented some abuses, such as data-leakage, attempted RCE
exploitation (EthernalBlue vulnerability), and pivoting attacks
(reaching targets in a private network otherwise inaccessible)
through that API. The SFC-enabled MITM [5] handles the
encrypted channels (HTTPS). The overall impact of the so-
lution, when dealing with encrypted traffic, did not present a
performance concern for typical IoT applications. However,
low-latency applications such as Augmented Reality would
likely be affected by the cryptographic overheads introduced
by the MITM.

If the contract is changed, the verification process still
works as long as the schema is updated. Additional data
validation functions, tailored to specific purposes which would
not be verifiable by the schema, are also possible in this
architecture. The cloud computing capabilities of MEC-like
systems, coupled with their traffic offloading capabilities,
makes effortless the process of adding new functions. We have
successfully presented a Security-aaS use-case using MEC,
with the option of still deploying the NS locally. As long as
we have trust in the fourth-party (the MEC operator), we can
enforce scalable and on-demand perimeter defense using the
Edge. Additionally, we may avoid significantly increasing the
power consumption in the premises of the IoT equipment by
offloading the service to the Edge, which is essential when the
location lacks a connection to the power grid.

ACKNOWLEDGMENT

This work is supported by the European Regional Devel-
opment Fund (FEDER), through the Regional Operational
Programme of Lisbon (POR LISBOA 2020) and the Com-
petitiveness and Internationalization Operational Programme
(COMPETE 2020) of the Portugal 2020 framework [Project
5G with Nr. 024539 (POCI-01-0247-FEDER-024539)].

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

I. Farris, T. Taleb, Y. Khettab, and J. S. Song, “A Survey on Emerging
SDN and NFV Security Mechanisms for IoT Systems,” IEEE Commu-
nications Surveys Tutorials, pp. 1-26, Aug 2018.

A. Mihovska and M. Sarkar, Smart Connectivity for Internet of Things
(IoT) Applications. Cham: Springer International Publishing, 2018, pp.
105-118.

C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure Integration
of IoT and Cloud Computing,” Future Generation Computer Systems,
vol. 78, pp. 964 — 975, 2018.

R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Con-
solidate IoT Edge Computing with Lightweight Virtualization,” IEEE
Network, vol. 32, no. 1, pp. 102-111, Jan 2018.

V. A. Cunha, M. Carvalho, D. Corujo, J. P. Barraca, D. Gomes, A. E.
Schaeffer-Filho, C. R. P. D. Santos, L. Z. Granville, and R. L. Aguiar,
“An SFC-enabled Approach for Processing SSL/TLS Encrypted Traffic
in Future Enterprise Networks,” in 2018 IEEE Symposium on Computers
and Communications (ISCC 2018), Natal, Brazil, Jun. 2018.

J. Wilson, R. S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, and
K. Winstein, “Trust but Verify: Auditing the Secure Internet of Things,”
in Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services - MobiSys ’17. New York, New
York, USA: ACM Press, 2017, pp. 464—474.

D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
Lopez, K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste,
“Multi-Context TLS (mcTLS),” ACM SIGCOMM Computer Commu-
nication Review, vol. 45, no. 5, pp. 199-212, 2015.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
Packet Inspection over Encrypted Traffic,” Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
- SIGCOMM 15, pp. 213-226, 2015.

J. Han, S. Kim, J. Ha, and D. Han, “SGX-Box: Enabling Visibility on
Encrypted Traffic Using a Secure Middlebox Module,” in Proceedings
of the First Asia-Pacific Workshop on Networking, ser. APNet'17. New
York, NY, USA: ACM, 2017, pp. 99-105.

A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy:
A Free and Open Source Interactive HTTPS Proxy,” 2010—. [Online].
Available: https://mitmproxy.org/

V. Buterin, “Ethereum: A Next-generation Smart Contract and
Decentralized Application Platform,” accessed: 15-01-2019. [Online].
Available: https://github.com/ethereum/wiki/wiki/White-Paper

ETSI ISG NFV, “Network Functions Virtualisation (NFV); Architectural
Framework,” ETSI GS NFV 002 vi.2.1, 2014.

, “Network Functions Virtualisation (NFV); Management and Or-
chestration,” ETSI GS NFV-MAN 001 V1.1.1, 2014.

ETSI ISG MEC, “Mobile Edge Computing (MEC); Framework and
Reference Architecture,” ETSI GS MEC 003 VI1.1.1, 2016.

C. Parada, F. Fontes, C. Marques, V. Cunha, and C. Leitao, “Multi-
Access Edge Computing: A 5G Technology,” in 2018 European Con-
ference on Networks and Communications (EuCNC). 1EEE, 2018, pp.
277-9.

J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

F. Petitcolas, R. Anderson, and M. Kuhn, “Information Hiding-A Sur-
vey,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1062-1078, jul 1999.
J. Wang, R. Zhu, and S. Liu, “A Differentially Private Unscented Kalman
Filter for Streaming Data in IoT,” IEEE Access, vol. 6, pp. 6487-6495,
2018.

J. Fridrich, M. Goljan, and Rui Du, “Detecting LSB steganography in
color, and gray-scale images,” IEEE Multimedia, vol. 8, no. 4, pp. 22-28,
2001.

L. Sha, F. Xiao, W. Chen, and J. Sun, “IloT-SIDefender: Detecting and
Defense against the Sensitive Information Leakage in Industry IoT,”
World Wide Web, vol. 21, no. 1, pp. 59-88, Jan 2018.

M. Antunes, D. Gomes, and R. L. Aguiar, “Towards IoT Data Classifica-
tion through Semantic Features,” Future Generation Computer Systems,
vol. 86, pp. 792-798, Sep 2018.

P. Merriam, “Swagger Schema Validator,” accessed:
[Online]. Available: https://github.com/pipermerriam/flex

15-01-2019.

