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naturalness of use, and unobtrusiveness is paramount [2].
Mark Weiser was a pioneer in describing this concept in his
seminal 1991 paper, that begins with the following words:
The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are
indistinguishable from it [3]. Nowadays, pervasive computing
is crucial for a broad range of applications: using a wide
range of sensors, and exploiting pervasive technologies and
communication, researchers and practitioners can collect data
unobtrusively and cost-effectively [4]. One relevant area that
strongly benefit of this scenario is related to understanding
human mobility.

Understanding human mobility is a relevant issue in modern
society, as witnessed by the wide range of studies focusing
on this topic [5], [6]. The collection of human mobility
data often resorts to social sensing, which refers to a set of
sensing and data collection paradigms where data are collected
from humans or devices on their behalf [7]–[9]. Several are
the applications that can benefit from understanding human
mobility via social sensing, ranging from understanding indi-
vidual mobility patterns [10], to traffic forecasting [11], [12],
including urban planning [13], and sustainability issues [14],
[15]. Another investigated issue concerns the understanding
of human mobility for epidemic modeling and human virus
spread prediction [16], [17]. This issue seems more actual than
ever due to the coronavirus 2019 disease (COVID-19) and
the pandemic the world is experiencing. Several researchers
already started to investigate COVID-19 tracing infection from
mobility data, to understand the effect of control measures
[18].

Motivated by the rapid spread of COVID-19 and its crit-
ical impact on our lives, and inspired by the social sensing
paradigm, the contribution of this paper lies in the design
of an interactive data visualization web application imple-
mented to provide real-time spatio-temporal data, collected
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I. INTRODUCTION

Mobile computing can be defined as the set of IT technolo-
gies (products and services) that enable users to gain access to
computation, information, and related resources when they are
in movement [1]. In this definition, t he c oncepts o f mobility
and wireless connectivity play a key role, providing users with
the ability to keep connected while moving. In recent years, the
fast-paced evolution of ICT has made mobile technologies and
wireless computing pervasive, enabling the emergence of the
pervasive computing paradigm. This paradigm, also known as
ubiquitous computing, bolsters up the need to have computing
and communication gracefully integrated with human users
into the environment, including an emphasis on ease and

© IEEE 2020. This article is free to access and download, along with rights for full text and data mining, re-use and analysis 



exploiting a low-cost passive Wi-Fi tracking community-based
infrastructure. In particular, we here present how the existing
infrastructure [19] can be put to good use to collect data that
can be manipulated to visualize hyper-local flows of people.
This kind of data can be put to a variety of uses, from planning
where and when to visit monitored locations to help contain
the diffusion of COVID-19 disease and its (real-time) effect
on human mobility in Madeira Island (Portugal).

The remainder of this paper is organized as follows.
Section II describes some relevant studies related to Wi-Fi
tracking systems considering large scale scenario, and data
visualization related to COVID-19. Section III details the
deployment of the low-cost passive Wi-Fi tracking community
infrastructure, while Section IV describes the interactive data
visualization application. Finally, the paper concludes with
final remarks and considerations for future work.

II. RELATED WORK

In this section, we present an overview of studies focusing
i) on understanding human mobility via social sensing, and ii)
on data visualization related to the COVID-19 pandemic.

A. Understating human mobility via social sensing

Human mobility data can be gathered exploiting different
approaches, but the more common ones concern the use
of sensors and pervasive technologies, or the extraction of
meaningful information from social media [20], [21]. In
this analysis, we focus on the former approach, that allows
obtaining high-resolution spatio-temporal mobility trajectories
and patterns of individuals and entire social systems using
a variety of sensors and sensing technologies. Currently, we
can define three main categories of approaches. The most
common method is crowdsourcing data from smartphones,
including GPS and sensing of nearby Wi-Fi APs (access points
or routers) and cell towers [19], [22]. Additionally, mobility
data may be collected from systems designed to enable com-
munication and connectivity, such as mobile phone networks
or Wi-Fi systems [23], [24]. Finally, large corporations such as
Google, Apple, Microsoft, combine Wi-Fi APs with GPS data
to improve location accuracy, a practice known as wardriving
[25].

Focusing on studies related to Wi-Fi APs, the authors of
[26] inferred mobility data from Wi-Fi logs in a University
campus, using the RADIUS protocol. The movement data
were analyzed concerning stays, leaps, and moves, i.e., the
time a user remained in the proximity of one Wi-Fi station
and movements or leaps between stations depending on the
time differences one device was observed in each station.
A similar approach has been investigated in [27] where the
authors used Wi-Fi access log data and tried to characterize
a University Campus activity. In [28] the authors present a
study of human mobility using six months of high temporal
resolution Wi-Fi and GSM traces. Interestingly, the authors
demonstrate how it is possible to estimate the location and
use of Wi-Fi access points using only one GPS observation per
day, per person, revealing an opportunity for using ubiquitous

Wi-Fi routers for high-resolution outdoor positioning. An
advanced method used the information broadcast from 8000
Wi-Fi devices in Australia to perform what the authors called
SSID profiling [28]. This technique involves analyzing the
captured information, focusing on the SSIDs (names of the
saved networks on the devices) to associate different devices
with social connections. More recently, an attempt has been
done to localize crowds with Wi-Fi probes, applying location
fingerprinting interpolations from the received signal strength
(RSSI) values from previously scanned indoor locations [29].

Our passive Wi-Fi infrastructure uses the same technologies
above presented, but providing a long term study in the
wild, over a large geographical area, and across multiple
location typologies. Moreover, our infrastructure engages the
community, both in the infrastructure deployment and data
collection (as explained in detail in the next section).

B. Data visualization and COVID-19

Data Visualization can be defined as the graphical repre-
sentation of information and data, making data visible [30].
Data visualizations have gained a key role in the process
of trying to understand the world and are being employed
in a varied number of fields and aspects of life (e.g., [31]).
During the COVID-19 outbreak, data visualization has been
strongly exploited to present the numbers, constantly updated,
of the COVID-19 pandemic diffusion in terms of different
cases reported (confirmed, death, and recovered), focusing on
a specific country or providing global information (see, for
example, [32]–[34]). The Coronavirus Resource Center, Johns
Hopkins University (JHU), developed a very accurate map
visualization presenting aggregated data from multiple credible
sources to track the spread of COVID-19, updated in near real-
time throughout the day [34]. To present another example, [32]
is a web interface that visualizes the globe and the related
COVID-19 data for each country, developed by two students
at Carnegie Mellon University. The web site is constantly fed
by data provided by worldometers1, just one of the numerous
available data sources that make possible the implementation
of variegated data visualizations.

Besides the location-based visualization, several data visu-
alization have been created to explain the COVID-19 diffusion
and infection trajectory (see, for instance, [35]). In some cases,
interactive systems are also providing simulations to explain
different scenarios based on the variables kept into account
(e.g., [36]).

The authors of [37] investigated data visualization to ana-
lyze the epidemiological outbreak of COVID-19 in a scientific
publication. Adding more details, the study presents an effort
to compile and analyze epidemiological outbreak information
on COVID-19 based on the several open datasets on COVID-
19 provided by the Johns Hopkins University, World Health
Organization, Chinese Center for Disease Control and Preven-
tion, and National Health Commission. In [38], the authors
presented a study focusing on the possibility to use GIS with

1https://www.worldometers.info/coronavirus/



Fig. 1. The interactive data visualization system: on overview of the island data

big data to provide geospatial information to fight COVID-19.
In particular, the authors analyzed the spatial representation
of the disease, material, population, and social psychology
at three scales: individual, group, and regional. Despite the
interesting findings, the study concludes pointing out that
several challenges concerning data aggregation, knowledge
discovery, and dynamic expression remain to be studied.

With this study, we intend to provide a first investigation of
how to exploit human mobility data collected by an already
existing infrastructure [19], to interactively present phenomena
related to COVID-19, with the future aim to use such infor-
mation to predict and contrast the disease diffusion in Madeira
Island.

III. THE PASSIVE WI-FI INFRASTRUCTURE

The deployed infrastructure is a community-based system
that uses passive Wi-Fi tracking to understand the mobility and
flows of people at scale [19]. The community-based aspect of
the system consists in letting community stakeholders gather
information about the flow of people near their businesses
(i.e., number of clients per hour) by installing a Wi-Fi passive
node, and accessing the data visualization dashboard of the
system. In doing so the community stakeholders adopt and take
care of a node, in exchange for information while helping to
augment the numbers of passive nodes in the network and con-
tribute to the large-scale analytics. Moreover, the community
can voluntarily contribute and enrich the mobility data with
additional information, providing crowdsourced ground truth
and helping fellow stakeholders make sense of automatically
collected sensor information when an unusual condition is
detected, through commenting on the dashboard.

The system was developed and tested in the wild in a
medium-sized European Island, Madeira. During a period of
four years, 82 Wi-Fi routers have been deployed in 81 points of
interest (POIs) to collect more than 572 million (anonymous)
data points. The POIs include a medium-sized urban center
(Funchal) and several touristic hot spots as well as very rural
and isolated locations, and terminals of the transport system
as the main entrance and exit points of the island (port and
airport). It is interesting to notice that the number of POIs
can be easily enlarged thanks to the voluntary contribution of
interested parties, that just need to provide a stable internet
connection and electricity.

The infrastructure was built making use of off the shelves
inexpensive commercial Wi-Fi routers (40$ each) flashed
to run an open-source GNU/Linux based firmware program
for embedded devices (openWRT). The routers operate in
monitoring mode and the probe request information is stored
in a central MySQL database (for more details see [19]). The
MAC addresses detected in the probe requests were locally
transformed into device IDs using a SHA-256 cryptographic
hash function. This was done to prevent access to the original
identifiers that could be used to compromise the privacy of
users [39]. The system is in this way anonymous, respecting
the privacy of people by avoiding to identify citizens or
owners of the detected mobile devices. At the same time, this
infrastructure allows us to know the actual number of devices
preset at any specific POI, and to track their movement across
the different POIs deployed within the island.

The server side components (developed using apache2 and

2https://httpd.apache.org/



node.js3) perform the calculations and optimizations required
for analyzing the captured data and provide the results through
a web server to the clients. The Wi-Fi routers are connected
to a VPN located on the server to allow remote management,
as well as the scripts (processing the data) to interact with
several external services and APIs. Unlike previous work, our
infrastructure was deployed and maintained by the community
itself for four years, spanning different generations of devices
and operating systems and conditions.

IV. THE INTERACTIVE DATA VISUALIZATION SYSTEM

Thanks to the data provided by the server-side web APIs,
we designed and implemented web-based interactive data
visualizations, focusing on specific needs and social issues
[14], [15], [19]. In this paper, we focus on an interactive
web-based application designed considering the new needs
the COVID-19 outbreak brought about. The interactive system
was built using Web Technologies, such as HTML5, CSS3,
JavaScript, and frameworks and libraries, such a bootstrap4,
jquery5, highcharts6, and leaflet7. The interface provides a
multilingual feature, with the possibility to choose between
Portuguese or English.

The data visualizations provided in the web application have
been designed to present the human mobility data in Madeira
Island, considering the new reality we are living due to the
COVID-19 pandemic. In particular, the system can provide
relevant information to: i) stakeholders, to control and predict
the COVID-19 diffusion, monitoring the situation in real-time,
ii) citizens, who can be assisted by the tool in planning their
daily activities based on the crowding level of a specific POI,
also considering the new regulations and restrictions. At the
same time, users can also contribute to the data collection
and/or validation task, providing numerical information about
the number of people in a specific POI.

Loading the main page, it is possible to see a map-based
data visualization presenting liquid fill gauge charts, drawn
in specific areas of the island (Figure 1). The number in
the fill gauge chart represents the percentage value computed
considering the devices count for the last 60 minutes in a
specific area, against the aggregated average value, considering
the same 60 minutes, during the selected period. Such a
specific period can be manually defined using the two date
pickers (Start Date and End Date), above the map. The default
period is from 2020-08-03 to 2020-03-14, the last week before
the day the state of emergency was declared in Portugal. Con-
sidering that period, in Figure 1, it is possible to see that people
acted accordingly with the government recommendations and
restrictions since the computed aggregate percentage values
were really low, compared with pre COVID-19 values across
the island. If pointing to one of the liquid fill gauge chart, it
pops up a small information dialog including details about the

3https://nodejs.org/en/
4https://getbootstrap.com/
5https://jquery.com/
6https://www.highcharts.com/
7https://leafletjs.com/

specific area and value, and the preview of a chart presenting
the average distribution frequency of the devices counts, hour
by hour, in the selected period (Start Date and End Date),
and with the current hour highlighted using a different color,
i.e., purple (as presented in Figure 1). When selecting one
liquid fill gauge chart, it is possible to zoom-in into the macro
area and visualized the different POIs available in such an
area. For example, Figure 2 focuses on the center of Funchal,
the largest city and the capital of Madeira, where several
POIs (actively monitored by our infrastructure) are available.
Conversely, when selecting a specific POI, the focus goes to
the char displaying (visualized under the map), that presents
i) a bars char of the daily devices count for each day in the
selected period and selected POI, ii) a line series presenting the
effective and official number of people affected by COVID-
19 (datasource: COVID-19 RAM8), considering the selected
macro area and period. The period can be manually edited
(top-right of the chart) or interactively selected using the
timeline slider (bottom of the chart), as presented in Figure
3. By default, the period goes from the 1 March to the current
date. It is also possible to visualize a narrow time-window,
selecting the last week or the last month (starting from the
current date - by default - or from the defined end-date). By
selecting one specific day, it appears the hourly devices counts
chart. Through such a chart, it is also possible to collect data
via crowdsourcing. In fact, selecting a specific point on the
line series, a dialogue window pop-ups enabling a user to
include the estimated number of users in that specific POI,
and a description (as shown in Figure 4). In both the charts
(i.e., daily and hourly devices counts) the data are displayed in
percentage, computed against the higher devices count value
detected in the selected time-window (that corresponds to the
100%).

Fig. 2. The interactive data visualization system: detailed information related
to Funchal city

V. DISCUSSION AND FUTURE WORK

The paper presents an interactive visualization of human
mobility in Madeira island, data during the COVID-19 out-
break. The data is interpreted as compared with the mo-
bility patterns of the previous weeks. The visualized data

8https://covidmadeira.pt/dashboard/



Fig. 3. The interactive data visualization system: daily counts

Fig. 4. The interactive data visualization system: hourly counts

are collected exploiting social sensing, and in particular, a
community-based passive Wi-Fi tracking infrastructure. Over
four years, the low-cost infrastructure collected more than 572
million data points from a total of 82 routers. The deployed
infrastructure demonstrated to be suitable to provide relevant
information related to the flow of people during the COVID-19
outbreak and illustrate the changes in the mobility patterns of
the island. As future work, we will investigate if such a low-
cost community-based system can act as a tool to contrast and
prevent COVID-19 spreading.
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