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Abstract—Deep Neural Network (DNN) inference requires
high computation power, which generally involves a cloud infras-
tructure. However, sending raw data to the cloud can increase
the inference time due to the communication delay. To reduce
this delay, the first DNN layers can be executed at an edge
infrastructure and the remaining ones at the cloud. Depending
on which layers are processed at the edge, the amount of data
can be highly reduced. However, executing layers at the edge can
increase the processing delay. A partitioning problem tries to
address this trade-off, choosing the set of layers to be executed
at the edge to minimize the inference time. In this work, we
address the problem of partitioning a BranchyNet, which is a
DNN type where the inference can stop at the middle layers. We
show that this partitioning can be treated as the shortest path
problem, and thus solved in polynomial time. 1

I. INTRODUCTION

Deep Neural Networks (DNN) are largely employed in
machine learning applications, such as computer vision and
speech recognition. DNN is composed of neuron layers, where
each neuron receives inputs and generates a non-linear output.
In summary, a DNN architecture is composed of an input
layer, a sequence of middle layers, and an output layer.
For image classification, DNN inference executes a feed-
forward algorithm to label an input image into one of the
predefined classes. In this algorithm, each layer receives the
output data from the prior layer, executes a computation,
and then propagates its output data to the next layer. DNN
inference executes this algorithm from the input layer through
the middle layers, until it reaches the output layer, which
generates the probability for each predefined class [1].

Traditionally, DNNs can be deployed on end devices (e.g.,
smartphones and personal assistants) or on a cloud server [2],
[3]. DNN inference generally requires high computational
power, and its execution on resource-constrained end devices
can result in a prohibitive processing delay. DNN inference
can thus be executed in a cloud computing infrastructure,
which is generally equipped with computational resources to
accelerate the processing, such as GPUs (Graphics Processing
Unit). In cloud-based solutions, end devices gather the data
and transmit it to the cloud server, which executes DNN infer-
ence. This adds a data communication delay, which is affected
by the network behavior between the end device and the

1©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

cloud, increasing the inference time. This is a severe problem
since recent DNN applications, such as cognitive assistance
and intelligent vehicles, require high responsiveness [4]. It is
necessary to reduce communication and processing delays to
achieve high responsiveness. The former is the time required
to send data, through the Internet, from the end device to the
cloud server. The second one is the time to perform the infer-
ence itself, related to the employed hardware. Edge computing
emerges as an alternative to reduce the communication delay
imposed by cloud computing [2]. This paradigm consists of
deploying computational resources at the edge of the Internet
(i.e., close to end devices), reducing the communication delay.
Edge servers can be installed in locations such as cellular
base stations and Wi-Fi access points. Nevertheless, edge
devices provide a computational capacity significantly lower
than the cloud, which adds processing delay. Therefore, edge
computing reduces communication delay but increases the
processing delay as compared to the cloud. Thus, considering
responsiveness, there is a clear trade-off between the commu-
nication delay and the processing one.

In literature, there are proposals to handle each one of
the delays related to DNN inference. To reduce processing
delay, BranchyNet proposes classifying an input sample at
the middle layers if a certain confidence level is achieved [5].
Regarding communication delay, DNN partitioning proposes
to compute the first DNN layers at the edge device and
the other ones at the cloud server. This proposal is based
on the fact that the communication delay to send data from
middle layers is significantly lower than the delay to send a
raw image [6]. This paper combines BranchyNet and DNN
partitioning to evaluate the trade-off between processing and
communication delay. To address this trade-off, this paper
formalizes an optimization problem whose objective is to
find an optimal partition that minimizes the inference time
for a BranchyNet. This optimization problem depends not
only on network bandwidth and the computational power of
edge and cloud, but also aspects inherent to input data, such
as image quality. To this end, we model the inference time
for BranchyNet. Then, to minimize the inference time, we
show the equivalency between BranchyNet partitioning and
the shortest path problem. Thus, we can derive a globally
optimal solution in polynomial-time.

This paper is organized as follows. Section II reviews
related works about DNN partitioning. Section III presents
background of BranchyNet. Section IV models the inference
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time for this DNN type. Then, Section V formalized the
BranchyNet partitioning problem. The experiments are shown
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

To accelerate DNN inference, prior works study how to
partition a DNN between edge devices and the cloud server.
Neurosurgeon [3] constructs performance prediction models
for DNNs. It allows to estimate the processing delay at the
edge device and the cloud server. Then, these prediction
models are combined with wireless network conditions to
dynamically select the best partition. However, Neurosurgeon
is limited to chain-topology DNNs. To address this limita-
tion, DADS [6] (Dynamic Adaptive DNN Surgery) optimally
partitions a general DAG (Directed Acyclic Graph) topology
DNN. To this end, DADS treats the partitioning problem as
a min-cut problem. These papers propose DNN partitioning
methods, considering DNNs with no side branches.

Li et al [7] propose a partitioning method to
BranchyNets [5] framework. However, different from
our work, they use the Branchynet framework only for
choosing the DNN size. Instead of using a confidence level
threshold in each side branch, their proposal uses a brute
force search to choose the branch and the partition decision
that achieves a given latency requirement and maximizes
the inference accuracy. This method may be unfeasible for
increasingly deeper DNNs. We thus assume that confidence
level thresholds are well-chosen before the execution of our
partitioning method, guaranteeing a high accuracy level.
Hence, given the BranchyNet architecture with its thresholds,
our paper optimally partitions a BranchyNet to minimize
inference time. Moreover, this paper is the first work to
model the inference time for a BranchyNet, considering the
probability that a sample is classified at the side branch also
as a factor that impacts the inference time. Then, we convert
the BranchyNet partitioning problem into a shortest path
problem, which can be feasible to increasingly deeper DNNs.

III. BRANCHYNET

BranchyNet is a DNN architecture, whose goal is to ac-
celerate inference. This architecture is based on the idea that
features extracted in the first layers can label correctly a large
number of samples on a dataset. To this end, BranchyNet
proposes to modify an original DNN architecture, inserting
side branches at the middle layers. These side branches allow
an input sample to be classified at middle layers, instead of the
output one as in regular DNNs. BranchyNet can use entropy
as an uncertainty metric to compute the confidence level of
sample classification, to decide if the inference can stop or
not at the middle layers [5].

Figure 1 illustrates a generic BranchyNet with N − 1 side
branches. In this figure, the nodes v1 to vN represent layers
of the main branch, and b1 to bN−1 refers to the side branches
inserted at those middle layers. In summary, these layers
can be of three types: convolutional (conv), max-pooling
(max-pool) and fully-connected (fc). The convolutional layers

consist of a set of filters, whose components are learnable
parameters during the training process. Each filter is respon-
sible to generate a set of output features using convolutional
operations. The max-pooling layers provide robustness to
noise in output features of a convolutional layer. To this end,
max-pooling layers get the maximum value of a predefined
window. The output fully-connected layer receives the features
extracted by the previous convolutional layers and generates
a probability vector, containing the probability that a sample
belongs to each predefined class.

Once trained, BranchyNet receives an image, which is
processed, layer by layer, until a side branch is reached.
Then, on the side branch, it computes the confidence level
of sample classification based on the probability vector and
verifies if this confidence level is less than a threshold. If so,
the inference finishes and the class inferred is the class with
the highest probability. Hence, this sample is not processed by
any next layer, reducing the number of processed layers and
thus the processing delay. Otherwise, the sample is processed
by the next layers of the main branch until the next side
branch is reached. Then, the whole procedure is performed
for this branch. If the sample is not classified in any branch,
the inference ends when the output layer is reached.

When the majority of samples on a dataset cannot be clas-
sified at side branches, executing BranchyNet inference at an
edge device can introduce processing delay. To avoid that, it is
necessary to determine which layer the DNN partitioning must
occur to minimize inference time. This decision should take
into account the probability of classifying at side branches, the
network conditions, and the processing capacity of edge and
cloud hardware. Therefore, this work formalizes a BranchyNet
partitioning problem, giving the model defined next.

input ......v1 outputviv2 vNvN-1

b1 b2b1 bk bN-1

Fig. 1. An illustration of a general BranchyNet.

IV. PARTITIONING MODEL

In this section, we model the inference time for BranchyNet
partitioning. To this end, we represent BranchyNet as a graph
and define the BranchyNet partitioning problem.

A. BranchyNet Graph

A DNN can be modeled as a DAG G = (V, E). The set
V contains vertices of G. Each vertex v1, · · · , v|V| represents
the layers in a DNN. For instance, the vertices v1 and v|V|
represent the input and output layers, respectively. The set
E = {eij = (vi, vj)|vi, vj ∈ V} contains the links2 of the
graph. The link (vi, vj) ∈ E exists if and only if the output
data of layer vi feeds the input of the layer vj . Thus, the layer
vi is processed before vj .

2In this paper, we use the word “link” to denote an edge in a graph, to
avoid misunderstanding with edge computing.



A BranchyNet can be modeled as a DAG since it is a
DNN. According to Figure 1, a BranchyNet is characterized
by inserting a side branch bi ∈ B between the middle layers
of the main branch, where B is the set of side branches.
Therefore, we can summarize the BranchyNet architecture
into two components: the main branch and side branches.
In this paper, the main branch is modeled as a chain graph,
denoted by P|V′|, where the sub-index |V ′| indicates the
number of vertices in P|V′|. In a chain graph, each vertex
vi has only one outgoing link, representing its connection to
vi+1, for all vi ∈ V ′, since (vi, vi+1) ∈ E . Let GBDNN be a
DAG of BranchyNet. To model the graph GBDNN, we introduce
the vertices bi ∈ B into the graph P|V′| of the main branch. In
addition, we replace the link (vi, vi+1) with the links (vi, bi)
and (bi, vi+1). In other words, we replace the outgoing link
from vertex vi to its neighbor vi+1 with a link from vi to
the side branch vertex bi, and we add a link from bi to vi+1.
Thus, at this stage, a BranchyNet also can be modeled by a
chain graph denoted by P|V′∪B|.

B. BranchyNet Partitioning

BranchyNet partitioning problem consists of choosing
which layer sends its output data from an edge device to the
cloud. In this section, we approach this problem as a graph
partitioning problem. Given a G = (V, E) graph and a positive
integer K, the graph partitioning finds vertex sets V1, · · · ,VK ,
such that

⋃K
i=1 Vi = V and

⋂K
i=1 Vi = ∅, which means that

each nodevi ∈ V belongs to only one of these subsets.
BranchyNet partitioning splits the set V of a BranchyNet

graph GBDNN into two (i.e., K = 2) disjoint subsets Ve and
Vc. The vertices v1, · · · , v|Ve| represent BranchyNet layers
processed at the edge. The vertices vi ∈ Vc are the layers
processed in the cloud. As in graph partitioning, each vertex
belongs to only one subset thus the layer vi is processed only
at the edge device or at the cloud server, which means that
Ve∩Vc = ∅. As explained in Section IV-A, we model the main
branch of Branchynet as a chain graph. Thereby, formally, the
partitioning task must find a layer vs ∈ V ′ that defines Ve set
that splits G into two parts. The partitioning layer vs is the last
one to be processed in the edge. Hence, the layers from v1
to vs are processed at edge. Then, the edge device sends the
output data of vs to the cloud that processes the next layers.

Once the partitioning layer vs is found, we can determine
which set each layer belongs to. Formally, the set processed
at the edge is Ve = V ′∪B, where V ′ = {v1, · · · , vs} and B =
{b1, · · · , bs−1}. Hence, the set processed in the cloud is Vc =
{vs+1, · · · , v|V|}. It is important to note, in this paper, that no
side branch is processed in the cloud, hence no vertex bi ∈ B
belongs to the set Vc. Therefore, all vertices bi posterior to vs
are discarded. It occurs because, in the cloud, the reduction of
processing delays provided by classifying a sample at the side
branch is negligible when compared with the time required to
execute all layers of the main branch. Moreover, this reduction
is significantly lower than the communication delay between
the edge and the cloud. Figure 2 shows different partitioning
scenarios for a BranchyNet composed of four layers.

In Figure 2, the gray vertices represent the layers processed
at the edge device, the orange vertex corresponds to the parti-
tioning layer vs and the blue vertices refer to layers processed
at the cloud server. Figure 2(a) illustrates an example where
all layers are processed in the edge, so the partitioning layer is
v4. Thus, we have Ve = {v1, v2, v3, v4, b1, b2, b3} and Vc = ∅.
In this case, no data is sent to the cloud. On the other hand,
Figure 2(b) shows cloud-only processing where all layers are
processed at the cloud, so Ve = ∅ and Vc = {v1, v2, v3, v4}. In
this case, the output data size sent to the cloud corresponds to
the raw input data size. Finally, Figure 2(c) shows an example
where partition occurs in the layer v2, so Ve = {v1, b1, v2}
and Vc = {v3, v4}. In this case, the output data of layer v2 is
sent from an edge device to the cloud.

Generally, the partitioning splits a BranchyNet to follow an
objective, such as reducing inference time, saving bandwidth,
maximizing inference accuracy, or even reducing energy con-
sumption. In this paper, our goal is to minimize the inference
time. We derive next a model to estimate the inference time.

C. Estimation of Inference Time

In DNN applications with edge computing, end-devices
send input data to the edge device. When the DNN has no
side branches, this data is processed by all layers placed at the
edge. The edge device sends the output data of the partitioning
layer vs to the cloud, which is responsible to process the
remaining layers. Hence, in this DNN, the inference time
depends on the processing delay in the edge and the cloud,
as well as their communication delay.

Edge devices and cloud servers differ significantly re-
garding their computational power and thus have different
processing delays. Hence, the processing time for a given
layer depends on where it is computed. Let tei and tci be the
processing time to compute the layer vi at the edge and the
cloud, respectively. The total processing delay at the edge,
when the DNN has no side branches, is

Te =
∑

i|vi∈Ve

tei , (1)

and the processing time to compute all the remaining layers
at cloud is given by

Tc =
∑

i|vi∈Vc

tci . (2)

The communication delay depends on the output data size
of the partitioning layer and the network bandwidth. The
output data size generated by each DNN layer presents a non-
monotonic behavior, which means each layer produces output
data with different sizes. Therefore, there are layers closer
to the input layer that generate less data than a deeper layer
(i.e., closer to output layer), resulting in higher communication
delay. For each layer vi, we can define the communication
time as tnet

i = αi

B where αi is the output data size of layer vi
and B is the network bandwidth. At this stage, we can define
te = [te1, · · · , te|V|] and tc = [tc1, · · · , tc|V|] as parameters
related to hardware resources and tnet = [tnet

1 , · · · , tnet
|V|] related
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(a) Edge-only processing.

v4v1 v2 v3

(b) Cloud-only processing.

v1
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(c) Processing with partitioning

edge partitioning cloud

Fig. 2. Possible scenarios for DNN processing.

to network condition. Additionally, we can assign a 3-tuple
(tei , t

net
i , t

c
i ) to each vertex vi of a DNN with no side branches

or for the main branch in a BranchyNet GBDNN.
In a DNN with no side branches, the inference time is the

sum of the total processing delay (i.e. Te and Tc) with the
communication delay (i.e., tnet

s ), as shown in Equation 3 [6].

TDNNinf = Te + tnet
s + Tc (3)

If we consider a DNN with side branches (i.e., a
BranchyNet), an inference can stop at one of these branches,
if the classification achieves a certain confidence criterion. To
model the inference time for DNN with side branches, we
divide our analysis into a particular case and a generic one.

1) Particular Case: We first consider a particular
BranchyNet, with only one side branch bk, placed in the
output of any middle layer vk, where 1 ≤ k ≤ (|V| − 1).
As BranchyNet inference algorithm described in Section III,
in this case, when a sample reaches this side branch bk, it can
be classified and exits the BranchyNet at that middle layer or
is processed by the next layers until reach the output layer.
To model this two possible outcomes, we define a Bernoulli
random variable Xk that takes on 1 if a sample is classified
at the side branch bk with probability P[Xk = 1] = pk, where
pk ∈ [0, 1]. Otherwise, Xk = 0 if the sample is process by
the next layers to side branch bk with P[Xk = 0] = 1− pk.

2) General Case: We generalize the previous analysis,
considering a BranchyNet with |V| − 1 side branches, as
shown in Figure 1. As in particular case, we define a
Bernoulli random variable Xk for each side branch bk ∈ B,
resulting in a sequence of Bernoulli random variables X =
(X1, X2, · · · , X|V|−1). For a sample to be classified at side
branch bk, this sample cannot meet the confidence criterion in
any of the k − 1 previous side branches. Thus, the Bernoulli
random variable Xk takes on value 1 for the first time at side
branch bk after k− 1 trials. To model it, we define a random
variable Y that represents the number of side branches, which
have already been processed before the current side branch
bk, and it cannot classify the sample. Then, the probability of
random variable Y as follows:

pY (k) = P[Y = k] = pk

k−1∏
i=1

(1− pi). (4)

Considering a batch of input data samples, we can compute
the expected value of the inference time. As the cloud has no
side branches, if the partitioning occurs earlier than the first

side branch, the inference time is modeled by Equation 3 as
a DNN with no side branches. If the partitioning occurs after
the side branch, the sample can be classified by this branch,
and thus it is not processed by the remaining layers. In this
case, in a BranchyNet with only one side branch, the expected
value of the inference time is

E[TBDNN
inf (k)] =

∑
i|vi∈Ve
i≤k

tei + (1− pY (k))

∑
i|vi∈Ve
i≤k

tei + tnet
s + Tc

 .

(5)
Equation 5 shows that the edge device always processes the

layers before the side branch bk. However, the processing and
communication delays of any remaining layers are weighted
by the probability of classifying the input data at side branch.
In an extreme case, where the input samples are always
classified at the side branch, which means p = 1, Equation 5
considers neither the communication delay nor the processing
delay for the remaining layers. On the other extreme, if
the inference never stops at a side branch (i.e., p = 0),
Equation 5 is equal to Equation 3. At this stage, according
to the partitioning layer position, the expected value of the
inference time can be modeled as follows:

E[Tinf (k)] =
{
TDNN
inf , ∀vk, vs | s < k.

E[TBDNN
inf ], otherwise. (6)

V. BRANCHYNET PARTITIONING OPTIMIZATION

In this section, our goal is to determine the partitions Ve,
Vc that minimize the inference time of Equation 6, given the
input parameters te, tc, tnet, B and pY (k). As defined in
Section IV-A, the main branch of BranchyNet is modeled as a
chain graph P|V′|. Hence, if we find a partitioning layer vs that
minimize E[Tinf (k)], we can determine the partitions Ve and
Vc. To this end, we propose to construct a new graph G′BDNN
based on the BranchyNet graph. These graph G′BDNN allows
to associate one delay of the a 3-tuple (tei , t

c
i , t

net
i ) to each link,

as described Section IV-C. The delay associated with each link
(vi, vj) depends on where the vertex vi is processed. When
then we show that the partitioning problem can be considered
as the shortest path problem in G′BDNN. To build G′BDNN, we
create two disjoint chain graphs Pe|V′∪B| and Pc|V′|, such as
those of Figures 2(a) and 2(b), respectively. The vertices of
Pe|V′∪B| and Pc|V′| represent the layers processed in the edge
in the cloud, respectively. Then, we assign a weight ω(vi,vj) to
each link (vi, vj) of the graphs Pe|V′∪B| and Pc|V′|, representing



the processing time to compute vi at the edge (i.e., tei ) and at
cloud (i.e., tci ), respectively. Figure 3 shows the graph G′BDNN
constructed based on a BranchyNet constituted by the main
branch with three layers and one side branch inserted after
the first layer of the main branch. In this figure, each gray
and blue vertices represents a layer processed at the edge and
cloud, respectively. The dashed red and blue links correspond
to links of graphs Pe|V′∪B| and Pc|V′|.

The graph G′BDNN must model three possibilities: edge-
only processing, cloud-only processing, and processing with
partitioning. To model cloud-only and edge-only, we introduce
two virtual vertices called input and output and then, we add
links (input, vc1) and (input, ve1) into graph G′BDNN, illustrated
by a blue and black links in Figure 3. Then, we assign
weights to these links that are related to communication
delay in cloud-only and edge-only processing. The weight
ω(input,vci ) corresponds to communication time to upload a
raw input sample to the cloud denoted by tnet

input in cloud-
only processing. In edge-only, the weight ω(input,vei ) = 0 since
there is not communication delay. Figure 3 shows that the
path between input and output using only the red dashed
and blue links computes the inference time for edge-only and
cloud-only processing, respectively. To model the processing
with partitioning in graph G′BDNN, for all vei ∈ V ′, we
introduce an auxiliary vertex v∗ei ∈ VA (i.e., orange vertices
in Figure 3), where VA is the set of auxiliary vertices. Then,
we add a link (vei , v

∗e
i ) and replace (vei , v

e
i+1) (i.e., red dashed

links in Figure 3) to (v∗ei , v
e
i+1). In Figure 3, the red dashed

links (ve1, b1) are replaced to the black links (ve1, v
∗e
1 ) and

(v∗e1 , b1). To model the communication between edge and
cloud, we add a link, whose the weight corresponds to the
communication time to send output data of partitioning layer
vs ∈ V ′ placed at edge to vs+1 ∈ Vc placed at cloud denoted
by tnet

s . In this figure, the orange link, such as (v∗e1 , v
e
2),

represents the communication between edge side and cloud.
To avoid ambiguity in the choice of the shortest path when
the probability pY (k) = 1, we add a virtual vertex v∗c3 as
successor of vc3 and predecessor of vertex output. Then, we
assign the weight ε to the link (v∗c3 , output). The weight ε
must be a very small value, to not interfere with the result
of the shortest path problem. If the probability pY (k) = 0,
which means the probability that any sample is classified by
side branch b1, the graph G′BDNN represents a regular DNN.
The weights are assigned to links of G′BDNN as follows:

ω(vi,vj) =


tei , if vi ∈ Ve
tci , if vi ∈ Vc
tnet
i , if (vi ∈ VA, vj ∈ Vc) ∨ (vi = input)
ε, if vi ∈ Vc, vj = output,
0, if vi ∈ VA, vj ∈ Ve

(7)
To model the expected value of inference time in a

BranchyNet, the weights ωBDNN
(vi,vj)

assigned to the links in
G′BDNN is weighted by the probability pY (k) that the sample is
classified at side branch bk. Thereby, as higher the probability
that a sample is classified at the side branch, less significant

are the weights of links after the side branch. Thus, the
weights assigned to links in a Branchynet is given by

ωBDNN
(vi,vj)

(k) = pY (k)ω(vi,vj). (8)

t1
c t2

c

output
input

t1
e

0

t1
net
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0 v1
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e

(1-p1)t2e
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c

εv2
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v1
c v3
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e

v3*
e
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e

0

Fig. 3. Graph representation G′BDNN of 3-layer BranchyNet.

Our goal is to determine the path with the minimum
cost that connects the virtual vertices input and output.
The cost of the path is defined as the sum of the weights
associated with the links in graph G′BDNN. At this point, we
show the equivalency between the BranchyNet partitioning
problem and the shortest path problem. Given two vertices,
the shortest path problem finds a forward path that connects
these two vertices with minimum cost. In this problem, these
two vertices are input and output. In Figure 3, if the layers of
Ve are contained in the shortest path, it means that processing
strategy is edge-only. In this case, the total cost correspondents
to Te, as shown in Equation 1. However, if all vertices
vi ∈ Vc is contained in the shortest path, it means cloud-only
processing. The cost of shortest path is thus Tc, as defined in
Equation 2. Otherwise, if the vertices in shortest path belongs
to Ve as well as Vc, then partitioning occurs. The total cost is
given by Equation 6. For instance, in Figure 3, assuming the
partitioning layer is vertex v2, the shortest path is (input, ve1),
(ve1, v

′e
1 ), (v′e1 , b1), (b1, v

e
2), (ve2, v

′e
2 ), (ve2, v

c
3), (vc3, v

∗c
3 ) and

(v∗c3 , output). Thus, the layers v1 through v2 are processed
at the edge and belong to set Ve then the edge sends output
data of v2 to the cloud, which, in turn, processes the v3 that
belongs to set Vc.

The shortest path problem is a well-known problem that
can be solved in polynomial-time. In this work, Dijkstra’s
algorithm is used to find the shortest path with the computa-
tional complexity of O(m + n log(n)), where m and n are
the number of links and vertices in G′BDNN, respectively.

VI. EVALUATION

The experiments present a sensitivity analysis evaluating the
impacts of input parameters described in Section IV-C, such as
tci , t

e
i , B and pY (k), in inference time, under different network

bandwidth. Then, we analyze the partitioning layer choice
under different processing capacities of the cloud server and
edge device. To this end, we implement a BranchyNet called
B-AlexNet [5]. The B-AlexNet is composed of a standard
AlexNet architecture as the main branch with one side branch
inserted after the first middle layer of the main branch.
The choice of only one side branch aims to simplify the
experimental analysis, and the side branch position is chosen
to avoid unnecessary processing in the edge. First, we have
to obtain those input parameters. The parameters G′BDNN
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Fig. 4. Inference time according to the probability of classifying a sample for different wireless technology and processing factors γ

and the output data size αi for each layer are obtained
after the definition of B-AlexNet as BranchyNet architecture.
To obtain the communication time tnet

i , we consider that
the edge device uses wireless technology to send data to
the cloud. Besides, we assume that the bottleneck is the
access network. We thus use average uplink rates of 1.10,
5.85, 18.80 Mbps, which corresponds to 3G, 4G, and Wi-Fi,
respectively. These average uplink rates used in this work
are based on the values presented in [6]. To obtain tc, we
measure the processing time for each layer of B-AlexNet,
using Google Colaboratory. Google Colaboratory is a cloud
computing service for machine learning, equipped with Intel
2-core Xeon(R)@ 2.20GHz processor, 12 GB VRAM and
GPU Tesla K80. We define the processing time at edge for
each layer as tei = γ · tci where γ ∈ N>1 is a proportionality
factor that indicates the ratio between processing time at cloud
and edge. This factor spans different edge hardware types in
our evaluation. For example, Jetson TX2 module developed
by NVIDIA can represent an edge device equipped with
high processing power and thus a low γ. On the other hand,
Raspberry Pi can represent a resource-constraint device, with
a high γ.

Figure 4 shows the impact of probability in expected value
of inference time, given by Equation 5, for three processing
factors: 10, 100 and 1000. These results are obtained based
on the solution of our optimization problem when varying the
probability that a sample is classified at the side branch. For
each processing factor, we present results for 3G, 4G and Wi-
Fi. Figure 4 shows that, when the edge has high processing
power, the probability has a severe impact on inference time.
Also note that, for each processing time, the y-axis has a
different scale, meaning that a high edge processing power
leads to an overall low inference time.

Considering a given processing factor, Figures 4(a) and 4(b)
show that networks with lower bandwidth are more affected
by probability. For example, the 3G results in Figure 4(a)
show that the inference time reduces 87.27% if we compare
a case where the probability is zero with the case where
the probability is one. On the other hand, this difference is
82.98% and 70%, for 4G and Wi-Fi, respectively. Figure 4(a)
also shows that, when the probability is one, all network
technologies have the same inference time. In this case, this

result is expected since all samples are classified at the side
branch. Although the probability also affects inference time
in Figure 4(b), we can note that, for each technology, the y-
axis remains constant for a given range of probability. This
explained since, as compared to the case of Figure 4(a), the
edge has lower processing power. Hence, for low probabilities,
the optimization problem chooses cloud-only processing since
the major part of the samples are not classified on the side
branch. As cloud-only processing does not have side branches,
the inference time is not affected by the probability. After
a given probability value, the problem begins to choose
partitioning solutions, where the edge is involved, and thus the
probability begins to affect the inference time. For example,
for 3G, the inference time only starts to decrease when the
probability is higher than 0.3. For 4G, this value is 0.8 since,
as compared to 3G, the bandwidth is higher, and thus it is
more interesting to send raw data to the cloud for a large
probability range. Finally, the Wi-Fi results of Figure 4(b)
shows that it is always interesting to perform cloud-only
processing due to its high bandwidth. Figure 4(b) shows an
extreme situation where the probability does not affect the
inference time. This behavior happens because the edge has
low processing power, and thus it is always interesting to
perform cloud-only processing.

Using the same scenario of Figure 4, we vary the processing
factor γ and analyze which layer the optimization problem
chooses as the partitioning one. Figure 5(a) and 5(b) shows the
chosen layer for different processing factors, when using 3G
and 4G, respectively. Each curve represents a given probability
of classifying the sample at a side branch. This behavior is
expected since an edge with a lower processing power means
that it is more interesting to process the layers in the cloud.
Figure 5(a) shows that as the processing factor increases, the
chosen partitioning layer moves toward to input layer. For
example, assuming a probability p = 0.8, when γ changes
from 500 to 600, Figure 5(a) shows that the partitioning
layer changes from conv1 to input, which means cloud-only
processing. When comparing Figure 5(b) with Figure 5(a),
we note that, for 4G, the problem starts to choose cloud-
only processing for a lower processing factor (i.e., a higher
edge processing power). This confirms the trend observed in
Figure 4, where, for a higher average uplink rate, the problems
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(a) Partitioning Layer according to factor γ with 3G.
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(b) Partitioning Layer according to factor γ with 4G.

Fig. 5. Partitioning layer for different processing factors.

tend to choose cloud-only processing. Finally, Figure 5 also
confirms the behavior of Figure 4 where the probability
affects the choice of the partitioning layer, thus impacting the
inference time.

In practice, the probability of classifying an input image at a
side branch is a parameter related to aspects inherent of input
data that depends on numerous factors. One of these factors is
image quality. To show that image quality affects the proba-
bility, and thus the partitioning decision, we train a B-AlexNet
for image classification, using a cat-and-dog dataset [8]. This
dataset is composed of images of dogs and cats in different
environments without any distortion. Once trained, we apply
a batch with 48 samples with different levels of Gaussian blur.
This experiment implements Gaussian filters with dimensions
5, 15, 65 to represent images with low, intermediate, and high
distortion, respectively. We use these images as samples to
perform inferences to classify if an animal is a dog or a cat.
Figure 6 shows the probability of classifying an input image
according to the entropy threshold. This figure shows that
as distortion level increases, the probability that a sample is
classified at a side branch decreases. This is true since images
with higher distortion levels tend to have a higher uncertainty
in the inference, resulting in a lower probability that it is
classified at a side branch.

VII. CONCLUSION

In this paper, we accelerate DNN inference, partitioning
DNN between the edge device and cloud server, to minimize
the inference time. Different from a traditional DNN, the
BranchyNet has side branches that allow the inference to stop
at the middle layers, which can reduce the inference time.
Hence, to partition a BranchyNet we have to take into account
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Fig. 6. Probability of side branch classification under different distortion
levels in B-AlexNet.

the probability that inferences stop at a side branch. To address
this problem, we model the expected value of inference time
as a function of different factors, such as processing and com-
munication delay and the probability of classification at a side
branch. We also model the BranchyNet as a graph, showing
that the minimization of inference time can be solved as the
shortest path problem. Hence, this problem can be solved in
polynomial-time, using Dijkstra’s algorithm. We evaluate our
problem using a sensitivity analysis where we vary the prob-
ability of side branch classification and the processing power
in the edge. From the results obtained, we demonstrate that
probability affects partitioning layer choice, hence impacts
the inference time. Thus, estimating the probability allows
improving the partitioning decision as network conditions
and computational resources. Moreover, evaluations show that
processing strategy changes according to the probability. Thus,
this paper also introduces the probability as a factor to be
considered in BranchyNet partitioning. As future work, our
first goal is to extend our proposal to handle also DAG
topology DNN. Moreover, we will investigate heuristics for
side branch placement, to attempt also accuracy requirement.
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